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tion and transfer across subjects remain challenging due
to its variability. In this paper, a novel deep neural network
combining convolutional neural network (CNN) and adver-
sarial theory, named symmetric deep convolutional adver-
sarial network (SDCAN), is proposed for stress classifica-
tion based on EEG. The adversarial inference is introduced
to automatically capture invariant and discriminative fea-
tures from raw EEG, which aims to improve the classification
accuracy and generalization ability across subjects. Exper-
iments were conducted with 22 human subjects, where
each participant’s stress was induced by the Trier Social
Stress Test paradigm while EEG was collected.Stress states
were then calibrated into four or five stages according to
the changing trend of salivary cortisol concentration. The
results show that the proposed network achieves improved
accuracies of 87.62% and 81.45% on the classification
of four and five stages, respectively, compared to con-
ventional CNN methods. Euclidean space data alignment
approach (EA) was applied and the improved generalization
ability of EA-SDCAN across subjects was also validated via
the leave-one-subject-out-cross-validation, with the accu-
racies of four and five stages being 60.52% and 48.17%,
respectively. These findings indicate that the proposed
SDCAN network is more feasible and effective for classifying
the stages of mental stress based on EEG compared with
other conventional methods.

Index Terms— Adversarial learning, convolutional neural
network (CNN), deep learning, electroencephalography
(EEG), mental stress.

I. INTRODUCTION

MENTAL stress is defined as “the body’s non-specific
response to any need including emotional, cognitive,

or social tasks for change” [1]. Inappropriate dealing with
excessive mental stress can cause serious problems in an
individual’s life, which makes a reliable and accurate stress
assessment technique significantly important [2]. Mental stress
is generally divided into chronic stress and acute stress, the
former is difficult to be modeled in either laboratory setups or
clinical practices, and hence the latter is most often addressed
in existing studies [3], [4]. Traditional methods to evaluate
acute stress used questionnaires or stress-related hormones
(e.g., cortisol) [5]–[7]. However, questionnaires are subjective
and inaccurate as compared with cortisol [8]–[10]. Cortisol
concentration has long been used as the first index to indi-
cate the individual’s response to stress [11], it is commonly
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measured through repeated blood sampling or less invasive
methods such as saliva sampling [12].

In recent years, a large number of studies have shown
that except for cortisol, non-invasive physiological signals
such as electrodermal activity, heart rate variability, and elec-
troencephalogram (EEG) are also affected by severe stress.
Since EEG directly depicts the instant cortical response to
stress [13], it has been favored by many researchers and
becomes one of the most commonly used neuroimaging
modalities to study stress-related brain functions [14]. Com-
pact lightweight devices such as MindWave Mobile Head-
set [15] and Muse [16] are used in studies related to detecting
mental stress. Various features of EEG have been employed for
mental stress classification. Hjorth et al. [17] used frequency
band power, peak frequency in the alpha band, and Hjorth
parameters of EEG for stress classification. The ratio of power
spectral densities (PSD) of alpha and beta bands is also used
for the analysis of mental stress [18]. In [19], the PSD,
correlation, differential asymmetry, and rational asymmetry
are extracted from different frequency bands for two-class and
three-class stress classification.

However, most existing stress classification methods cal-
ibrate the stress states by questionnaires instead of an
objective biomarker such as cortisol concentration [20]–[24].
Betti et. al. [25] have shown that the features extracted from
physiological signals are consistent with the trend of salivary
cortisol levels. In addition, existing mental stress classification
algorithms using traditional machine learning methods which
highly depend on feature extraction and selection, and need to
be identified by a domain expert. While deep learning neural
networks can learn high-level features from data, and thus
solve the problem end to end [26].

In real-life applications, we need to recognize stress as
fast and conveniently as possible, which leads to end-to-end
EEG-based stress classification. In [27], [28], end-to-end men-
tal stress assessment methods based on the convolutional
neural network (CNN) are presented. In [29], a 1D con-
volutional long short-term memory neural network (LSTM)
is proposed for end-to-end stress identification using EEG.
Even though CNN has been proved as an effective tool for
end-to-end mental stress classification, it performs degradedly
when generalizing models across subjects. The distributions
of EEG data highly vary among individuals, so it is essential
to explore neural activity in EEG which is invariant among
individuals but discriminative to specific tasks to improve gen-
eralizability. Adversarial learning, such as generative adversar-
ial network (GAN) [30], is designed to learn non-redundant
representation from data in an unsupervised or supervised
way. Adversarial theory is adopted by Ozdenizci et al. [31]
to learn subject-invariant representations in EEG, resulting in
better generalizability among subjects compared with CNN.
In [32], subject-independent emotion classification based
on EEG is achieved by introducing adversarial learning.
Stober et al. [33] also proposes a convolutional autoencoder
to learn transferable features across subjects.

In this paper, we propose a novel cross-subject accurate
and efficient EEG-based end-to-end multi-level mental stress
classification CNN integrated with adversarial inference of

TABLE I
EXCLUSION CRITERIA VIA PRE-TELEPHONE-INTERVIEW

subject-invariant EEG features, named symmetric deep con-
volutional adversarial network (SDCAN), while cortisol con-
centration is adopted to calibrate stress stages. The major
contributions of this study are summarized as follows:

(1) Instead of using questionnaires to estimate the stress
levels of subjects, an accurate and objective biomarker
(i.e., saliva cortisol concentration) is measured to calibrate the
real stress stages.

(2) A novel end-to-end algorithm for stress classification
from EEG based on deep learning is proposed, and exper-
imental results show that the accuracy of stress classifica-
tion is improved compared with state-of-the-art deep learning
methods.

(3) An architecture combining CNN and adversarial theory
is proposed to learn invariant and discriminative features for
improved generalization ability across subjects. Experimental
results demonstrated superior generalization performance of
the proposed SDCAN compared with existing deep learning
algorithms.

II. MATERIALS AND METHODS

A. Participants and Apparatus

The experiment includes twenty-two participants (11 males
and 11 females, aged 23.05 ± 2.25 years). All participants are
recruited through online advertising and telephone interviews.
In the telephone interview, each participant is informed of the
experimental procedures, and all participants enrolled in this
experiment are ensured not meeting any exclusion criteria as
described in Table I. The experiment is approved by the Ethics
Committee of Shenzhen University (2019049). All subjects
have signed the informed consent forms before the experiment.
In addition, to obtain salivary cortisol, participants are required
to avoid drinking or eating and vigorous exercising within two
hours before coming to the laboratory.

The wireless LiveAmp 32 (Brain Product GmbH, Munich,
Germany) is used to record EEG during the whole period of
the experiment. Saliva samples are collected using Salivettes
equipment (Sarstedt, Rommelsdorf, Germany) and frozen at
−40 ◦C until analysis. During analysis, the saliva samples are
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Fig. 1. The procedure of the experiment. The timeline shows the whole data-collection procedure, including demographic data, saliva sampling (SS),
life event scale (LES), state trait anxiety inventory (STAI), self-rating depression scale (SDS) and EEG. PS = pre-stress period, AS = anticipatory
stress period, S = speech period, M = math period.

thawed at room temperature and centrifuged at 3000 rpm for
10 minutes, then the supernatant is used to calculate the con-
centration of cortisol in saliva by electrochemiluminescence
immunoassay (Cobas e 602, Roche Diagnostics, Numbrecht,
Germany). The detection range of cortisol values by this
method is 1.5-1750 nmol/L.

B. Experimental Protocol

The paradigm of this work is designed based on a modified
trier social stress test (TSST) [34] as depicted in Fig. 1.
The experimental setting includes two separate quiet and
temperature-controlled rooms: room A as the resting place and
room B as the stress-induced laboratory. The moment when
the subject arrives at room A is denoted as 0 min. The subject
is first asked to have a rest in room A for 30 minutes and com-
plete questionnaires including demographic information (age,
gender, years of education), life event scale (LES) [35], state
trait anxiety inventory (STAI1) [36], and self-rating depression
scale (SDS1) [37] at 30 min. And the first and second saliva
samples (SS1, SS2) are also taken at 0 min and 30 min, respec-
tively, for baseline measurements. Then the subject is guided
to room B and prepared for EEG collection. Stress induction is
then started at 65 min by a 25-minute TSST procedure. TSST
is incorporated by a 5-minute pre-stress period, a 10-minute
anticipatory stress period, a 5-minute speech period, and a
5-minute mental arithmetic period. After TSST, the subject
is asked to take a 40-minute rest. Saliva samples SS3-SS7
are collected at 90 min, 100 min, 110 min, 120 min, and
130 min, respectively. State trait anxiety inventory and self-
rating depression scale are filled at 90 min (STAI2 and SDS2)
and 130 min (STAI3 and SDS3).

The EEG collection starts from the 5-minute pre-stress
period and lasts throughout the next 10-minute anticipatory
stress period, 5-minute speech period, 5-minute mental arith-
metic period, and 40-minute rest period. In the anticipatory
stress period, subjects are asked to prepare a 5-minute speech
in which they should defend themselves against an assumed
theft accusation, and they complete the speech in front of
a video camera and three experimenters (two men and one
woman), who appear in the whole TSST but not seen by the
subjects before the speech session and maintain neutral facial

expressions through the whole procedure, two of them wearing
white coats and one wearing suit. In the mental arithmetic
task, the subjects are asked to make a continuous subtraction
from 1022 to 13 as quickly and accurately as possible, and
they must start again from 1022 in case of error. During
the 40-minute rest period, five salivary cortisol samples are
collected to track the changing trend of cortisol concentration
caused by TSST.

C. Data Acquisition and Pre-Processing

The 32-channel EEG data are collected continuously at
a sampling rate of 500 Hz from the 65th minute of the
experiment. The electrodes are located at Fp1, Fz, F3, F7,
FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1,
O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2,
F4, F8, Fp2, IO according to the international 10-20 system.
AFz served as the ground and FCz as the online reference.
Impedance is kept below 10 k � for all channels.

Event markers are added to the EEG data for each subtask
during the experiment. IO channel which captures the eye
movements and accelerometer channels were excluded. EEG
signals are bandpass filtered from 0.5 to 40 Hz by a zero-phase
finite impulse response filter. The online reference was then
reintroduced into the dataset, then the data were re-referenced
by a common average reference. Both eye-blink and mus-
cle artifacts are detected by visual inspection and manually
removed after independent component analysis. To perform
the analysis, EEG data are selected from 65th to 110th minute
including all TSST stages and part of recovery. A 2-second
time window with no overlap is used for EEG data slicing.
EEG acquisition and preprocessing are described in the first
two parts of Fig. 2, with EEG preprocessing performed using
EEGLAB [38]. Among the 22 subjects in this study, the EEG
data of 21 subjects are used (the data of subject 1 cannot be
used due to equipment error).

D. Network Structure

The overall system architecture for evaluating the stress
states from EEG signals is shown in Fig. 2. The network struc-
ture proposed in this work combines CNN with adversarial
theory by adopting the architecture of GAN.
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Fig. 2. An overview of stress classification framework, RN = random noise, G = generative network, D = discriminative network, SC = stress
classification.

In this section, by modifying the generator and discrimina-
tor of semi-supervised learning GAN (SSL-GAN) proposed
by [39], a network structure named SDCAN is proposed,
in which the generator and discriminator are also two symmet-
rical CNNs. Unlike SSL-GAN which is designed for image
classification, SDCAN achieves end-to-end EEG time series
decoding. The details of the proposed network are shown
in Fig. 3, in which the discriminator and generator both
consist of 5 layers of convolutional or deconvolutional layers.
The generator takes random noise as input and outputs the
generated EEG which has the same data format as the real
EEG, while the discriminator takes the multi-class real EEG
data as well as the generated data as input and outputs the
probability distribution that the data comes from the generated
data or the one class of the multi-class real data.

The multi-class real EEG signals are denoted as
{(xi , yi )

K
i=1}, where K represents the number of classes,

xi ∈ RC×T represents an EEG data with C channels and
T sampling points, and {yi ∈ 1 . . . K } is the corresponding
class label. The discriminator includes 4 convolution-max-
pooling blocks, with the convolution network in the first
block split into a temporal convolutional layer and a spatial
convolutional layer. Exponential linear units (ELUs) is used
as the activation function in each block, and the amount of
convolution kernels is gradually added from 25 in the first
block to 200 in the fourth block, while the stride is set as 1 for
all blocks. The generator consists of 5 layers of deconvolution
with the number of kernels gradually decreasing from 200 to 1,
almost symmetrical to the discriminator. The stride of each
kernel is set as 2 in the first 4 layers and 1 in the last layer,
and the rectified linear unit (ReLU) is used as the activation
function after each deconvolution layer. In the last layer of the
discriminator, the traditional GAN uses the sigmoid function

Fig. 3. The details of the proposed SDCAN model. C represents the
number of channels of input data, and T represents the number of time
points of input data.

to give the probability distribution of whether the data comes
from the original data set or the generated data set, which
makes the discriminator of the traditional GAN be regarded
as a binary classifier, and the loss function of the traditional
GAN is given by (1) [29].

min
G

max
D

V (D, G) = Ex∼pdata(x) [log D(x)]
+ Ez∼pz(z) [log(1 − D(G(z)))] (1)
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where pz(z) represents the distribution of noise variables,
G(z) represents mapping noise variables into real data space,
pdata(x) represents the distribution of real data x , D(x)
represents the probability that x came from the real data rather
than generated data, and V (D, G) represents the two min-max
games played by the generator and discriminator.

In this paper, the last layer of the discriminator is modified
to make a multi-class classifier. Given the K-class dataset
{(xi , yi )

K
i=1}, where x ∼ p(x |y), y ∼ p(y), the last layer

of the discriminator classifies the data point x into one of the
K classes with the k-dimensional logic vector {l1, . . . , lK } by
applying the softmax function (2).

p mod el (y = j | x) = exp
(
l j

)

∑K
k=1 exp (lk)

(2)

In the training process of the discriminator, the generated
data is marked as y = K + 1, so the output dimension of
the discriminator was K + 1 instead of K . Assuming that
half of the dataset were real data and the other half were
generated data (but in fact, the percentage of real data and
generated data is arbitrary), by maximizing the expectation
Ex,y∼p

[
log pD (y | x, y ≤ K )

]
and minimizing the expecta-

tion Ex∼pG

[
log pD (y = K + 1 | x)

]
at the same time, the loss

function of the SDCAN is shown in (3).

min
G

max
D

Ex,y∼p
[
log pD (y | x, y ≤ K )

]

+ Ex∼pG

[
log pD (y = K + 1 | x)

]
(3)

where p is the distribution of real data, pG is the distribu-
tion of generated data, pD is the probability distribution of
the discriminator, K represents the number of classes, and
K + 1 represents the label of generated data, G represents
mapping noise variables into real data space, D represents the
probability that x came from the real data rather than generated
data, pD (y = K + 1 | x) represents the probability distribu-
tion from the generated data correspond with 1 − D(G(z)))
in (1), log pD(y ∈ 1, . . . K |x) represents the probability
distribution of real data which needs to be maximized. The
algorithm is given in Algorithm 1.

E. Evaluation and Statistics

Accuracy, precision, recall, and f1-score for classification
evaluation are calculated based on the four parameters: true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN), as follows:

Accuracy = T P + T N

T P + F P + F N + T N
(4)

Precisioni = T Pi

T Pi + F Pi
(5)

Recalli = T Pi

T Pi + F Ni
(6)

F1-Scorei = 2∗ Precision∗
i Recalli

Precisioni + Recalli
(7)

where i represents the i th class regarded as a positive class,
and the rest are unified as negative classes. However, consider-
ing the unbalanced samples of classes, the weighted precision,

Algorithm 1

Input: training set {(xn, yn)}K
n=1, random noise {z(1), . . . , z(m)}.

Output: generated data
(
xK+1, yK+1

)
, probability

distribution from D.
Initialize: Initialize model parameters: θd , θg .
While θd , θg has not converged do

for iteration <= 5 do
Sample {z(i)}m

i=1 ∼ pz(z) from noise prior samples;

Sample {x (i)
n }K

n=1 ∼ pdata from the real data;
Update the discriminator by ascending its stochastic gradient:

∇θd
1
m

m∑

i=1

[
log pD (y | x, y ≤ K ) + log pD(y = K + 1|x)

]
;

end for
Sample {z(i)}m

i=1 ∼ pz(z) from noise prior samples;
Update the generator by descending its stochastic gradient:

∇θg
1
m

m∑

i=1

[
log (1 − D

(
G

(
z(m)

))
)
]
;

end while
n represents the label of each data pair, K represents the number of label categories,

z represents the input random noise.

recall, and f1-score are calculated as follows:

Precisionweighted =

N∑

i=1
Precisioni

∗wi

|N | (8)

Recallweighted =

N∑

i=1
Recalli

∗wi

|N | (9)

F1-Scoreweighted = 2∗ Precisionweighted
∗ Recallweighted

Precisionweighted + Recallweighted

(10)

where N is the total samples in all classes, i represents the
i th class regarded as a positive class, and wi is the ratio of
the sample size of i th class to the total sample size.

F. Training Strategy

For classification, all EEG data are randomly divided into
training, validation, and test sets by 8:1:1. The network is
trained and tested by 10-fold cross-validation. Furthermore,
leave-one-(subject)-out-cross-validation (LOOCV) is adopted
for inter-individual cross-subject stress classification. The EEG
data are divided into a training set of 20 subjects and a test set
of one subject to implement LOOCV. The process is repeated
21 times to ensure that the EEG data of each subject is used
as a test set. All the models are trained on an NVIDIA Tesla
K80 GPU, with CUDA 10.0 using the Tensorflow API.

G. Statistical Analysis

Statistical analyses are performed to evaluate questionnaires,
cortisol concentrations, and classification performance. One-
way repeated-measures analysis of variance (ANOVA) is used
for testing statistically significant differences between multiple
groups. The paired student’s t-tests are used to determine
the statistical significance of the difference between different
statistics. Normality and variance homogeneity are assured
before applying ANOVA.



FU et al.: SYMMETRIC CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORK 1389

Fig. 4. Statistical results of state trait anxiety inventory (STAI) (a) and
self-rating depression scale (SDS) (b) according to questionnaires at
pre-TSST(STAI1 and SDS1), the end of TSST(STAI2 and SDS2) and
during recovery(STAI3 and SDS3) after TSST, respectively. The asterisk
(∗) indicates the significante difference with p < 0.05.

III. RESULTS

A. Questionnaires and Salivary Cortisol Data Analysis
The statistical results of STAI (i.e., STAI1, STAI2, and

STAI3) and SDS (i.e., SDS1, SDS2, and SDS3) according
to questionnaires at pre-TSST, the end of TSST and during
recovery after TSST, respectively, are shown in Fig. 4. The
results do not reflect significant changes in the stress state
of the subjects before and after stress induction except for
STAI (p < 0.05), which indicates the inaccuracy of the ques-
tionnaire due to its subjectiveness. Furthermore, LES score is
21.14 ± 13.14, which shows no stressful events happened in
their life recently.

The statistical results of salivary cortisol concentration
values of all subjects before and after the TSST are shown
in Fig. 5 (a). Considering the 20-minute time lag between
hormone response and stress stimulation [4], the changing
trend of salivary cortisol concentration values matched what
was described in [25] that cortisol concentration value will
gradually ascend due to the stimulation of TSST and gradually
descend after TSST. To be concrete, SS2 shows no significant
difference compared with SS1, and the values of SS1 and SS2
are relatively low, indicating subjects maintained relaxation
during the rest period before 30 min; SS3 ascends significantly
compared with SS2, indicating that the start of the anticipatory
stress period of TSST at 70 min causes the change in stress
state; SS4 ascends significantly compared with SS3, indicating
that the commencement of speech period at 80 min causes
changes in stress state again; SS5 shows no significant dif-
ference compared with SS4 and the values of SS4 and SS5
are relatively high, indicating that there are no stress state
changes during the speech and math periods and subjects are
under stress from 80 min to 90 min; SS6 descends significantly
compared with SS5 indicating that subjects start to recover
from stressful states as the end of TSST at 90 min.

Hormonal responses generally begin 20 minutes after stress
stimulation, while physiological responses are almost in real-
time [4]. Considering the 20-minute time lag between hormone
response and physiological response, and the changing trend
of the salivary cortisol concentration values also provide an
objective contribution for establishing the stress response in
subjects, the stress response can be divided into 4 different
stages, as shown in Fig. 5 (b).

Fig. 5. Statistical results of cortisol concentration values (saliva sam-
pling, SS) (a). The asterisk indicates significant difference, ∗ indicates
p < 0.05, ∗∗ indicates p < 0.01. Stress states of EEG (b).

B. Data Labeling

The four stages of stress indicated by changing trend of
cortisol values during the experiment and the corresponding
segmentation of EEG shown in Fig.5 (b) can be described
as: (1) state before stress (65th -70th minute), (2) state
of medium stress (70th - 80th minute), (3) state of high
stress (80th - 90th minute) and (4) state of stress recovery
(90th - 110th minute). Considering that stress recovery takes
a long time and the corresponding salivary cortisol value
decreases from 90 min to 110 min, the last state can be divided
into (4) state of early stress recovery (90th - 100th minute)
and (5) state of late stress recovery (100th - 110th minute).
Therefore, we have either four classes or five classes of stress
states in this study.

C. Benchmarking and Parameter Optimization

1) Benchmarking: To illustrate the performance of the pro-
posed SDCAN model, we conducted extensive experiments
using the state-of-the-art EEG decoding deep learning mod-
els including EEGNet [40], Deep ConvNet, and Shallow
ConvNet [41], the existing CNN models with adversarial
theory [31], and also traditional classifiers linear discriminant
analysis (LDA) and support vector machine (SVM) [19].

Since the performance of deep learning models varies from
different parameters, we performed parameter optimization
among the EEGNet, Deep ConvNet, and Shallow ConvNet
models for obtaining the optimal models, those models were
trained with a fixed learning rate (lr) of 0.001 but various
batchsize. The batchsize leading to the best classification
performance in each of the corresponding models (four-
class/five-class Deep/Shallow ConvNet and EEGNet) is used
for further comparison. As shown in Fig. 6, after 10-fold
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Fig. 6. For five-class (a) and four-class (b) classification, EEG data are classified using CNN model (EEGNet (E), Deep ConvNet (D) and Shallow
ConvNet (S)) with different batchsize, for example, D32 = Deep ConvNet model with batchsize = 32. Asterisk indicates the significante difference,∗ indicates p < 0.05, ∗∗ indicates p < 0.01, and ∗∗∗ indicates p < 0.001.

cross-validation, the Deep ConvNet model with batchsize =
32 attains the optimal average classification accuracy of 73%
and 83% for five- and four-class classification, respectively;
the Shallow ConvNet model with batchsize = 128 attains the
optimal average classification accuracy of 74% and 84% for
five- and four-class classification, respectively; the EEGNet
model with batchsize = 128 attains the optimal average
classification accuracy of 64% and 73% for five- and four-
class classification, respectively, they were chosen for further
analysis. Besides, to demonstrate the advantage of the pro-
posed SDCAN model over the existing CNN with adversarial
theory models, we also applied the combination of CNN
(EEGNet, Deep ConvNet, and Shallow ConvNet) models

with adversarial theory to our dataset, denoted as Deep
ConvNet+Ad, Shallow ConvNet+Ad, and EEGNet+Ad,
respectively.

The traditional classifiers were applied to the features
extracted from the theta band of recorded EEG signals accord-
ing to [19], concretely, those features are the mean and
variance of PSD of each channel, the difference between
the absolute power of asymmetric channels of the left and
right hemisphere of the brain (divisional asymmetry), the ratio
between the absolute power of asymmetric channels of the left
and right hemisphere of the brain (rational asymmetry), and
the correlation between asymmetric channels for the left and
right hemispheres of the brain.
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TABLE II
THE AVERAGE STRESS CLASSIFICATION PERFORMANCE OF DIFFERENT MODEL ON TEST SET FOR FIVE-CLASS AND FOUR-CLASS

CLASSIFICATION. DC = DEEP CONVNET MODEL, SC = SHALLOW CONVNET MODEL, EN+AD = EEGNET WITH ADVERSARIAL

THEORY, DC+AD = DEEP CONVNET WITH ADVERSARIAL THEORY, SC+AD = SHALLOW CONVNET WITH ADVERSARIAL

THEORY, SVM = SUPPORT VECTOR MACHINE, LDA = LINEAR DISCRIMINANT ANALYSIS. ALL RESULTS

WERE PRESENTED AS MEAN ± STD AFTER 10-FOLD CROSS-VALIDATION

Fig. 7. For five-class (a) and four-class (b) classification, EEG signals are classified using the SDCAN model with different parameter combinations,
bs = batchsize, lr = learning rate. Asterisk indicates the significante difference, ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, and ∗∗∗ indicates
p < 0.001.

We demonstrate the comparison among the optimal deep
learning models (i.e., EEGNet model with batchsize = 128,
Deep ConvNet model with batchsize = 32, Shallow ConvNeet
model with batchsize = 128), the existing CNN with adversar-
ial theory models, and the traditional classifiers, each model
performed 10-fold cross-validation for four-class and five-class
classification, as shown in Table II. The comparison demon-
strates that the Shallow ConvNet model with batchsize =
128 obtained the best classification among the eight models
(p < 0.05), and deep learning models outperformed traditional
classifiers, so only the deep learning methods are considered
in the following analysis.

2) SDCAN: A major disadvantage of GAN is that the
discriminator is unstable during training, which makes GAN
easy to fall into model collapse when inappropriate parameters
are chosen. For SDCAN, it is also essential for appropriate

parameter setting. Four-class and five-class classification of
stress stages from the collected EEG in our TSST experiment
using SDCAN with combinations of a variety of batchsize and
learning rate is performed and evaluated by 10-fold cross-
validation. The results are shown in Fig. 7. It can be seen
that the classification results of SDCAN vary greatly when
different parameter combinations are chosen. The optimal
average classification accuracy of 80% and 87% for five-
and four-class classification, respectively, is obtained when
batchsize = 256 and lr = 0.001.

D. Comparison Between Different Classifiers

Since Shallow ConvNet performs better than other models
for stress states classification as shown in Section III-C-2, here
we compare the detailed performance of SDCAN with Shallow
ConvNet only, with results briefly summarized in Tables III
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Fig. 8. For five-class classification ((a) and (b)), the confusion matrix of the best classification results of SDCAN (batchsize = 256, lr = 0.001) and
Shallow ConvNet (batchsize = 128, lr = 0.001) after 10-fold cross validation. 0 represents before-stress state, 1 represents medium-stress state,
2 represents high-stress state, 3 represents the early stage of stress recovery, and 4 represents the late stage of stress recovery. For four-class
classification ((c) and (d)), the confusion matrix of EEG data classification results of SDCAN (batchsize = 256, lr = 0.001) and Shallow ConvNet
(batchsize = 128, lr = 0.001). 0 represents before-stress state, 1 represents medium-stress state, 2 represents high-stress state, 3 represents the
stress recovery stage.

TABLE III
COMPARISON OF ACCURACY, PRECISION, RECALL AND F1-SCORE OF

SDCAN MODEL AND SHALLOW CONVNET MODEL ON THE TEST

SET FOR FIVE-CLASS CLASSIFICATION. ALL RESULTS WERE

PRESENTED AS MEAN ± STD AFTER 10-FOLD

CROSS-VALIDATION

TABLE IV
COMPARISON OF ACCURACY, PRECISION, RECALL AND F1-SCORE OF

SDCAN MODEL AND SHALLOW CONVNET MODEL ON THE TEST

SET FOR FOUR-CLASS CLASSIFICATION. ALL RESULTS WERE

PRESENTED AS MEAN ± STD AFTER 10-FOLD

CROSS-VALIDATION

and Tables IV. It can be seen that for five- and four-class
classification, SDCAN performs better than Shallow ConvNet
in terms of accuracy, precision, recall, and f1-score (p < 0.001
for each evaluation metric). The confusion matrices of the best
classification result for SDCAN and Shallow ConvNet after
10-fold cross-validation are shown in Fig. 8. It can be seen
that the SDCAN performs better than Shallow ConvNet in
terms of accuracy for every stress level, no matter for five- or
four-class classification.

E. Leave- One-Subject-Out-Cross-Validation

Cross-subject classification has always been challenging in
deep learning, and the SDCAN model has the potential for

good performance in this aspect due to its design principle.
Here we perform LOOCV for stress states classification using
EEGNet with batchsize = 128, Deep ConvNet with batch-
size = 32, Shallow ConvNet with batchsize = 128, CNN
with adversarial theory models, and SDCAN with optimal
parameters. Moreover, We adopted the euclidean space data
alignment approach (EA) proposed by He et al. [44] on the
dataset when conducting LOOCV by the proposed SDCAN
model, this approach aligns EEG trials from different sub-
jects in the euclidean space to make them more similar and
hence improve the learning performance of a new subject.
The average LOOCV accuracies of four- and five-class of
EA-SDCAN have been significantly improved compared with
the proposed SDCAN model without EA ( p < 0.05). The
evaluation results for the overall average accuracy are shown
in Table V. As shown in Table V, the average accuracy for
the five-class classification obtained by the EA-SDCAN model
and SDCAN model is 48.17% and 45.69%, and for the four-
class classification is 60.52% and 58.91%, respectively, higher
than that of the other models. An individual detailed compar-
ison among the SDCAN model, the EA-SDCAN model, and
other deep learning models is demonstrated in the appendix
(Tables VIII-IX).

Our proposed SDCAN and EA-SDCAN models are also
compared in terms of classification accuracy to state-of-the-art
LOOCV cross-subject muli-level stress classification results in
the literature, as shown in Table VI. It can be seen that our
EA-SDCAN achieves 60.52% accuracy for the more difficult
4-class classification task, outperforming the reported 2-class
artificial neural network (ANN), and linear discriminant analy-
sis (LDA), slightly inferior to the 2-class support vector
machine (SVM) and 3-class multilayer perceptron (MLP).

F. Feature Analysis

For analysis of the features learned by the SDCAN model
and to illustrate that these features are stress-related, we did
the canonical correlation analysis (CCA) [45] between two
feature groups including SDCAN-based and handcraft-based
features. SDCAN-based features are extracted by the proposed
SDCAN model from the data of each subject at each stress
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TABLE V
THE AVERAGE STRESS CLASSIFICATION PERFORMANCE OF DIFFERENT MODEL ON TEST SET FOR FIVE-CLASS AND FOUR-CLASS

CLASSIFICATION BY LOOCV. DC = DEEP CONVNET MODEL, SC = SHALLOW CONVNET MODEL, EN+AD = EEGNET WITH

ADVERSARIAL THEORY, DC+AD = DEEP CONVNET WITH ADVERSARIAL THEORY, SC+AD = SHALLOW CONVNET

WITH ADVERSARIAL THEORY, EA = EUCLIDEAN ALIGNMENT APPROACH

TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE

BY LOOCV MANNER

stage, they are the output of the layer before the classification
layer of the discriminative network. Handcraft-based features
include five sub-feature sets that are extracted from the theta
band of each channel of the recorded EEG data, and they have
been proved to be stress-related and applied for stress level
classification by [19]. These included the mean and variance
of PSD of each channel, the divisional asymmetry, the rational
asymmetry, and the correlation between asymmetric channels
for the left and right hemispheres of the brain.

The r-value of CCA between the SDCAN-based features
and each sub-feature set in handcraft-based features is shown
in Table VII. The first six columns demonstrate the correlation
and significance between network feature at each stress stage
and one of the sub-feature sets of the handcraft-based features,
the last column shows the correlation and significance between
network feature from each stress stage and the combination of
the handcraft-based features. The last row in Table VII gives
the chance level between SDCAN-based features and random
white noise.

As we can see from Table VII, after the CCA analysis,
the r-value between the SDCAN-based features and the com-
bination of handcraft-based features shows a high correla-
tion (r-value ranging from 0.61 to 0.94) and significance
(p < 0.001), and they are all higher than the chance level,
demonstrating the features learned by the SDCAN model
are correlated to stress-related features in EEG. Besides, the
r-values between the SDCAN-based features and the feature
of correlation are around 0.9, showing the possibility that the

features learned by the proposed SDCAN model are highly
correlated to the correlation of asymmetric channels for the
left and right hemispheres of the brain. The results of the
CCA analysis prove that the SDCAN model learned the stress-
related features from raw EEG.

IV. DISCUSSION

This paper proposes a framework for the end-to-end clas-
sification of perceived mental stress at multiple levels using
EEG data. For this purpose, a modified experimental paradigm
based on TSST is designed to induce multiple-level mental
stress. EEG is monitored and salivary cortisol is used for
mental stress stages calibration. A novel classification model
that combines CNN with adversarial inference is proposed to
recognize mental stress. The results indicate that it is feasible
to make an end-to-end model that can detect mental stress and
discriminate between different stages of stress. Moreover, the
adversarial inference contributes to subject-invariant features
extraction, which leads to better generalization across subjects
compared with traditional networks. Compared to the existing
CNN with adversarial theory models, the technical advantage
of the proposed SDCAN model is that we constructed two
symmetric networks, including a discriminative network, and
a generative network, to automatically capture invariant and
discriminative features from EEG. The generative network
works as a feature extractor and outputs the generative data
which are used as one additional class for classification.
In contrast, the existing CNN+adversarial theory methods do
not generate data. By outputting the generated data, our model
can disentangle specific attributes from the data, and finer
attributes can be learned to improve classification accuracy
with the iteration of training. Statistic results proved the
proposed SDCAN model significantly outperforms the existing
CNN with adversarial theory models.

For the classification framework, the SDCAN model is
proposed in this work. Two types of classification were per-
formed, with one as LOOCV, and the other as data mixing
from all subjects. The principle of LOOCV is to guarantee
that the subject used for testing cannot be mixed into the
training sets to guarantee no data leakage. For the second
type of classification, data mixed from all subjects were then
divided into training, validation, and test sets, where the test
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TABLE VII
THE r-VALUE OF CCA BETWEEN THE PROPOSED SDCAN MODEL FEATURES AT EACH STRESS

STAGES AND THE FEATURES CALCULATED FROM THE RECORED EEG DATA

set was not strictly consisted of unseen subjects. As depicted
in a previous study [46], these two types of data division
should be built for different purposes and goals. Applying
LOOCV is appropriate for the general population. The mixed-
data division-based user-independent classification is restricted
to applications where only a specific population is considered,
with training and subsequent classification tasks performed
on the same specific population but not a general population.
Such user-independent classification and data division strategy
has been applied in many studies of stress classification
[19], [47], [48]. It can be designed for a specific population
who is suffering from stress-related mental illness and is
appropriate for real-life personalized stress state detection
applications when the algorithm is utilized in portable stress
detecting equipment.

The adversarial theory applied to the SDCAN model is
commonly used in domain adaptation in transfer learning [49],
it can learn subject-invariant representations which make
cross-subject learning possible. While it is challenging to
achieve good cross-subject multi-level stress classification due
to the variability of EEG signals among individuals, as shown
in Table VI, the two-class and three-class classifications of
LOOCV range from 44% to 67%. In contrast, our proposed
SDCAN and EA-SDCAN achieve an average accuracy of
58.91% and 60.52% for four-class classification, respectively,
which is comparable to most state-of-the-art results for much
easier two- and three-class stress level classification tasks, and
much higher than chance accuracy of 25%. For the more dif-
ficult five-class classification, our average accuracy decreases
to 48.17%, but still much higher than the chance accuracy
of 20%. In summary, this study obtains reasonably acceptable
accuracy for cross-object multilevel stress classification, but
there is still much room for improvement.

In the framework of GAN, the generator mimics the dis-
tribution of real data due to its outstanding feature extracting
ability. In the SDCAN model, the generator extracts certain
features from every class of real data which are non-redundant
and consistent, so the generated data in this paper can help
the discriminator to classify the K-class of the original EEG
and achieve good generalization results across subjects. In this
work, the parameters of the generator are updated once after
the parameters of the discriminator are updated five times,
which indicates that after the generator is updated once, there
was a batch of generated data. The main objective of this work

is to improve the classification ability of the discriminator,
so we do not pay attention to the quality of generated data.

For the labeling of mental stress, first, it can be observed
from Fig.5 (a) that during the whole recovery stage, cortisol
level is in the same range as the medium stress state during
TSST, but we denote the stages of stress according to the
changing trend of salivary cortisol concentration values instead
of only by the specific value of cortisol concentration. During
the procedure of TSST, we were unable to collect saliva
samples during the speech period, but according to [50], the
cortisol secretion rate ascend to its peak within a short time
window after speech period onset, which means the changing
trend of cortisol concentration varies between the recovery
stage and medium stress state. The low FN of the medium
stress state and the recovery state in the confusion matrices
from Fig. 8 indicates dividing the medium stress state and
the recovery state as two different stress stages is correct.
Second, due to the obvious descending trend of salivary
cortisol concentration values during the 20 minutes after TSST,
it is reasonable to assume that for the stress recovery stage,
there are differences between the first 10 minutes after stress
stimulation immediately and the last 10 minutes, research [4]
also indicated that the effect size of cortisol within 20 minutes
from stressor termination changes significantly, so the analysis
is conducted for two cases: (1) mental stress-related EEG
data is divided into four stages including two stress states
(the medium-stress state and the high-stress state), before
stress state, and stress recovery state, (2) the stress recovery
state is further divided into the early stress recovery state
and the late stress recovery state. The classification results
of EEG verify our assumption. The proposed SDCAN model
achieves 87.62% and 81.45% accuracy for four- and five-class
classification, respectively, and for the five-class classification
after 10-fold cross-validation as shown in Fig. 8, the TP and
FN of the label 3 and label 4 verify that the early recovery
and late recovery can be distinguished.

There are also some practical considerations when we
conducted five- and four-class classification. Different levels of
stress have different effects on the human body. It is helpful to
classify stress into multistage stress for the prevention, follow-
up, and prognosis of recovery from stress-stimulation-related
psychiatric disorders. High levels of stress can be harmful to
human health, but moderate levels of mild stress can some-
times be effective in helping people get more concentration,
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TABLE VIII
COMPARISON RESULTS OF EACH SUBJECT BEFORE AND AFTER THE APPLICATION OF EA APPROACH

and a more accurate grasp of the degree of recovery from stress
can also help people regulate their emotions more effectively
to maintain mental health. We hope to provide full monitoring
of stress-related mental illnesses and accurate stress regulation
when this research comes into practice.

With aspect to the saliva sampling interval, according to
the pharmacological theory brought out by research [4], [50],
the amount of time for the cortisol conversion process differs
among individuals, and the conversion relies on multiple
conditions such as the secretion of cholesterol, so the whole
conversion process of the glucocorticoid such as cortisol

requires 10–15 min [51]. So Linares et al. [52] suggested that
repeated salivary samples should be collected at 10-15 min
intervals. Furthermore, previous research focusing on TSST
experiments [53], [54] commonly considered the cortisol
changes as the 10-minute interval. Another consideration is
that sampling should not influence the subject’s stress level,
which means the action of taking saliva samples need to cost a
minimal mental and physical burden for the participants [55],
and for this reason, we conducted a pre-experiment and all
participants reflected no stressful feelings for the 10-minute
salivary sampling interval. So in this study, the saliva samples
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TABLE IX
STRESS CLASSIFICATION PERFORMANCE OF DIFFERENT MODEL FOR FIVE-CLASS AND FOUR-CLASS CLASSIFICATION BY LOOCVON

SUBJECT 2-SUJECT 9. DC = DEEP CONVNET MODEL, SC = SHALLOW CONVNET MODEL, EN+AD = EEGNET WITH ADVERSARIAL THEORY,
DC+AD = DEEP CONVNET WITH ADVERSARIAL THEORY, SC+AD = SHALLOW CONVNET WITH ADVERSARIAL THEORY
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TABLE IX
(Continued.) STRESS CLASSIFICATION PERFORMANCE OF DIFFERENT MODEL FOR FIVE-CLASS AND FOUR-CLASS CLASSIFICATION BY

LOOCVON SUBJECT 11-SUJECT 19. DC = DEEP CONVNET MODEL, SC = SHALLOW CONVNET MODEL, EN+AD = EEGNET WITH

ADVERSARIAL THEORY, DC+AD = DEEP CONVNET WITH ADVERSARIAL THEORY, SC+AD = SHALLOW CONVNET WITH ADVERSARIAL THEORY
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TABLE IX
(Continued.) STRESS CLASSIFICATION PERFORMANCE OF DIFFERENT MODEL FOR FIVE-CLASS AND FOUR-CLASS CLASSIFICATION BY

LOOCVON SUBJECT 20-SUJECT 22. DC = DEEP CONVNET MODEL, SC = SHALLOW CONVNET MODEL, EN+AD = EEGNET WITH

ADVERSARIAL THEORY, DC+AD = DEEP CONVNET WITH ADVERSARIAL THEORY, SC+AD = SHALLOW CONVNET WITH ADVERSARIAL THEORY

are collected at 10-minute sampling intervals. The previous
study indicated that the stress state of human beings is a
slowly changing process and maintains stability unless induced
by external stimuli [56]. In this study, the subjects stayed in
a stable and quiet environment throughout the experiment.
Induction of stress is rigorously controlled by TSST to guar-
antee consistency during each experimental stage.

Various experimental tasks [57]–[59] have been used for
the induction of mental stress in experimental conditions.
However, whether these tasks can induce stress has been
neither validated nor discussed in these studies due to their
complexity and the long analysis time dictated by biological
samples. The most commonly used paradigms include the
Maastricht acute stress test task [57] and the Stroop task
[58], as well as the socially evaluated cold pressor test [59].
Among those tasks, the validation that the achieved results
in the presented studies are due to the induction of stress is
unanswered. Applying TSST to induce stress has previously
been demonstrated in [54], where the trend of salivary cortisol
concentration is similar to what we obtain in this paper,
confirming the capability of the paradigm proposed by this
work to induce stress in the participants.

Even though cortisol works as the body’s stress index
hormone and can provide a calibration standard for stress
levels, it lacks practical applications for real-time stress level
monitoring as compared with EEG, on the one hand, cortisol
cannot provide instantaneous stress indication due to the
long conversion process, and on the other hand, the proce-
dure of salivary cortisol detection is very complicated and
time-consuming, which is further hampered by the limitations
on proper temperature and other conditions required by the

storage of saliva before laboratory measurements. Thanks to
recent advancements, compact lightweight devices such as
MindWave Mobile Headset [15] and Muse [16] are used in
studies related to detecting mental stress. These types of EEG
equipment have been on the market for the people who need to
monitor stress levels to allow a more consumer-friendly means
to monitor brain activities and real-time stress levels detection.

A limitation of this work is that the network proposed in
this paper extracts most features automatically from only the
frequency domain. In the future, we can pay more attention
to the time-domain of EEG signals and combine the SDCAN
model with models such as LSTM, and even achieve the online
classification.

V. CONCLUSION

This paper aims to present a robust and end-to-end
stress recognition method from high-dimensional EEG sig-
nals. We proposed a novel network named SDCAN, and the
results show that the SDCAN significantly outperforms the
existing CNN for stress state classification from EEG with
an average accuracy of 86.89% and 80.30% for four- and
five-class, respectively. Additionally, the SDCAN is further
compared with the existing CNN by LOOCV, and the results
show that the SDCAN achieves superior performance with
an average accuracy of 45.68% and 58.91% for 4-class and
5-class LOOCV classification, respectively, which confirms
that the adversarial mechanism improves the generalization
ability across subjects related to stress classification tasks.
EA was applied and the improved generalization ability of
EA-SDCAN across subjects was also validated via LOOCV,
with the accuracies of four and five stages being 60.52% and



FU et al.: SYMMETRIC CONVOLUTIONAL AND ADVERSARIAL NEURAL NETWORK 1399

48.17%, respectively. These findings can potentially contribute
to the development of more accurate and robust EEG-based
stress recognition in real-life applications.

APPENDIX

The comparison between the SDCAN model and
EA-SDCAN model by applying the LOOCV manner is
shown in Table VIII. The LOOCV classification performance
of the SDCAN, EA-SDCAN, and benchmarking models on
each subject are shown in Tables IX.
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