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Unsupervised Sim-to-Real Adaptation for
Environmental Recognition in Assistive Walking
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Abstract— Powered lower-limb prostheses with vision
sensors are expected to restore amputees’ mobility
in various environments with supervised learning-based
environmental recognition. Due to the sim-to-real gap, such
as real-world unstructured terrains and the perspective and
performance limitations of vision sensor, simulated data
cannot meet the requirement for supervisedlearning.To mit-
igate this gap, this paper presents an unsupervised sim-to-
real adaptation method to accurately classify five common
real-world (level ground, stair ascent, stair descent, ramp
ascent and ramp descent) and assist amputee’s terrain-
adaptive locomotion. In this study, augmented simulated
environments are generated from a virtual camera perspec-
tive to better simulate the real world. Then, unsupervised
domain adaptation is incorporated to train the proposed
adaptation network consisting of a feature extractor and
two classifiers is trained on simulated data and unlabeled
real-world data to minimize domain shift between source
domain (simulation) and target domain (real world). To inter-
pret the classification mechanism visually, essential fea-
tures of different terrains extracted by the network are
visualized. The classificationresults in walking experiments
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indicate that the average accuracy on eight subjects reaches
(98.06% ± 0.71%) and (95.91% ± 1.09%) in indoor and
outdoor environments respectively, which is close to the
result of supervised learning using both type of labeled data
(98.37% and 97.05%). The promising results demonstrate
that the proposed method is expected to realize accurate
real-world environmental classification and successful sim-
to-real transfer.

Index Terms— Unsupervised domain adaptation, lower-
limb prostheses, sim-to-real transfer, environmental recog-
nition, visualization.

I. INTRODUCTION

LOWER-LIMB amputation attenuates the locomotion abil-
ity and physical function of millions of people [1], [2].

The emergence of lower-limb prostheses, especially powered
prostheses, has made a great contribution to the recovery
of amputees’ mobility [3], including walking biomechanics
and gait symmetry improvement along with falling risk and
metabolic cost reduction [3]–[6]. However, when walking in
complex environments, the amputee may be in an inconsistent
locomotion mode with that of powered prosthesis, which
may lead to serious consequence such as falling. Therefore,
to better support amputees’ terrain-adaptive locomotion, pros-
theses are required to predict the amputee’s motion intent and
switch to an appropriate locomotion mode accordingly in real
time [7], [8].

Environmental information obtained by vision can guide
not disabled individuals to switch their locomotion modes in
response to changes in terrain [9]. For amputees with impaired
vision-locomotion loops, vision sensors such as cameras can
be used to obtain environmental information [10]–[12]. And
the environment can be recognized with machine learning-
based classification algorithms, providing environmental con-
text for motion intent prediction [13]–[16]. Deep learning
algorithms such as convolutional neural networks (CNNs) have
achieved great success in image processing and classification
[17], [18] and have also been increasingly used in recent envi-
ronmental recognition studies [15], [19], [20]. In our previous
researches [20], [21], a CNN was designed and trained with
supervised learning and achieved an outstanding classification
accuracy on environmental point cloud captured by a depth
camera.

Nevertheless, supervised learning approaches also introduce
a major challenge: the requirement of a large, well-labeled
real-world dataset [22]. To improve the classification accu-
racy and the generalization ability in different environments,
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researchers need to collect and label significant and diverse
environmental data. In some recent studies [19], [23], [24],
the images to be labeled may reach hundreds of thousands,
which is time-consuming and laborious [25]. An attractive
alternative to address such limitations is to automatically
generate a large labeled synthetic dataset by simulation [20],
[26], [27]. But with this comes another problem that simulated
data presents some differences from real-world data regarding
feature distribution, leading to inferior real-world classification
performance for a model trained purely with it. These dif-
ferences are collectively referred to as the simulation-to-real-
world (sim-to-real) gap. It consists of real-world unstructured
terrain and light conditions, the perspective and performance
limitations of vision sensors, and other factors difficult to
simulate [28], [29].

To mitigate this gap and thus realize sim-to-real transfer,
unsupervised domain adaptation (UDA) has been used to better
generalize models trained in a label-rich source domain (sim-
ulation) to a label-free target domain (real world) [22], [27],
[30]. Many adversarial-based UDA methods such as domain
adversarial neural networks (DANN) [22], [31] and adversarial
discriminative domain adaptation (ADDA) [32] attempt to
train a discriminator and different number of feature gener-
ators. The discriminator distinguishes the domain of hidden
features. And the generators are trained to realize distribution
alignment between the source features with that of the target to
fool the discriminator. However, these approaches only attempt
to make their distributions similar without considering the
classification task of target samples. Thus a trained generator
may generate ambiguous features near the decision boundary.
In addition, to the authors’ knowledge, there are no existing
sim-to-real studies focusing on environmental recognition for
wearable robots and generating simulated data for them. When
the simulation is significantly different from the real world,
forcefully aligning domains may lead to domain misalignment
or even negative transfer [33], posing risks for amputees’
locomotion.

To address these limitations and better overcome the sim-
to-real gap, an unsupervised sim-to-real adaptation approach
is proposed in this paper to accurately classify the real-
world environments, providing low cost and robust support
for motion intent prediction. It is hypothesized that the model
trained with simulated data and unlabeled real-world data can
still achieve precise real-world environmental classification.
To that end, augmented simulated data with random dimen-
sional and geometric noise are generated from a virtual camera
perspective to reduce domain shift. Meanwhile, inspired by
Saito et al.. [34], an end-to-end UDA method is incorporated
to train the designed neural network consisting of a feature
extractor and two different classifiers to align hidden features
of simulated and real environments. This alignment is per-
formed in an adversarial manner by training the classifiers
to maximize their classification discrepancy in target domain,
and then training the extractor to minimize the discrepancy.
The real-world classification performance of this method is
verified by indoor and outdoor experiments for able-bodied
subjects and amputees. To visually explain the classification
mechanism of the network, essential features of different

terrains extracted by the network are clarified by visualization
of class activation map.

The primary contributions of the present paper include:
1) Developing an unsupervised sim-to-real adaptation

method to accurately classify real environments, provid-
ing environmental context for motion intent prediction.

2) Mitigating sim-to-real gap by generating randomized
simulated environments from a camera perspective and
training the designed network to realize feature align-
ment between simulated and real environments.

3) Visualizing the essential features of different terrains
and presenting visual interpretation of the classification
decision of our network.

4) Evaluating the performance of the proposed sim-to-real
approach by indoor and outdoor walking experiments
for able-bodied subjects and amputees.

The rest of the paper is organized as follows. Section II
describes the proposed unsupervised sim-to-real adaptation
approach. The experiment and visualization results are stated
in Section III and discussed in Section IV. The conclusion of
this paper is presented in Section V.

II. METHODS

The proposed sim-to-real adaptation method is described in
this section. An overview of this method is shown in Fig. 1.
To maintain the integrity, the acquisition and preprocessing
of real-world environmental data is briefly introduced, which
has been thoroughly stated in our previous work [20]. Then,
the generation of augmented simulated data, the unsupervised
domain adaptation method and visualization method are pre-
sented. To verify the effectiveness of the proposed method,
indoor and outdoor walking experiments are conducted.

A. Real-World Environmental Data Preprocessing

The 3D environmental point cloud captured by the depth
camera has some limitations. First, in each gait cycle, the coor-
dinate system of the camera fixed on the user’s leg changes
substantially with leg rotation. Thus, the output point cloud
will also change significantly. To solve this problem and help
distinguish level ground and ramp, rotation offset of the point
cloud can be realized by switching the reference coordinate
system of the point cloud to the invariant ground system in
real-time with the help of the inertial measurement unit (IMU):

pGround = RGround
Camera pCamera, (1)

where pGround and pCamera are the point clouds in the ground
and camera coordinate systems respectively; RGround

Camera denotes
the rotation matrix from the camera system to the ground
system, which is calculated based on the Euler angle of IMU.

Another problem is that the original 3D point cloud is
unstructured and disordered. To avoid the time-consuming
recognition of the 3D point cloud, a feasible solution is to
project the point cloud into the sagittal plane (i.e., x-o-z plane)
and convert it into binary image (see Fig. 2). As stated in our
previous work [19], the 2D projection of the point cloud has
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Fig. 1. The overview of the proposed unsupervised sim-to-real adaptation approach. Supervised learning on simulated data presents difficulty in
performing real-world classification tasks. To address this, augmented simulated data with random dimensional and geometric noise is generated
from camera perspective and supplemented to simulation dataset to augment it with more variability and reduce domain shift. The hidden features
are aligned by training an adaptation network by unsupervised domain adaptation with simulated data and unlabeled real-world data. The features
extracted from different terrains are visualized to make a visual interpretation of the classification mechanism. LG, SA, SD, RA and RD represent
level ground, stair ascent, stair decent, ramp ascent, and ramp descent, respectively.

Fig. 2. Generation of environmental binary images. The 3D point cloud
on the first row is a set of 3D points. The point cloud is projected to sagittal
plane and converted to binary images (the second row).

enough information for environmental classification. The point
cloud can be converted to a binary image as:

img(r, c) =

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

1 0.01 (c − 1) ≤ xi − xmin < 0.01c &

0.01(r − 1) ≤ zi − zmin < 0.01r

i = 1, 2, . . . . . . , n

0 otherwise,

(2)

where img (r , c) represents the pixel in row r and column
c of the image and each pixel corresponds to 0.01 m in the
real world; xi and zi are the x and z coordinates of the i -th
point in the 2D point cloud composed of n points; xmin and
zmin represent the minimum x and z coordinates of the point
cloud respectively.

Fig. 3. Simulated and real-world data of different terrains. The left column
is simulated data from the third-person perspective, which presents
reality gaps from the real-world data. This gap is reduced by generating
augmented simulated data with random dimensional and geometric
noise from a virtual camera perspective. The real-world data is used
for preliminary evaluation of the augmentation of simulated data.

B. Simulated Data Generation and Augmentation

In our previous research [20], 3D simulated environmental
point cloud of five common terrains was generated according
to their characteristics, including level ground, stair ascent,
stair descent, ramp upsent and ramp descent. The geometries
of different terrains were detailed in [20]. The generated point
cloud was then converted into binary images based on the
method in Section II.A. However, real-world environmental
data presents reality gaps from the generated simulated data,
which includes the following dimensions (see Fig. 3):
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Fig. 4. The architecture and training steps of the proposed adaptation network. The type and parameter of a convolutional layer is indicated by both
of the superscript and the subscript, e.g., Conv256

2 suggests that a type-two convolutional layer with 256 channels. The batch normalization layer
and fully connected layer is denoted by BN and FC respectively. Training steps and objective functions are described in Section II.C.2) and 3-5.

1) There exists unstructured terrain such as the transition
state between different terrains and the variance of the
dimensions (e.g., length and height) and geometry (e.g.,
flatness and angularity) of each kind of terrain in real-
world environmental data, especially in outdoor data.

2) Some environmental information is lost due to the cam-
era perspective limitation such as the information about
the vertical plane of stair descent, which differs from the
intact simulated data from the third-person perspective.

3) Real-world point cloud is sparser because of light con-
ditions and camera performance limitations.

Due to the aforementioned gaps, simulated data cannot
recreate the diversity and noise in their real-world counterparts.
Thus, the real-world classification performance of the CNN
trained only with these data is poor. In this paper, to reduce
the sim-to-real gap at the input level, augmented simulated
environmental point cloud closer to the real world is generated
(see Fig. 3), reducing this gap in the following aspects:

1) Applying random dimensional (the noise of height is
only applied for each step of stairs) and geometric
noise to all kinds of terrains and adding transition states
between level ground and other terrains to simulate real-
world.

2) Mapping the generated environmental point cloud to
the perspective of a virtual camera fixed on the leg to
simulate the perspective of a real-world depth camera.

3) Removing randomly scaled points in the generated point
cloud to simulate the sparsity of real-world point cloud.

The augmented simulated point cloud is then converted into
binary images and added to simulation dataset to augment
the dataset with more diversity and enhance the adaptation

performance. However, considering that some other real-
ity factors affecting the classification performance such as
various road conditions and ground objects are difficult
to simulate, real environmental data and domain adapta-
tion are still necessary for accurate real-world environmental
classification.

C. Unsupervised Domain Adaptation

The problem of unsupervised domain adaptation (UDA) is
defined as follows. Given a labeled source dataset {Xs, Ys} of
source images (xs, ys) (where ys is the label of xs) and an
unlabeled target dataset X t of target images xt, the source
dataset from the source domain Ds is sufficient to train a
model to perform the source classification task Ts. However,
the shifted domain distribution of the target domain Dt from
Ds indicates that the model trained for Ts cannot directly
perform the target classification task Tt . Therefore, the aim
of UDA is to perform Tt successfully by feature alignment
between the source domain and the target domain.

1) Network Structure: Inspired by a theorem proposed by
Ben-David et al.. [35] on how to make classifiers trained on
source data perform well on target data, a neural network
is designed for domain adaptation. It consists of a feature
extractor E and two different classifiers C1 and C2. The
feature extracted by E from the input environmental data
are shared by C1 and C2. The final result is the category
corresponding to the maximum value of the summed and
normalized classification scores output by the two classifiers
over the 5 types of terrains. The overall structure of the
network and the training strategies are shown in Fig. 4.
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Fig. 5. The overview of the implemented CAM visualization method.
The visualization result is obtained by linearly weighted summation of
the extracted activation map in step A and the response value in step B
as weight.

a) Feature extractor: The feature extractor is designed
based on CNN because of its ability to automatically
extract deep features and the parameter sharing method
of convolutional layers, which can help the network learn
efficiently.

The feature extractor consists of three convolutional layers,
one fully-connected (FC) layer, three max-pooling layers, four
activation layers with Rectified Linear Unit (ReLU), and one
dropout layer. The two types of convolutional layers (Conv1
and Conv2) in the extractor consist of 5 × 5 filters with a stride
of 1 and 3 × 3 filters with a stride of 1, respectively. Batch
normalization (BN) is applied after each convolutional layer
and FC layer to improve the generalization capability. Two
types of max-pooling layer (MaxPooling1 and MaxPooling2)
for downsampling have a kernel size of 7 and a stride of 2 and
a kernel size of 3 and a stride of 1 respectively. The hidden
features output by the last max-pooling layer are flattened and
fed into an FC layer to reduce the feature dimension, followed
by a dropout layer to avoid over-fitting.

b) Classifiers: The two classifiers share the same structure
of three FC layers, two ReLU layers, and two BN layers. These
FC layers map the features from the extractor to classification
scores of 5 different environment classes.

2) Training Procedure: UDA trains the designed neural net-
work for feature alignment between the source and target
domains while considering the relationship between target
samples and decision boundaries. Inspired by Saito et al.. [34],
this objective is achieved through the following algorithm with
three steps.

Step 1: First, the feature extractor and classifier are trained
to correctly classify the source data. Before training, C1
and C2 need to be initialized separately to obtain different
parameters. The training objective is to ensure our network can
correctly classify different environmental data by minimizing
the softmax cross-entropy loss on the source domain:

min
E,C1,C2

[−E(xs,ys)∈(Xs,Ys)

K�
k=1

I [k = ys] log Pk(y|xs)], (3)

where Pk indicates the output probability of class k given
the source input xs; I [k = ys] is a binary indicator which
equals 1 when k equals ys and equals 0 otherwise; K indicates
the number of classes of environment; E is an expectation
operator.

Step 2: The second step requires fixing the parameters of
E while training C1 and C2 to maximize the discrepancy of
their output in the target domain. The different classification
results of the two classifiers for a target sample mean that the
sample is outside the source support. Such samples are prone
to be misclassified, and also represent the discrepancy between
the source and target domains. The objective is to enable the
classifier to detect as many these target samples as possible
while maintaining accurate classification of source samples:

min
C1,C2

[−E(xs,ys)∈(Xs,Ys)

K�
k=1

I [k = ys] log Pk(y|xs)

− Ext∈X t

1

K

K�
k=1

(
���P1

k(y|xt) − P2
k(y|xt)

���)], (4)

where P1
k and P2

k indicate the output probability for class k
by C1 and C2, respectively.

Step 3: Finally, while fixing the parameters of C1 and C2,
E is trained to minimize the discrepancy between classifiers
on target samples. This makes the extracted target features
gradually closer to source domain, and finally minimize the
error on target domain and realize feature alignment. Besides,
this step is repeated four times for each mini-batch to better
update extractor parameters. The objective is defined as:

min
E

[Ext∈X t

1

K

K�
k=1

(
���P1

k(y|xt) − P2
k(y|xt)

���)]. (5)

By repeating these steps, feature alignment between the
source and target domains is realized, which enables the
trained network to accurately perform the target classification
task, i.e., real-world environmental classification.

3) Implementation Details: The proposed network is
designed and trained on Python 3.7, CUDA 10.1 and PyTorch
1.8.0. In the training process, the Adam algorithm is used as
the optimizer with a learning rate of 0.0002 and a weight
decay of 0.0005. The maximum epoch is 100 and the batch
size is 64. The training process and the experimental analysis
are carried out on a computer equipped with an AMD Ryzen 7
4800H CPU (2.9 GHz), 16 GB RAM and an NVIDIA Geforce
RTX 2060 GPU.

D. Visualization

Although CNN has achieved outstanding performance in
various tasks in vision fields such as classification and detec-
tion, the logic of CNN decisions remains unclear. Visualization
can be helpful to reason this logic and explain it in a way
that people can understand. Inspired by Wang et al. [36],
we employ a visualization method based on Class Activa-
tion Map (CAM) which provides visual interpretation with
a weighted sum of activation maps from a chosen layer [37].
CAM clarifies the essential features extracted from different
terrains and thus explains the classification decisions of our
network. The overall process of the visualization consists of
three steps (see Fig. 5).

Step A: The activation map A extracted from a specific layer
of the feature extractor is upsampled and normalized as:

H n = norm(U p(An)), (6)
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where H n denotes the upsampled and normalized activation
map; An is the n-th channel of A; Up(·) and norm(·) indi-
cate the operations that upsample the activation map into the
input size and normalize each element in the input to [0, 1]
respectively.

Step B: The normalized feature map is used as a mask in the
second step, and its Hadamard product with the original input
image is fed into the network to obtain the response value of
the image on the target category, which can be defined as:

αk
n = f (X � H n) − f (Xb), (7)

where αk
n denotes the response value on category k; f (·)

indicates the function of CNN; X is the input image; Xb is
a known baseline input, which in this paper is set as a null
matrix.

Step C: The final visualization result is the linearly weighted
summation of the extracted activation map in step A and
the response values obtained in step B as weight. A ReLU
function was also applied on the weighted sum:

Lk
C AM = ReLU(

�
k

(αk
n An)). (8)

Through the aforementioned steps, the essential features
of different terrains obtained from the feature extractor are
visualized, which helps to explain the classification mechanism
and analyze the performance of our adaptation network.

E. Experimental Setup

To evaluate the proposed sim-to-real approach, six able-
bodied subjects and three amputees were invited to participate
in indoor and outdoor experiments to obtain environmental
data. Each subject worn a depth camera and an IMU (MTi
1-series, Xsens, Netherlands) and walked repeatedly for
five times under five kinds of indoor and outdoor terrain,
including level ground, stair ascent, stair descent, ramp upsent
and ramp descent. The comprehensive experimental setup is
presented in [19].

The time-of-flight (ToF) depth camera (CamBoard pico
flexx, pmdtechnologies, Germany) and the IMU were placed
together on each subject’s upper patellar tendon to capture
environmental information in front of the subject. The capture
rates of the environmental point cloud were 25 and 15 frames
per second in indoor and outdoor experiments respectively.
IMU calculated the Euler angles of the camera at a frequency
of 100 Hz. Data from IMU and the camera were acquired
in two threads, and their approximate synchronization was
achieved by capturing and fusing the latest data from
both threads.

After acquiring environmental data, the proposed network
was trained using simulated data as source data and unlabeled
real-world data as target data. Before training, the target
dataset was randomly split into an training set (80%) and a
manually labeled validation set (20%) for preliminary mea-
surement of the performance and optimization of the hyper-
parameters. To demonstrate the generalization capability of
the network for different subjects, the target dataset only
included the data of one able-bodied subject (Subject 0). After
training, the data of other able-bodied subjects (Subject 1-5)

and amputees (Amputee 1-3) are manually labeled and utilized
as a test set to evaluate the indoor and outdoor classification
performance of the network. To further enhance the accuracy,
a mode filter was implemented to decrease the incidental error
of the classification result. The filter smoothed the results
through a sliding window, replacing the result of each frame
with the mode of all classification result in this window. In this
paper, the size of the window is set as 8.

In order to analyze the classification performance more
comprehensively, this paper also trained a CNN by supervised
learning with original simulated data, augmented simulated
data, and a combination of simulated and real environmental
data separately and compared their performance. The training
parameters and the structure of the CNN were the same as
those of the adaptation network, except that only a single clas-
sifier was used. In addition, the present paper also compared
the performance of the proposed approach with DANN, which
is considered as the baseline of the adaptation performance.
The implemented DANN in the present paper used the same
training strategy as proposed by Ganin et al. [31] and shared
the same network structure as ours except for a domain
classifier.

Finally, the visualization of CAM visually explained the
classification decisions of the network. Similarly, the essential
features extracted by the feature extractor trained only with
the simulated data were visualized to verify the effect of
adaptation on the extractor. In addition, to verify the effect
of our approach on feature distribution, t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) projection [38] is used to
visualize the features output by the last layer of the feature
extractor.

F. Subject Information

Six able-bodied subjects (5 males and 1 female) and three
amputees (all males) were invited to participate in our exper-
iment. The able-bodied subjects were from the Southern
University of Science and Technology, and the amputees
were recruited from a local prosthetic company. The average
age, height and body weight for able-bodied subjects and
amputees were 26.5 ± 2.4 years old and 39.3 ± 1.6 years old,
168.5 ± 2.8 cm and 169.7 ± 0.4 cm, 59.3 ± 3.1 kg and
62.0 ± 1.4 kg, respectively. The amputation side for one
of the amputees is right, and the others are left. All exper-
iments were approved and performed under the supervision of
the SUSTech (Southern University of Science and Technol-
ogy) Medical Ethics Committee (approval number: 20210009,
date:2021/3/2).

III. RESULTS

A. Network Training Results

The classification accuracy on the validation set of each
epoch of the designed neural network are shown in Fig. 6. The
results indicates that the average classification accuracy on the
validation set in the last 30 epochs (70 - 100) reaches 94.70%.
In addition, after 20 epochs, the loss of both classifiers and
the discrepancy between classifiers decreases to less than 0.01.
In the last thirty epochs, the average loss and discrepancy of
the two classifiers are 0.0029 and 0.0017, respectively.
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Fig. 6. Accuracy, loss and discrepancy between the two classifiers of
each epoch of the proposed adaptation network. Classification accuracy
is tested on the manually labeled validation set. Loss1 and loss2 are the
loss of classifier C1 and C2 respectively. Discrepancy is calculated after
the third step in each epoch.

B. Indoor Experiment Results

The indoor environmental data is used to validate the clas-
sification performance of the proposed sim-to-real transfer
approach secondly. The classification of each sample takes
about 6ms. Since the main objective of this study is to
accurately classify real-world terrains, and the geometries of
different kinds of simulated terrains vary greatly, only the
performance on real-world data is evaluated. As shown in
Fig. 7, after adaptation, the average classification accuracy for
all subjects on the five environments in the indoor experiment
is 98.06% ± 0.71% (98.57% and 97.22% for able-bodied
subjects and amputees). A t-test and a one-way ANOVA with
post hoc test at a significance level of α = 0.05 are used to
compare the difference in results between different methods.
Besides, a P value is used to denote the probability that the
null hypothesis is true. The results show that, the adaptation
network performed significantly better than CNN trained with
simulated data only (69.98% ± 6.54% and 91.45% ± 3.11%
for before and after data augmentation of simulation dataset,
respectively) (P < 0.001) and DANN (94.43% ± 1.60%)
(P < 0.01). In addition, the lower standard deviation of
adaptation network presented its better generalization ability
to different subjects than CNN trained with simulated data
only and DANN.

Moreover, the average accuracy of CNN trained with labeled
real-world data and simulated data using supervised learning
is also calculated and considered as an upper bound. This
CNN achieves a 0.31% higher accuracy than the adaptation
network, but their difference is not significant (P = 0.33).
Confusion matrix is used to further evaluate the classification
performance (see Fig. 8). The accuracy is relatively high for
stairs (98.90% and 98.21% for stair ascent and descent).

In addition, to validate whether the camera placed on dif-
ferent leg or different gender of a subject will influence the
experimental result, we invited six more able-bodied subjects
to perform indoor walking to collect environmental data and

Fig. 7. Indoor classification accuracy for each subject.S1-S5 represent
five able-bodied subjects. A1-A3 represent three amputees.

Fig. 8. Indoor classification confusion matrix for all subjects.

conducted an offline classification experiment. The results
indicate that, there is no significant difference between differ-
ent genders of the subject (P = 0.54) and between different
legs the camera is placed on (P = 0.75). More details of the
experimental setup and experimental results are presented in
the supplementary document attached with the paper.

C. Outdoor Experiment Results

To verify the generalization capability of this method in
outdoor environment, the performance of outdoor classification
experiment is evaluated. The classification of each sample
takes about 6ms. As shown in Fig. 9, the average accuracy
in outdoor environments is 95.91% ± 1.09% (95.25% for
able-bodied subjects and 97.01% for amputees). Since simulat-
ing outdoor environment present more difficulties, the results
of adaptation network present a more significant difference
between those of CNN trained with simulated data only
(46.41% and 23.92% higher than before and after simulated
data augmentation respectively) (P < 1×10−4). The proposed
method also outperforms DANN (87.75% ± 3.22%) (P =
2.28×10−4). In addition, the adaptation network still presents
a low standard deviation (1.09%), demonstrating its capa-
bility of generalize to different subjects in outdoor environ-
ment. The average accuracy of CNN trained with supervised
learning using all data (97.05% ± 1.00%) is slightly higher
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Fig. 9. Outdoor classification accuracy for each subject. S1-S5 represent
five able-bodied subjects. A1-A3 represent three amputees.

Fig. 10. Outdoor classification confusion matrix for all subjects.

than our adaptation network, but their difference remains
insignificant (P = 0.06).

Moreover, the confusion matrix for outdoor experiment (see
Fig. 10) is evaluated, indicating increased misclassifications
in outdoor experiments. Compared with other terrains with
relatively distinctive features, classification of level ground is
more susceptible to outdoor interfering factors such as sunlight
and complex road conditions. This may lead to the greater
variation in classification accuracy of level ground between
indoor (97.07%) and outdoor (91.01%).

D. Visualization Results

The CAM visualization results of the essential features
of different environments extracted by the adapted and non-
adapted feature extractor are shown in Fig. 11. The red region
in the figure indicates the region that contributes most to the
classification tasks, explaining the classification mechanism.
As shown in Fig. 11(b), the adapted extractor is able to extract
essential features of the terrain from different images and
distinguish them from the rest of the image, which is also
positively correlated with classification accuracy. For stairs,
the adapted network mainly extracts the part with sudden
change in height for classification, i.e., the vertical surface
of stairs. In addition, for stair descent with discontinuous
parts in real world, the corner points of the stair are mainly

Fig. 11. (Best viewed in color) CAM visualization of the hidden features
extracted from different kinds of simulated and real-world environmen-
tal images before and after simulated data augmentation and domain
adaptation. The color of the regions in the figure from blue-green-yellow-
red represents the contribution to the classification task from small to
large. (The red region represents the extracted features with the greatest
contribution to the classification task.)

TABLE I
COMPARISON WITH PREVIOUS RESEARCHES

extracted. For other terrains, the classification task is also
based on the changes in height. Terrain with continuous
large changes in height is classified as ramp, and terrain
with constant or with continuous small changes in height is
classified as level ground. However, as shown in Fig. 11(a),
the non-adapted extractor presents difficulties in distinguishing
the most important features for classification with other parts
in environmental images, which may be related to its infe-
rior performance in classifying more unstructured real-world
environments.
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To visualize and validate the effect of the proposed sim-
to-real adaptation approach on feature distributions from the
source domain and the target domain, the features extracted by
the last hidden layer of the adapted and non-adapted feature
extractor are projected onto the 2D plane by t-SNE. As shown
in Fig. 12(a), before adaptation, there is almost no overlap
between the source features (dark-colored points) and the
target (light-colored points) and the features of the same terrain
in the target domain are dispersed, which may be related to
the misclassification. Although the augmentation of simulation
dataset helps the network to better cluster the target features
(see Fig. 12(b)), the features in the source and target domain
are still not well aligned. However, as shown in Fig. 12(c),
domain adaptation effectively reduces the distance between
the source domain and target domain and presents a good
clustering effect on the target data. In addition, to quantify
the effect of domain adaptation on feature alignment, the total
distance between the center of the source features and the
target features (indicated as d1) before and after adaptation is
calculated. The results show that, after adaptation, d1 decreases
from 2.68 (in Fig. 12(a)) to 0.54 (Fig. 12(c)), indicating the
success of feature alignment and a high real-world classifica-
tion accuracy.

IV. DISCUSSION

In this study, an unsupervised sim-to-real adaptation method
is proposed for precise real-world environmental classification,
thus providing environmental context for human motion intent
prediction and achieving sim-to-real transfer. Compared with
existing environmental recognition studies based on supervised
learning (see Table I), the major advantage of the proposed
approach is maintaining a high real-world classification accu-
racy while avoiding the burden of data annotation. The exper-
imental environments and datasets in Table I are different.
These results cannot be used to quantitatively compare dif-
ferent methods, but can be used as a reference to qualitatively
show the performance of our method.

The results of indoor and outdoor classification experiments
indicate that the trained adaptation network can accurately
identify the environment in both indoor and outdoor environ-
ments (98.06% and 95.91%). This is about 6% higher than
DANN and similar to supervised learning using both types of
data (P = 0.33 and P = 0.06 in indoor and outdoor experi-
ments), which is regarded as an upper bound of the proposed
approach. Because the main goal of this study is to achieve
sim-to-real adaptation, the similar accuracy and the visualiza-
tion performance are sufficient to demonstrate that the trained
network has successfully aligned source and target features and
mitigated the sim-to-real gap. Besides, our approach achieves
outstanding performance on all subjects (accuracy higher than
94% for each subject) with a low standard deviation (0.71%
and 1.09% in indoor and outdoor experiments), demonstrating
the generalization capability to different subjects. The time
to convert the point cloud to binary image and the time to
classify the image for each frame were also calculated by
a computer with the same configuration as in Section II.C,
which took about 20ms and 6ms respectively. Therefore, the

total processing time for each frame was about 26 ms, which
was shorter than the acquisition time of the depth camera (>
30 ms) and was suitable for real-time implementation.

In addition, the proposed method avoids the time-consuming
and laborious data annotation compared with previous
supervised learning-based studies. In previous researches,
to improve the accuracy and the generalization capabil-
ity of the network, researchers usually need to collect
and label tens to hundreds of thousands of images for
training. Zhong et al. [19] and Massalin et al. [14]
annotated about 327,000 RGB images and about 400,000
depth and confidence images in their studies, respec-
tively. The largest dataset of environmental recognition for
prostheses and exoskeletons is the ExoNet proposed by
Laschowski et al. [23]. To develop a large-scale database
for recognizing human walking environments, they collected
approximately 5.6 million images, and manually labeled
about 923,000 images. The proposed method circumvents this
burden by using simulated data and unsupervised domain
adaptation.

This paper also investigates the classification performance
of the adaptation network trained with less target data. The
results show that, when training with only 10% of target data
(750 unlabeled images), the network still obtains an accuracy
of 96.34% and 91.09% in indoor and outdoor environments
respectively, which is still higher than DANN. This indicates
the proposed method requires less real-world data and has
the potential to be more easily generalized to other environ-
ments such as transition states. The transition states between
different terrains are more challenging to classify than the
steady-state terrains mainly focused on in this paper [39].
When facing such situations, supervised learning methods
need to re-collect and re-annotate environmental data, while
the proposed method is expected to collect less real-world
data and avoid the labeling task by generating corresponding
simulated environmental data.

Moreover, many machine learning-based environmental
recognition methods have achieved excellent performance,
but few have explained their basis for classification. In this
study, the classification mechanism is explicitly explained by
visualizing the essential features of different terrains extracted
by the trained feature extractor. The results indicate that
the network’s classification of different terrains is mainly
depends on the identified height change of the terrain. This
is also intuitively consistent with the logic of human clas-
sification of these five terrains. Moreover, the visualization
results can help improve the understanding of CNN, and are
expected to guide the generation of more realistic simulated
data.

Although the proposed method successfully realizes accu-
rate real-world environmental classification and mitigates
the sim-to-real-gap, there are still some limitations. First,
this method is only analyzed offline and the participat-
ing amputees perform the walking experiment with passive
prostheses. When walking with a powered prosthesis, the
amputee may perform a different gait, which may present
new challenges. Therefore, further online evaluation of pow-
ered prostheses is required. Second, the generated simulated
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Fig. 12. (Best viewed in color) T-SNE visualization of the hidden features for simulated and real-world data randomly selected from source and
target dataset before and after adaptation. Deep color and light color points of the same color family represent the source and the target hidden
features from the same class. The different numbers denote different classes of the hidden features.

point cloud considers real-world unstructured terrain and cam-
era perspective. However, amputees will inevitably encounter
obstacles, pedestrians, and other unexpected reality factors
affecting the classification during real-world walking. The
geometries of these factors are difficult to define. In addition,
the transition states between different terrains are not explicitly
classified in this paper. Therefore, future work may take the
classification of transition states into account and utilize a
more photo-realistic simulator such as Grand Theft Auto V
(GTA-V) [40] to generate different terrains with more realistic
factors for more detailed environment classification and further
reduction of real-world data demand. Finally, environmental
recognition can be helpful for motion intent prediction, but it
cannot replace the prediction. Therefore, the proposed method
needs to be applied jointly with intent prediction methods [41]
to enhance the multi-environmental real-time control of the
prostheses.

V. CONCLUSION

The sim-to-real gap forms the barrier to the utilization of
simulated data to overcome the labeled real-world data require-
ment for supervised learning-based environmental recognition.
In this study, an unsupervised sim-to-real adaptation approach
is developed to address this problem. The proposed approach
only utilized simulated data and unlabeled real-world environ-
mental data to train a network to accurately classify real-world
terrains and mitigate the sim-to-real gap. This method is
evaluated by inviting subjects to perform indoor and outdoor
walking experiments to capture environmental data. According
to experimental results, the proposed approach successfully
realizes accurate real-world environmental classification (aver-
age accuracy: 98.06% ± 0.71% and 95.91% ± 1.09% in
indoor and outdoor environments). The results are also close
to the upper bound, which is the result of CNN trained
with labeled real-world data and simulated data (98.37% and
97.05% in indoor and outdoor environment), achieving the
objective of this paper. Moreover, by visualizing the features of
different terrains extracted by the network, visual interpretation
of classification mechanism of the network is provided, which
is based on the height change of the terrain. This study
demonstrates that the proposed method can effectively mitigate
the sim-to-real gap and provide environmental context for

human motion intent prediction during the control of powered
prostheses and human-robot interaction.
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