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ICA With CWT and k−means for Eye-Blink
Artifact Removal From Fewer Channel EEG
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Abstract— In recent years, there has been an increase
in the usage of consumer based EEG devices with fewer
channel configuration. Although independent component
analysis has been a popular approach for eye-blink artifact
removal from multichannel EEG signals, several studies
showed that there is a leak of neural information into
the eye-blink artifact associated independent components
(ICs). Furthermore, the leak increases as the number of
input EEG channels decreases and leads to loss of valuable
EEG information. To overcome this problem, we developed a
new framework that combines ICA with continuous wavelet
transform (CWT), k−means and singular spectrum analy-
sis (SSA) methods. In contrast to the existing approaches,
the artifact region in the identified eye-blink artifact IC is
detected and suppressed rather than setting it to zero as
in classical ICA. As most of the energy in the eye-blink
artifact IC is concentrated in the artifact region, CWT and
k−means algorithms exploits this feature to detect the
eye-blink artifact region. Support vector machine (SVM)
based classifier is finally designed for automatic detection
of the eye blink artifact ICs. The performance of proposed
method is evaluated on synthetic and two real EEG datasets
for various EEG channels setting. Results highlight that for
fewer channel EEG signals, the proposed method provides
accurate separation without any neural information loss as
compared to the existing methods.

Index Terms— Electroencephalogram (EEG), eye-blink
artifact, independent component analysis (ICA), continu-
ous wavelet transform (CWT), k−means clustering, singular
spectrum analysis (SSA), support vector machine (SVM).

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) signals manifest
the electrical activity of the brain and are often used

to diagnose the neurological disorders such as epilepsy, brain
stroke and recently in applications like attention tracking in
drivers [1]–[4]. In general, the measured EEG signals are
often contaminated by several physiological artifacts, such as
electrooculogram (EOG), eletromyogram (EMG) and other
non-physiological artifacts. The influence of these artifacts
in applications like brain computer interface (BCI) is also
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studied in [5]. However, the recorded EEG signals are often
contaminated by the EOG artifact than other artifacts and
alters the signal characteristics [6]. As the eye-blink is an
uncontrollable and involuntary activity and often occurs (once
in every 5s [7]) than eye-movement, we hereafter refer to the
EOG artifact as an eye-blink artifact. Removal of eye-blink
artifact has been a challenging task, as they overlap with
the frequency spectrum 0 − 12H z of EEG signal [8]. The
usage of traditional low-pass or band-pass filter for eye-blink
artifact elimination may also remove the valuable components
of the actual EEG signal. Therefore, accurate removal of
eye-blink artifact from the EEG signals is necessary for better
understanding of the brain function.

The adaptive filters have been applied to remove eye-blink
artifact from EEG signals [9]. However, they require a refer-
ence signal that some how correlates with the eye-blink artifact
in the EEG signal. An artifact subspace reconstruction (ASR)
method has been proposed, which is similar to principle com-
ponent analysis (PCA), to remove artifacts from multichannel
EEG data [10]. Like in PCA, high variance components are
rejected based on the pre-set cutoff parameter. To reject the
artifact components, in this method, the clean regions of the
EEG data are used as reference to determine the threshold. The
optimal selection of ASR’s cutoff parameter has been studied
extensively in [11].

Independent component analysis (ICA) method is a statisti-
cal based filter that has been successfully employed to remove
eye-blink artifacts from the multichannel EEG signals [12],
[13]. Unlike ASR method, where the variance of the EEG data
is considered to estimate the uncorrelated components, ICA
method exploits the higher order statistics (HOS) of the mixed
EEG data to estimate the independent components (ICs) [13].

In general, the performance of ICA in estimating ICs will
be good with more number of EEG channels. To enhance the
performance of eye-blink artifact removal, ensemble empirical
mode decomposition (EEMD) technique [14] is jointly used
with ICA [15], [16]. In EEMD-ICA method, each EEG
channel data is mapped into k intrinsic mode functions using
EEMD. Such transformation increases the input EEG data size
to k times the number of EEG channels, which will be applied
to ICA as input for the faithful separation of eye-blink artifact.
In addition to this, the integration of wavelet transform with
ICA (w-ICA) has been proposed in [17]–[22] to enhance the
performance of artifact removal from the EEG data. In wavelet
based ICA methods, the wavelet transform is applied either to
decompose the EEG data into components before employing
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Fig. 1. Placement of electrodes for 2, 4, 8 and 16 channels configurations
for (a) Synthetic and ERP-BCI data-1 and (b) covert and overt ERP-BCI
data-2.

ICA [20], [21] or it is used to denoise the eye-blink artifact
ICs obtained from ICA.

Recently, the consumer based EEG devices with fewer EEG
channels have been popular for BCI related applications [23],
[24] and also in the study of cognition (emotion, attention
and fatigue) for vehicular applications [25], [26]. In general,
these consumer based EEG devices comprises of single or
at most sixteen EEG channels. The removal of eye-blink
artifact in fewer EEG channel data is far more challenging
compared to multichannel EEG. The use of ICA for fewer
EEG channels and benefits has been first studied in [27]
and developed a moving average based ICA method, called
MAICA, for efficient separation of eye-blink artifact from the
fewer channels EEG data [28].

Most of the existing ICA based methods rely on iden-
tifying the eye-blink artifact associated ICs. The identified
ICs are then set to zeros to reconstruct the corrected EEG
signal. As there exist neural cerebral information in estimated
eye-blink artifact ICs, setting them to zero automatically
in the reconstruction step removes the valuable EEG infor-
mation [17]. The loss of neural components increases as
number of input EEG channels to ICA decreases. Therefore,
to preserve the valuable cerebral information, denoising of
eye-blink artifact IC has to be performed rather than directly
setting the component to zero. Only few methods have been
proposed to denoise the estimated eye-blink artifact ICs [17],
[19]. However, the existing methods fail to provide accurate
separation of the eye-blink artifact without altering frequency
spectrum of EEG signals under fewer channel configuration.

In this paper, we develop a new framework that combines
ICA with continuous wavelet transform (CWT), k−means
clustering and singular spectrum analysis (SSA) methods to
denoise the eye-blink artifact IC without altering the original
EEG information. In the proposed method, the identified
eye-blink artifact IC is mapped into it’s time-frequency repre-
sentation. Next the columns of time-frequency matrix (each
column is a feature vector) are clustered using k−means
clustering algorithm. In general, the amplitude of samples
in the eye-blink artifact region are high as compared to the
samples in the non-artifact region. The proposed methodology
exploits this feature to denoise the eye-blink artifact ICs. The
novelty of the proposed method lies in combining CWT and

an unsupervised clustering algorithm (k−means) with ICA
to denoise the eye-blink artifact without altering the EEG
information. In addition, with simple two time-domain features
of ICs, the support vector machine (SVM) [29] based classifier
is developed to identify the eye-blink artifact ICs. The pro-
posed methodology for eye-blink artifact removal is evaluated
on synthetic and two real EEG datasets. Comparison with
existing methods highlights the performance of the proposed
approach.

The rest of the paper is organized as follows: the datasets
used in this paper are discussed in in Section II. The frame
work of the proposed method are discussed in Section III. The
results and the discussion are presented in Section IV and V
respectively. Finally, Section VI concludes the paper.

II. MATERIALS

In order to evaluate the performance of the proposed and
the existing methods, we have considered one synthetic and
two real EEG datasets: event related potential brain computer
interface data (ERP-BCI) [30], [31] and covert and overt
EEG [32], [33] datasets.

A. Synthetic EEG Data

For synthetic simulation study, we consider the resting
state EEG data [34]. The EEG data is collected using
64 channel electrode cap with sampling frequency 256H z
from 10 subjects. For more details please refer [34]. For
analysis in this paper, we only considered the EEG data
corresponding to eyes-open task. To evaluate the performance
of proposed method under fewer EEG channels setting,
we have selected 16 channel EEG data from 64 channels raw
EEG data. The 16 EEG channels considered for this study are:
Fp1, Fpz, Fp2, F3, Fz, F4, T7, C3, Cz , C4, T8, P3, Pz , P4, O1,
and O2, shown in Fig. 1(a). We have selected these electrodes
to cover the total scalp regions such as pre-frontal, frontal,
temporal, central, parietal and occipital. Before constructing
the synthetic EEG data, we remove the dc drift and high
frequency components from the data. Next, a band-pass filter
is applied with cut-off frequencies 1 and 45H z. To assess
the performance of the proposed technique over the existing
methods, we have constructed 120 synthetically contaminated
EEG signals. The synthetically contaminated EEG signals are
constructed as follows: first, we have extracted a 10s artifact
free EEG signals from a 16 channel lengthy EEG records
and used as multichannel ground truth EEG data. A total
of eighteen 10s artifact free multichannel EEG epochs were
extracted (segmented) from six subjects EEG records.

Next, for constructing synthetic eye-blink artifact data,
first, the eye-blink artifact region is identified manually and
segmented from the EEG signal and zeros were appended
to the segmented eye-blink artifact on both sides such that
the signal length is 10s. The MATLAB smooth command
has been used to remove the EEG remnants exist on the
eye-blink traces and results ground truth eye-blink artifact.
Based on the recommendations in [35], the amplitudes of
the ground truth artifact is adjusted and stacked to construct
the eye-blink artifact data matrix U (16 channels). We have
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Fig. 2. Block diagram of the proposed framework.

constructed 10 such data matrices from five subjects. Using
these data-sets and simple additive mixing model, we have
constructed 180 (= 18 × 10) synthetically contaminated mul-
tichannel EEG data Xcon. We have used 90 multichannel EEG
epochs for build the SVM classifier and the remaining 90 EEG
epochs are used for testing.

B. ERP-Based BCI EEG Data-1

The ERP-BCI dataset contains data from 12 subjects with
sampling frequency fs = 2048H z. Each subject was asked
to spell 20 characters using matrix speller and hence dataset
has 20 trials per subject. For simulation study with real EEG
signals, we have constructed 120 contaminated EEG signals as
follows: first, before removing the dc drift and high frequency
components from the raw EEG data, the EEG signals are
down sampled to 256H z. Next, a band-pass filter is applied
with cut-off frequencies 1 and 45H z. A 10s EEG epoch is
segmented from lengthy EEG record of each subject such that
at least one eye-blink artifact is present in the extract EEG
epoch. We have constructed 120 EEG epochs of length 10s
from 12 subjects EEG records. From this EEG dataset, sixty
EEG epochs are used to build (train) SVM based classifier and
the remaining 60 EEG epochs are used to test the classifier
performance on real EEG data. For more details about the
EEG data, please refer to [30], [31].

C. ERP-Based BCI Data-2

In order to evaluate the proposed method on lengthy
EEG signals, we have considered publicly available covert
overt EEG data. The covert and overt EEG data contains
P300 evoked potentials of 10 healthy subjects recorded using
two different paradigms. Using these two paradigms, the
subjects attention in covert and overt conditions is studied.
The EEG signals were recorded using 16 channels EEG
device with sampling frequency of 256H z. The location of
16 EEG electrode on the scalp are F3, Fz , F4, FCz , C3,
Cz , C4, C P3, C Pz , C P4, P3, Pz , P4, P O7, P O8, and Oz

and shown in Fig. 1(b). In this study, each subject attended
three recording sessions and each session comprises of six
trials of 24s time duration for each condition. This results
in total 36 trials (including both overt and covert conditions)
per subject. As a result, a total of 360 EEG epochs were
extracted from 10 subjects. However, we have selected a total
of 120 eye-blink artifact affected EEG epochs from 360 trials.
We have used 60 EEG epochs to build the classifier and 60
EEG trails were used for testing. Interested readers can refer
to [32], [33] for more details about the EEG data.

III. PROPOSED METHOD

The proposed methodology to remove eye-blink artifact
from fewer channel EEG data is described in Fig. 2. It com-
prises of three steps: (i) application of ICA to the contaminated
EEG data, (ii) detection and (iii) denoising of ICs correspond-
ing to eye-blink artifact. The novelty of the proposed method
was highlighted in the shaded region. In what follows, the key
steps are detailed in

A. ICA

Consider d number of statistically independent source com-
ponents s1, s2, . . . , sd , of length N samples each. These source
signals were measured using d number of channels (assumed
that the number of sources are equal to the number of
channels). Then the measured EEG signals over the scalp are
a linear mixture of sources and can be defined as⎡

⎢⎣
x1

con
...

xd
con

⎤
⎥⎦ =

⎡
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⎤
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Xcon = AS (1)

where S = [s1, s2, . . . , sd ]T and A are the source and mixing
matrices respectively. In fact, the source components and the
mixing process information are unknown. The ICA algorithm
will estimate the de-mixing matrix W (≈ A−1) from the mixed



1364 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

EEG data Xcon. The ICs are extracted by multiplying the
de-mixing matrix W with the contaminated EEG data Xcon

and given by

WXcon = Ŝ ≈ S (2)

After computing the ICs using (2), the IC corresponding to
the eye-blink artifact, say u, is identified automatically using
SVM based classifier, will be discussed in Section III-B.
In most of the traditional ICA methods [12], [13], identified
eye-blink artifact ICs are set to zero. In fact, the remnants of
EEG signal, we call it leaked EEG components ( sleak

eeg ), can
be seen in the estimated eye-blink artifact ICs [17]. Setting
them to zero in the reconstruction step of ICA will result
in loss of original EEG information. Therefore, instead of
setting the identified eye-blink artifact ICs to zero, we localize
the eye-blink component region in the detected IC using
time-frequency transform and k−means clustering algorithms.

The application of wavelet transforms and the selection
of mother wavelets for analyzing EEG signals has been
extensively studied in [36]–[38]. As we want to localize the
eye-blink component (the artifact) region in the detected IC
(eye-blink artifactual IC), in the proposed method, we map
it into its time-frequency representation using CWT. Although
several mother wavelets exists in-literature, the Morlet wavelet
preserves the time and frequency resolution [39] and helps in
localizing the eye-blink component in the detected IC. Hence,
we employed CWT with Morlet wavelet to map the detected
eye-blink artifact IC into its time-frequency representation.
CWT with Morlet wavelet is a promising tool and recently,
it has been also used to decode finger movement from the EEG
signal [40]. To output the time-frequency representation of a
signal, in CWT, the convolution of the given signal and wavelet
will be performed. In each convolution step of CWT, the
wavelet function is stretched or compressed by some quantity
and results two-dimensional (time-frequency) representation
of the signal. Hence, in this method, the identified eye-blink
artifact IC is represented into its time-frequency domain
using CWT. In fact, such representation maps each sample
of the eye-blink artifact IC into a high dimensional feature
vector. The k−means algorithm cluster (group) these features
and provides the clustering information. With the clustering
information we construct the partially denoised eye-blink
artifact IC say s̄eog , will be discussed in Section III C. The
constructed eye-blink artifact IC say s̄eog is further processed
using SSA [41] method to remove the EEG components
superimposed on the eye-blink artifact region in the IC. Thus
it results in the denoised eye-blink artifact IC ŝeog . The
denoised eye-blink artifact IC ŝeog is subtracted from u to
retrieve the EEG information reside on the eye-blink artifact
IC. The ICs associated to the EEG, ŝeeg and the residual EEG,
ŝleak

eeg = u − ŝeog components are concatenated to form the
source matrix Ŝ. Finally, the corrected EEG signal X̂eeg is
obtained by multiplying the estimated source matrix Ŝ and
the mixing matrix Â, which is inverse of de-mixing matrix
W. The procedure for the eye-blink artifact detection and
the denoising is discussed in the following two subsections
respectively.

B. Detection of Artifactual ICs

Detection of eye-blink artifact associated ICs is a critical
step in ICA based artifact removal methods. Therefore, in this
work, we have employed SVM based classifier to detect
eye-blink artifact ICs automatically. For that, a pre-trained
SVM based classifier is build as follows: first, the time-
domain features, Hjorth mobility [42] and Kurtosis, of ICs
extracted from the EEG data using ICA are computed. Next,
ICs associated to eye-blink artifact and the EEG are manually
detected and labelled as +1 and −1, respectively. Finally,
using the computed features and the labelled information, the
SVM classifier was built. For new EEG data (unseen EEG
data), the pre-trained classifier will classify the IC belongs to
the eye-blink artifact as positive class (+1) and the IC belongs
to EEG as negative class (−1). The following section describe
the denoising of artifactual IC that is classified as positive
class (+1).

C. Denoising of Artifactual ICs

The shaded region in the block diagram shown in Fig. 2
describes the key steps involved in the denoising of the
eye-blink artifact IC. Consider that u is an eye-blink artifact
IC classified by SVM classifier and is defined as

u = seog + sleak
eeg (3)

where, seog is the true eye-blink artifact component and sleak
eeg is

the leaked EEG component present in the identified eye-blink
artifact IC. In the denoising process of eye-blink IC, we try to
extract the true eye-blink artifact seog from u. The estimated
eye-blink artifact ŝeog is then subtracted from u, resulting the
residual EEG component ŝleak

eeg . To extract of eye-blink artifact
ŝeog from u, the identified N sampled eye-blink artifact IC,
u should be mapped into its time-frequency representation.
Using CWT, the identified eye-blink IC, u is mapped into
its time-frequency representation and that results a matrix
F of size T × N (feature matrix). Each column vector of
F represent a feature vector of each sample of u. In other
words, the nth sample of u is represented as a feature vector
fn of size T × 1. Next, the k−means clustering algorithm
will be applied on the feature matrix F to cluster the N
feature vectors into C clusters (or groups). After clustering
the feature matrix F, C number of uni-variate signals are
derived based on the k−means clustering information. Using
the k−means clustering information, the i th signal can be
obtained as follows,

ŝi (n) =
�

u(n) if fn ∈ Cluster i , i = 1, 2, . . . , C

0 if fn /∈ Cluster i , n = 1, 2, . . . , N
(4)

After decomposing the eye-blink artifact IC u into C (in
this study, we set the number of clusters C to 2) number
of signals using (4), the Hjorth mobility of each signal is
computed. In general, the Hjorth mobility value is low for
the eye-blink artifact associated component. Based on this,
we identify the eye-blink artifact associated component from
C signals and denoted it as s̄eog . However, due to the operation
in (4), we could see that the sample values of s̄eog changes
from zero to non-zero value and vise versa at the onset
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and the offset of eye-blink. Moreover, the EEG information
superimposed on the eye-blink activity should be smoothed
out, as s̄eog(n) = u(n) in the artifact region. Therefore,
smoothing of the component s̄eog has to be performed.

D. SSA

SSA is a subspace based technique and it can decompose the
given uni-variate time-series signal into low-frequency trend,
the oscillating and the noise components. SSA has been used
widely to process the EEG signals [43], [44]. Here, we employ
SSA as a low-pass (smoothing) filter to remove any EEG
remnants that reside on the eye-blink activity portion and
also to smooth the edges at the onset and offset of eye-
blink activity. This results in estimated eye-blink artifact IC
ŝeog . Finally, the residual EEG component ŝleak

eeg is obtained
by subtracting the estimated eye-blink artifact IC from u.
This residual EEG component is concatenated with the ICs
associated to EEG (ŝeeg ) and multiplied with the estimated
mixing matrix Â (inverse of the de-mixing matrix W) to
obtain the corrected EEG signal X̂eeg . In this paper, the SSA
technique has been used to smooth the eye-blink artifact IC
obtained after CWT and k−means operation.

E. Performance Measures

1) Relative Root Measure Square Error (RRMSE): This mea-
sure is often used to assess the performance of artifact removal
methods on synthetic EEG data. The RRMSE between the two
multichannel EEG data X and X̂, can be defined as

RRM SE =

	





�
1

Nc×N

NC�
i=1

N�
n=1

(X(i, n) − X̂(i, n))2

1
Nc×N

NC�
i=1

N�
n=1

X2(i, n)

× 100(%)

(5)

where Nc and N represents the number of channels
and the number of samples in each channel. X and X̂ represent
the ground truth and the corrected EEG signals, respectively.
The low RRMSE value indicates a good removal of artifact
by the method.

2) Correlation Coefficient (CC): The CC measure is also used
to evaluate the performance of an artifact removal technique
on synthetic EEG data and indicates the strong relationship
between the two signals. The CC between the i th channels
of the true and the corrected EEG datasets xi and x̂i can be
defined as

CCi = cov(xi , x̂i )

σxi xi σx̂i x̂i

where cov (·) represents the co-variance between the two
signals xi and x̂i and σ(·) variance of the signal itself. Then,
the average CC value between the true and the corrected EEG
signals is

CC = 1

NC

NC
i=1

CCi (6)

The CC value close to one indicates a good removal of
eye-blink artifact from the EEG data.

3) Phase Locking Value (PLV): PLV is a statistical measure
often used to assess the synchronization of neural activity
between two EEG channels [45], [46]. In this paper, we have
used the PLV measure to account the phase changes between
the contaminated and the corrected EEG signals at all fre-
quency levels. Moreover, PLV is in-sensitive to the amplitude
changes. The PLV between two EEG signals x and y at each
frequency point can be defined as

P LV ( f ) = 1

N

�����
N

n=1

ex p(i{τx( f, n) − τy( f, n)})
����� (7)

where τx( f, n) is the instantaneous phase of the signal x
and N is the number of samples. As the eye-blink artifact
contaminates the EEG signal between 0−12H z band the PLV
value expected to be less than one in this band and should be
equal to one above 12H z. The mean PLV (averaged over all
channels) curve with respect to frequency is plotted in the
simulation results with synthetic and real EEG datasets.

Moreover, statistical analysis was also performed to show
the significance of results of the proposed method over the
existing methods. As the data is non-Gaussian distribution
(based on the Shapiro-wilk test), we performed non-parametric
statistical test (Kruskal Wallis). For all statistical analysis the
significance of statistical tests was set at p < 0.05.

IV. RESULTS

A. Parameter Selection for All Methods

For all ICA based methods, we employed runica EEGLAB
function with default settings to extract the ICs from the
mixed (contaminated) EEG data. For better removal of eye-
blink artifacts, the parameters of the proposed and the existing
methods are set as follows. The parameters for MAICA
method, the correlation parameters such as MinOriginal,
Max Original, and Max Outputs are set to 0.96, 0.9 and
0.9 respectively. The interested readers can refer [27], [28]
for more details about the significance of MAICA parameters.
We set the parameters of w-ICA (number of decomposition
levels and the wavelet transform) based on the recommen-
dation in [19]. In case of ASR method, the performance
mainly depends on the selection of cutoff parameter. Hence,
based on the recommendation in [11], the cutoff parameter
of ASR method is set to 12 (for synthetic EEG data), 20
(for ERP-BCI data) and 10 (for covert and overt EEG data).
In case of proposed method, the number of clusters is set
to 2. Morlet wavelet transform is employed to represent
the eye-blink artifact IC in time-frequency feature matrix.
However, based on the recommendation in [39], the number of
cycles of Morlet wavelet transform is selected to be 6. With a
frequency resolution of 0.5H z, we have computed the wavelet
coefficients for the frequency band from 1 to 45H z. Thus it
results a time-frequency representation of eye-blink artifact
IC of size 89 × N , where N is the number of samples of
the IC. The obtained time-frequency matrix will be applied
as input to the k−means clustering algorithm. As discussed
in methods Section III-D, we have employed SSA to smooth
the eye-blink artifact constructed by CWT and the k−means
clustering algorithm. The window (embedding) length in SSA
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Fig. 3. Graphical representation of eye-blink artifact removal from synthetically contaminated four channels EEG data using the proposed method.

is selected to be 32 and threshold is set to 8H z, as the most
of the energy of eye-blink artifact is concentrated in 1 − 8H z
frequency band.

B. Building and Evaluating the Classifier Performance

In order to build the classifier that can identify the eye-blink
artifact ICs, we have considered sixteen channels EEG data
of length 10s. After applying the ICA1 algorithm to the
16 channel EEG data, we have identified the eye-blink artifact
ICs manually and labeled them as positive class (+1) and the
ICs associated to EEG are labeled as negative class (−1). The
same procedure is performed for 2, 4 and 8 EEG channels
setting for all 90 EEG epochs (training data). This results in a
total of 2700 = (2 + 4 + 8 + 16) × 90 ICs. Next, we compute
two time domain features, Hjorth mobility and Kurtosis for
all IC’s. With the class labels and the features of ICs, the
SVM based classifier (model) was built. The same procedure is
employed to build SVM based classifier for MAICA method.
However, in case of MAICA method, the input data size to
ICA algorithm doubles due to its parameters. As result, the
number of ICs accounted for building classifier for MAICA
method are 5400 = (4+8+16+32) × 90. Similar procedure
is employed to build the SVM classifier for the two real EEG
datasets.

To build the model, classifier regularization parameter
CSV M and the kernel coefficient γ values were first identified
by implementing a grid search using 10 fold cross-validation.
Next, with the best CSV M and γSV M values, the model

1We have used the EEGLAB Toolbox runica command to decompose the
components from mixed EEG data.

was built using the training data. These models are used
to detect the eye-blink artifact ICs from the ICA estimated
source components. Note that for each EEG dataset, we build
two models, one for ICA and other for MAICA methods.
Table I shows the performance of the SVM based classifier in
terms of accuracy, specificity and sensitivity for EEG records.
We notice from our study that with two time domain features,
the classifier accuracy and specificity are greater than 99%
for ICs obtained by ICA and MAICA methods. In this study,
we have used the LIBSVM Toolbox to build SVM based
classifier [47].

We also conducted a study to detect eye-blink artifact asso-
ciated ICs based on the threshold. To detect the artifact ICs,
we used the lower limit of the 95% confidence interval (CI)
of the mean for thresholding the ICs based on the Hjorth
mobility and the upper limit of the 95% CI of the mean
for thresholding the ICs based on the Kurtosis. All the ICs
whose Hjorth mobility and the Kurtosis values lies below
T 1 and above T 2, respectively are identified as artifactual
IC. For more details about the setting the thresholds, please
refer to [19]. Table II shows the performance of detecting the
artifact ICs based on the threshold. We observed from this
study that SVM based artifact ICs detection showed 0.54%
and 0.68% improvement in accuracy and specificity over the
threshold based artifact IC detection in ICA method. The
SVM based artifact ICs detection for MAICA method showed
2.52% and 2.9% improvement in accuracy and specificity,
respectively compared to the threshold based artifact IC detec-
tion. However, we haven’t seen much improvement in the
sensitivity of the SVM based classifier over the threshold based
approach. We also observed that, the combined use of two



MADDIRALA AND VELUVOLU: ICA WITH CWT AND k−MEANS FOR EYE-BLINK ARTIFACT REMOVAL 1367

Fig. 4. (a) RRMSE and (b) CC values for different number of EEG channels. (c) and (d), respectively, the statistical analysis of RRMSE and CC
values of existing and the proposed methods for p < 0.05.

TABLE I
SVM BASED CLASSIFIER PERFORMANCE IN DETECTING THE ARTIFACT ICs USING TWO TIME-DOMAIN FEATURES OF THE ICs

time domain features, Hjorth mobility and Kurtosis, showed
better performance in detecting the artifact ICs as compared
to the existing modified multiscale sample entropy (mMSE)
and Kurtosis time domain features.

C. Results With Synthetic EEG Data

We evaluated the performance of the proposed method on
synthetic EEG data. Fig. 3 describes the graphical represen-
tation of removing the eye-blink artifact from synthetically
contaminated EEG signals (Xcon) using the proposed method.
First, the ICs are obtained from the four channel contaminated
EEG data Xcon using ICA. Next, by using the pre-trained
classifier, the eye-blink artifact IC is detected based on the
two time-domain features (Hjorth mobility and Kurtosis) of
the ICs and is denoted as u. After that the CWT of detected
eye-blink artifact IC is computed and fed to the k−means
clustering algorithm. Using the clustering labels and (4),
two components are derived, as the number of clusters are
set to 2. From these two components, the eye-blink artifact

associated component is identified based on their Hjorth
mobility and denoted as s̄eog . In fact, EEG information still
resides on the eye-blink component (the artifact region) in
s̄eog . To filter out the EEG information from it, we applied
SSA to s̄eog , thus it results in ŝeog and it is subtracted from
u to obtain ŝleak

eeg . Finally, the obtained ŝleak
eeg is concatenated

with the ICs associated to the EEG (IC2, IC3 and IC4) and
multiplied with the estimated mixing matrix i.e.Â, which is
inverse of de-mixing matrix Ŵ, to obtain the corrected EEG
signal (X̂eeg).

The proposed method is applied to the synthetically con-
taminated EEG signals (total of 90 records) to evaluate its
performance in terms of RRMSE and CC. Fig. 4 (a) and (b)
shows the comparison of the proposed and the existing meth-
ods in terms of RRMSE and CC, respectively for different
EEG channels configurations. The mean RRMSE and CC
values of the proposed method are superior as compared
with the existing methods. We conducted Kruskal Wallis test
to observe the significance of mean RRMSE and CC ranks
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Fig. 5. (a) Performance of the proposed and the existing methods on Synthetic EEG data in terms of PLV vs frequency under different EEG
channels setting. (b) the mean PLV values in the frequency band 1−8Hz (the shaded region in (a)) of each method in different EEG channels setting.
(c) Statistical significance of mean PLV values ranks.

TABLE II
THRESHOLD BASED EYE-BLINK IC DETECTION PERFORMANCE USING TIME DOMAIN FEATURES OF ICs AND COMPARED WITH THE EXISTING

APPROACH. HERE, T1, T2 AND T3 REPRESENTS THE THRESHOLDS FOR HJORTH MOBILITY, KURTOSIS AND mMSE, RESPECTIVELY

of the proposed over the existing methods, as shown in
Fig. 4(c) and (d). It can be noticed that the mean RRMSE and
CC ranks of the proposed method are significantly different
from the existing methods mean RRMSE and CC ranks.

Moreover, we have also evaluated the performance of pro-
posed method over the existing methods in terms of phase
changes in the frequency domain. Fig. 5 (a) shows the average
PLV curves with respect to frequency for different EEG
channel conditions. In fact, the eye-blink artifact is removed
efficiently by all the methods. However, while removing
the artifact, most of the existing methods alters the EEG
low/high frequency components. As most of the eye-blink
artifact energy is concentrated in 1 − 8H z band, we have
computed mean PLV values in this band for each EEG record.
Fig. 5 (b) shows the mean PLV values in the frequency band

1−8H z (the shaded region Fig 5(a)) for different EEG channel
condition. Note that, the mean PLV value of each EEG record
is computed by adding all the PLV values in the band 1−8H z
and dividing it by number of frequency bins in that band.
Fig. 5 (c) shows statistical significance of mean PLV ranks of
the proposed method in the 1 − 8H z band over the existing
methods. The mean PLV ranks of the proposed method are
significantly different from the mean PLV ranks of the existing
methods.

D. Results With ERP-BCI Data-1

We have evaluated the performance of all the methods
with ERP-BCI EEG dataset [30], [31]. The proposed and
the existing methods are applied to the 4 channel EEG data
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Fig. 6. (a) The corrected EEG signal (X̂eeg) and (b) the estimated eye-blink artifact (X̂Con-X̂eeg) using all methods from Fp1 channel in 4 channel
configuration setting.

for performance evaluation. As the eye-blink artifact is more
predominant in pre-frontal EEG channels, here, we only show
the corrected EEG and the eye-blink artifact components from
the Fp1 EEG channel. Fig. 6(a) and (b) shows the corrected
EEG signal and the eye-blink artifact component respectively
using the existing and the proposed methods. The zoomed
plots showed in Fig. 6(a) and (b) shows the affect of artifact
removal methods in non-artifact and artifact regions of the
EEG signal in time-domain.

It is evident from these plots that ICA, MAICA and w-ICA
methods alters the non-artifact regions while removing the
eye-blink artifact from the EEG data. Although ASR method
doesn’t affect the non-artifact regions of the signal, the EEG
information superimposed on the artifact region is removed.
In order to show the EEG signals spectral changes caused by
artifact removal methods, we have applied the proposed and
the existing methods on 60 real EEG ERP-BCI datasets and

computed the PLV between the contaminated and the corrected
EEG signals at each frequency. The average PLV plots of each
method (in different EEG channel configurations) with respect
to the frequency are shown in Fig 7(a).

For all existing methods, the spectral changes can be clearly
seen in the PLV plots after 8H z, where the PLV values
are less than 1. Whereas the mean PLV values obtained
by the proposed method are near to 1 after 8H z. Fig 7(b)
shows the mean PLV values of each method in 1 − 8H z
frequency band (the shaded region Fig 7(a)) in different EEG
channels setting. Fig 7(c) shows the statistical significance
of mean PLV values of proposed method over the exist-
ing method on Dataset-1. When the proposed method is
applied on the Dataset-1, with the exception of the ASR
method for 2 channel case, the mean PLV values of the pro-
posed method are statistically significant over all the existing
methods.
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Fig. 7. (a) Performance of the proposed and the existing methods on ERP-BCI data in terms of PLV vs frequency under different EEG channels
setting. (b) the mean PLV values in the frequency band 1 − 8Hz (the shaded region in (a)) of each method in different EEG channels setting.
(c) Statistical significance of mean PLV values ranks.

E. Results With ERP-BCI Data-2

To further evaluate the performance of proposed method,
we have also conducted simulation study with covert and
overt EEG data under different EEG channels configurations
setting. In this study, the performance of the proposed and
the existing methods are applied on 60 EEG records of length
24s. Fig. 8(a) shows the performance of the proposed and the
existing methods in removing the eye-blink artifact in terms
of PLV. For all EEG channel configurations, the PLV values
obtained by the proposed method are near to one as compared
with the existing methods. The mean PLV values in 1 − 8H z
band are also showed in Fig. 8(b). The mean PLV values of the
proposed method in 1−8H z band good as compared with the
existing methods. Moreover, we have also conducted statistical
significance of mean PLV values of proposed method, shown
in Fig. 8(c). In case of Dataset-2, except for the ASR method
with 2 and 4 channels cases, the mean PLV values of the
proposed method are statistically significant over the existing
methods.

F. Computation Time

We have also studied the computation time required for
each algorithm with input EEG data by varying signal length
and the number of EEG channels. All the algorithms were
implemented in MATLAB R2020b on an Intel(R) Core(TM)
i5-8600 CPU @ 3.19GHz, Windows 10 64-bit operating
system, and 16GB RAM. Fig. 9(a) and (b) shows the average
computational time for all algorithms when they are exe-
cuted 1000 times with the input EEG data of 10s and 5s

lengths, respectively. It is observed from Fig. 9(a) that the
computation time of proposed method for the number of EEG
channels ≤ 8 is high as compared with the existing methods.
Even though the computation time of MAICA method is
better than the proposed method for the number of EEG
channels ≤ 8, we observe a drastic increase in the computation
time when the number of EEG channels are greater than 8.
Interestingly, it is observed that the ASR method is compu-
tationally efficient as compared with other artifact removal
methods for input EEG data of 10s length (for the case of the
number channels > 4). However, when the proposed method is
applied to EEG data of length 5s, we observed from Fig. 9(b)
that the computation time of proposed method is less than
MAICA and ASR methods for the number of channels ≥ 4.
Although the computation time of w-ICA method is less than
proposed method, the loss of valuable EEG information in the
corrected EEG signal makes it undesirable.

V. DISCUSSION

In this study, the performance of the proposed method is
evaluated on three datasets: one synthetic and two real EEG
datasets. It was observed from the results that the performance
of the ASR method is good compared to the other methods and
similar with performance of proposed method (for few chan-
nels configuration only). However, the performance of ASR is
dependent on the number of channels and it decreases as the
number of channels increases. For example, the performance
of the ASR method is superior than w-ICA method for the case
of 2 and 4 channels configuration, however there is a decrease
in performance for the case of 8 and 16 channel configurations
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Fig. 8. (a) Performance of the proposed and the existing methods on Covert and overt ERP-BCI data in terms of PLV vs frequency under different
EEG channels setting. (b) the mean PLV values in the frequency band 1 − 8Hz (the shaded region in (a)) of each method in different EEG channels
setting (c) Statistical significance of mean PLV values ranks.

Fig. 9. Comparison of computational time of each method for EEG
signals with (a) 10s and (b) 5s lengths. Note: the time complexity of ICA
and w-ICA are almost equal.

(see Fig. 5(b), 7(b) and 8(b)). In contrast, the performance of
proposed method is consistent irrespective of the number of
EEG channels (Fig. 4, 5, 7 and 8). To validate the significance
of the results obtained by the proposed method, we conducted
the statistical analysis of the results. It was noticed that the
results obtained by the proposed method are significantly
different from the results obtained by the existing methods.
Although we does not observe the significance between the
results obtained by the proposed and the ASR methods for
the case of 2 and 4 channel configurations, the mean PLV
values of the proposed method are better than the mean PLV
values of the ASR method.

Our analysis shows that the existing methods alters the EEG
low/high frequency information while removing the eye-blink
artifact from the EEG data. Anyway, the loss of EEG low/high

frequency information by the artifact removal technique can
be problematic in both clinical and non-clinical applications.
For example, detection of the limb movements in subject with
spinal cord injury (SCI) [48], [49] and the attention/fatigue
level of drivers in vehicle automation [50]. However, there
is no such loss of EEG low/high frequency components after
the removal of eye-blink artifact with the proposed method.
The reason is that when the eye-blink artifact IC (in which
the eye-blink component is dominant) is mapped into its
time-frequency representation using CWT, the distribution of
energy in the artifact region significantly differs from the non-
artifact region. Such significant difference allows the k−mean
clustering algorithm to localize the non-artifact and artifact
regions in the eye-blink artifact IC (as shown in steps 3 and
4 in Fig. 3). As a result of these features, the proposed method
denoises the eye-blink artifact IC more efficiently.

In general, the performance of the proposed method depends
on how well the ICA estimates the eye-blink artifact com-
ponent from the EEG data. In fact, this will further depend
on the strength of the eye-blink artifact component present
in the mixed EEG signal. When the strength of eye-blink
artifact is relatively small, k−means clustering algorithm fails
to distinguish the features representing the non-artifact region
from the features of the artifact region. Therefore, the proposed
method alters the non-artifact regions when the eye-blink
component strength is small. From our simulation analysis,
we understand that the proposed method can work efficiently
in a condition where the eye-blink artifact is marginally strong
in at least one of the EEG channels.

The EEG signals carry vital information. However, while
designing the artifact removal method, it is important that
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the method should process the given data without loosing
valuable EEG information with less computation time. When
accounting the computation time of each method, the proposed
method showed higher computation time for fewer EEG
channels. This is due to the mapping of detected eye-blink
artifact IC into its time-frequency representation using CWT.
In fact, the computational complexity of the artifact removal
methods may not be burden with the recent advancements.
Even in applications where the computational complexity is
an issue, still the proposed method can be used by processing
the EEG data shorter epoch by epoch, as the computational
time of proposed method for shorter EEG epochs is less than
ASR method. However, we do not see any improvement in the
performance of proposed method when other transformation
techniques such as, stock-well transform (SWT) are employed
in place of CWT.

VI. CONCLUSION

This paper integrated CWT, k−means and SSA algorithms
for accurate filtering of eye-blink artifactual IC without any
loss of neural information. Furthermore, the SVM based clas-
sifier developed with two simple time domain features showed
accuracy greater than 99% in the detection of eye-blink
artifacts ICs. Performance of the proposed method is evaluated
on one synthetic and two real EEG datasets under different
EEG channels setting. Results show that unlike existing meth-
ods, the performance of proposed method in terms of mean
RRMSE and CC in time domain and the mean PLV in the
frequency band 1 − 8H z is consistent for different number of
EEG channels setting. Moreover, it was also observed that for
shorter epochs, the computational time of the proposed method
is less as compared to the existing MAICA and ASR methods
for the number of EEG channels ≥ 4. From the analysis it
can be observed that the proposed method can remove artifact
efficiently if at least one EEG channel contains the eye-blink
artifact where it is marginally strong, which is the limitation of
the proposed method. The focus of the current study was only
limited to eye-blink artifact removal. However, the selection
number of clusters and identification of artifact component
(step 6) forms the key steps of the proposed method and will
be extended to multiple artifact removal, in our future work.
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