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Constructing Time-Varying Directed EEG
Network by Multivariate Nonparametric

Dynamical Granger Causality
Chanlin Yi , Yuan Qiu , Wanjun Chen, Chunli Chen, Yifeng Wang, Peiyang Li , Lei Yang,

Xiabing Zhang , Lin Jiang , Dezhong Yao , Fali Li , and Peng Xu

Abstract— Time-varying directed electroencephalogra-
phy (EEG) network is the potential tool for studying the
dynamical causality among brain areas at a millisecond
level; which conduces to understanding how our brain
effectively adapts to information processing, giving inspi-
ration to causality- and brain-inspired machine learn-
ing. Currently, its construction still mainly relies on the
parametric approach such as multivariate adaptive autore-
gressive (MVAAR), represented by the most widely used
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adaptive directed transfer function (ADTF). Restricted by
the model assumption, the corresponding performance
largely depends on the MVAAR modeling which usually
encounters difficulty in fitting complex spectral features.
In this study, we proposed to construct EEG directed net-
work with multivariate nonparametric dynamical Granger
causality (mndGC) method that infers the causality of a
network, instead, in a data-driven way directly and there-
fore avoids the trap in the model-dependent parametric
approach. Comparisons between mndGC and ADTF were
conducted both with simulation and real data application.
Simulation study demonstrated the superiority of mndGC
both in noise resistance and capturing the instantaneous
directed network changes. When applying to the real motor
imagery (MI) data set, distinguishable network characters
between left- and right-hand MI during different MI stages
were better revealed by mndGC. Our study extends the
nonparametric causality exploration and provides practical
suggestions for the time-varying directed EEG network
analysis.

Index Terms— ADTF, brain networks, EEG, motor
imagery, multivariate nonparametric dynamical Granger
causality (mndGC).

I. INTRODUCTION

OUR brain works as a complex network, in which the
functional connectivity among vast brain areas changes

quickly to guarantee the accomplishment of the brain activity
strictly, orderly, and efficiently [1], [2]. A comprehensive
understanding of the brain functions requires an exploration
of the functional connectivity with directed information and
dynamics [3]–[7] and knowledge of brain network has been
widely applicated in cognition, disease, and engineering
research [8]–[11]. Exploring the time-varying directed net-
works would not only help to understand how the brain
areas affect each other and how it changes during a specific
cognition process but also conduce to uncover the poten-
tial intervention strategies, including where, when, and how
to intervene [12], [13]. Due to such merits as high time
resolution, non-invasiveness, mobility, and easy operation of
electroencephalography (EEG) [14]–[16], the time-varying
directed EEG network is particularly suited for exploring the
dynamical activities in our brain, as well as the instantaneous
causality network patterns [17], [18]. For instance, by per-
forming the time-varying EEG network analysis, Song et al.
revealed that low-frequency repetitive transcranial magnetic
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stimulation (rTMS) targeting the right posterior parietal cortex
has significantly positive effects on the treatment of primary
insomnia, the curative effect lasted at least one month [19].

Currently, in time-varying directed connectivity analysis, the
mainstream methods are based on the parametric framework
that requires a specification of a model [13], [20]. Based on
the time-variant multivariate autoregressive (MVAR) model,
multiple methods were proposed with different causality def-
initions for time-varying directed connectivity analysis, such
as adaptive directed transfer function (ADTF), adaptive partial
directed coherence, and adaptive Granger causality (GC) [20].
Due to the differences in time-variant MVAR model calcu-
lation and normalizations, several extensions also emerged
[20], [21]. Although there are numerous parametric methods,
in time-varying directed EEG network construction, the most
widely used method is ADTF because of its good performance
in interpretations and accurately capturing of the time-variant
causality between signals [22], [23]. For instance, using EEG
time-varying directed network analysis by ADTF, Si et al.
revealed the diverse network patterns during the different
decision stages and distinguishable patterns between different
types of responses to the unfair offer [17]. However, restricted
by the model assumptions, such parametric approaches rely
a lot on accurate signal modeling. The autoregressive (AR)
modeling process needs enough data to enable the attractor
construction in phase space and the data size needs grows
exponentially with the dimension of the attractor, therefore,
it is often paralyzed in fitting the complex spectral characters
that require higher-order AR models [24]. Whereas, EEG-
like neurobiological signals are non-stationary with complex
spectral representations [24]–[27]. Also, the model order deter-
mination remains a concern, although multiple methods based
on the Bayesian framework were proposed to mitigate such
effect [28]–[30].

The nonparametric Granger causality is first presented by
Dhamala et al. in 2008 [31]. Specifically, it derives the
noise covariance and transfer function out of the cross-
spectral density of the two sequences through the non-
parametric spectral matrix factorization and embeds them
into Geweke’s frequency-domain Granger causality (GC)
method [32]. It jumps out of the conventional GC framework
that is widely used in the field of neuroscience and infers
the causality relationships directly from the data itself in a
data-driven way, therefore, completely avoiding the delicate
step of estimating parameters and modeling signals. Without
the model restrictions, it is comparatively more flexible in
practical applications. In recent years, this method was also
extended into the multivariate and time-variant context by
introducing the wavelet transform for time-varying cross-
spectral density calculation and the multivariate GC estima-
tion, which result in the multivariate nonparametric dynamical
Granger causality (mndGC) [33]–[35]. Multiple studies have
demonstrated that the nonparametric scheme is more flexible
in statistical tests, can achieve very comparable performance
to parametric approaches, and has considerable application
values in causality analysis between two systems [34]–[36].
The nonparametric approaches have been applied in multiple
neuroscience studies and reported many novel discoveries. For

instance, Honjoh et al. revealed the causality modulation of
the ventromedial thalamic nucleus (VM) on cortical activities
and arouse, i.e., uncoupled and desynchronized cortical local
circuits [37]. Considering the EEG data contains plenty of
frequency oscillations and spectrum responses that play a cru-
cial role in understanding the brain cognition processes [25],
[38], [39], the spectral-based mndGC is particularly applicable
for discovering such rhythm-based causality relationships.

Motor imagery (MI) is defined as a perception-like process
with a variety of mental body movements without actual
physical output and has wide applications in brain-computer
interface (BCI), movement enhancement, and motor func-
tion rehabilitation [40], [41]. MI involves complex cognition
processing like sensory information reception and integration,
memory processing, and motor planning [40], [42], as well
as shows distinct hemisphere synchronization and desynchro-
nization characters between left- and right-hand MI during
different stages [43]. Investigating its time-varying directed
network is of great importance for understanding the corre-
sponding dynamical working mechanisms and finding out the
relevant intervention targets.

In this study, considering the parametric trap that time-
varying directed EEG network construction often faces,
we introduce the mndGC instead of the most widely used para-
metric method ADTF. Comparisons were performed between
the mndGC and ADTF straightforwardly both in simulation
data and real MI EEG data set to find practical experiences for
the exploration of nonparametric time-varying directed EEG
network construction.

The remainder of this article is organized as follows.
Section II provides the methodological motivations and deriva-
tions of mndGC and ADTF. Section III shows the simulation
and real MI EEG data set application details and results. Then,
Section IV discuss the findings of this study, and finally, the
conclusion of this study is described in Section V.

II. METHODOLOGY

The methodology of mndGC and ADTF is presented in this
section.

A. Parametric Time-Varying Directed
EEG Network: ADTF

Given L EEG time series X = [x1(t), x2(t), . . . , xL(t)],
t = 1, . . . , T , ADTF [22] describes their time-varying linear
coupling among the L multi-channel EEG signals with the
following MVAAR model,

X (t) =
�P

p=1
A p(t)X (t − p)+ E(t) (1)

where P is the model order that is often determined by
experience or information criterion methods like the Akaike
Information Criterion (AIC) and the Schwarz Bayesian Crite-
rion (SBC) [29], [30]; and A p(t) ∈ R

(L×L) is the MVAAR
coefficient matrix at pth-order, in which each element indi-
cates the dynamic causal influence of xn on xm at time point t;
E(t) is model noise that measures the prediction performance.
In the implementation, by treating A p(t) ∈ R

(L×L) at each
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time point t as a state, the Kalman filter is adopted to estimate
it [22]. After Kalman estimation, in ADTF, the directed
information matrix between any pairs of time series at time t
and frequency f is defined as,

Hmn(t, f ) = A−1(t, f ) =
��P

p=0
A p(t)e

− j2π f�t p
�−1

m = 1, . . . , L, n = 1, . . . , L (2)

where superscripts “−1” denotes the inverse of a matrix. Each
element in Hmn(t, f ) represents the information flow from
signal xn to xm . In practice, we always adopt the normalized
ADTF value that ranges from 0 to 1 as,

γn→m(t, f ) = |Hmn(t, f )|
��L

n=1

���H 2
mn(t, f )

��� (3)

Finally, the time-varying effective connectivity matrix with
each element representing the information flow between pair-
wise signals is,

ADT F(:, :, t) =

⎡
⎢⎢⎢⎣
γ1→1(t) γ1→2(t) . . . γ1→L(t)
γ2→1(t) γ2→2(t) . . . γ2→L(t)

...
...

. . .
...

γL→1(t) γL→2(t) . . . γL→L(t)

⎤
⎥⎥⎥⎦ (4)

where γn→m(t) is the mean value of γn→m(t, f )| f ∈� over
a selected frequency band set �. Then, the ADTF values
between pairwise signals make up the time-varying directed
EEG network.

As shown in the above procedures, the causality estimation
relies on the MVAAR modeling process. Such a parametric
approach is model-dependent, which might cause illness in
accurately determining the model parameter and fail to capture
the complex spectral characters [24], [35].

B. Nonparametric Time-Varying Directed
EEG Network: mndGC

For time series xm and xn in X as aforementioned,
the mathematical derivation of the mndGC is given below.
Wavelet transform is competitive for time-frequency analysis
and presents the local time-frequency representations adap-
tively [44]. Therefore, to reveal the time-variant driving rela-
tionships among multivariate signals, mndGC defines the S( f )
in the space of the wavelet spectrum.

Theoretically, the continuous wavelet transform (CWT) of
signals xm and xn in X at time point t and scale s is,

Wm(t, s) = (1
√
s)

� +∞
−∞

xm(η)ψ
∗((η − t)



s)dη

Wn(t, s) = (1
√
s)

� +∞
−∞

xn(η)ψ
∗((η − t)



s)dη (5)

where superscript “∗” denotes the complex conjugate, ψ(η) is
the chosen mother wavelet, here, is Morlet wavelet formulated
as,

ψ(η) = π−1/4e jωηe−η2



2 (6)

In fact, there is a one-to-one equivalence between scale s
and frequency f . Thus, the Wm(t, s) and Wn(t, s) can be

transformed to Wm(t, f ) and Wn(t, f ) directly. Consequently,
the cross wavelet transform between any pairs of signals xm

and xn in X holds the form as,

Wmn(t, f ) =< Wm(t, f )W∗n (t, f ) > (7)

with <·> being the expectation taking over all the trials [35].
The wavelet spectral matrix consists of cross-spectrum and
self-spectrum between xm and xn at time point t has form as,

S(t, f ) =
�

Wmm(t, f ) Wmn(t, f )

Wnm(t, f ) Wnn(t, f )

�
(8)

where Wmn(t, f ) and Wnm (t, f ) are the cross-spectrum
between xm and xn,Wmm(t, f ) and Wnn(t, f ) are the self-
spectrum of xm and xn . Then, S(t, f ) can be used to estimate
the time-variant noise covariance matrix 	(t) and transfer
function matrix H (t, f ), which is realized in this study by the
high-efficiency Wilson spectral matrix factorization method
[45], [46]. Specifically, the symmetric S(t, f ) can be repre-
sented as,

S(t, f ) = 

H (9)

where 
 denotes minimum-phase spectral function and super-
script “H ” denotes the complex conjugate transpose. In fre-
quency theory, 
 has Fourier expansion and its Fourier
coefficients can be computed as,

Ck = 1

2π

� π

−π



�
eiθ

�
e−ikθdθ (10)

where 

�
eiθ

�
e−ikθ is the Fourier operator. Therefore, the

noise covariance matrix 	 and transfer function matrix H
between xli and xl j can be computed as,�

= C0(C0)T

H = 
(C0)−1 (11)

Here, superscript “T ” denotes matrix transpose. Combining
(9), (10), and (11), the wavelet spectral matrix S(t, f ) can
be further represented as H	H H . Therefore, based on the
definition of frequency GC [32], the nonparametric GC value
at time t and frequency f can be computed as,

Fn→m (t, f )

= ln(
Smm(t, f )

Smm(t, f )− (�nn(−(
�

mn)
2

�

mm) |Hmn|2
)

(12)

where the numeric subscripts indicate the corresponding ele-
ments in the matrix S(t, f ),

�
(t), and H (t, f ). Finally, the

GC connectivity matrix at each time and frequency point
can be obtained by calculating the GC strength Fl j→li (t, f )
between the pairwise signals as,

mndGC(:, :, t) =

⎡
⎢⎢⎢⎣

F1→1(t) F1→2(t) . . . F1→L(t)
F2→1(t) F2→2(t) . . . F2→L(t)

...
...

. . .
...

FL→1(t) FL→2(t) . . . FL→L(t)

⎤
⎥⎥⎥⎦
(13)
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Algorithm 1: Time-Varying Directed EEG Network
Construction

Input: multivariate signals set X = [x1, x2, · · · , xL ] ∈ R
L×T and the selected frequency

band index set�.
Output: mndGC matrix mndGC ∈ R

L×L×T .
01: Initializing: m = 1, n = 1, t = 1
02: For m = 1→ L do
03: For n = 1→ L do
04: Wm (t, f )← CW T (xm ),Wn (t, f )← CW T (xn );

05:
Wmm (t, f )←< Wm (t, f )W ∗m (t, f ) >,Wmn (t, f )←< Wm (t, f )W ∗n (t, f ) >,
Wnm (t, f )←< Wn (t, f )W ∗m (t, f ) >,Wnn (t, f )←< Wn (t, f )W ∗n (t, f ) >;

06: S(t, f )←
�

Wmm(t, f ) Wmn (t, f )
Wnm (t, f ) Wnn (t, f )

�
;

07: For t = 1→ T
08: 
 ← W M F(S(t, f ));
09: C0 ← (1/2π)

� π
−π 
(e

iθ )dθ ;
10: 	 ← C0 (C0)T , H ← 
(C0 )−1;
11: Fn→m (t, f )← ln( Smm (t, f )

Smm (t, f )−(�nn −(
�

mn )
2

�

mm )|Hmn |2 )
12: Fn→m (m, n, t)← mean(Fn→m (t, f )

�� f∈� );
13: END for
14: END for
15: END for
16: END the procedure

The CW T (·)means the continuous wavelet transform, W M F(·) represents matrix factorization through

Wilson’s algorithm, mean(·) denotes mean value across the concerned frequency bands, and<·> denotes

averaging all trials.

where the Fn→m(t) is the average granger causality strength
across a given frequency set � at the time point t between
signals xm and xn . The procedures of the proposed nonpara-
metric time-varying directed network construction approach
can be summarized in Algorithm 1.

By using spectral matrix factorization to estimate noise
variances and inferring the Granger causal relationship through
the cross-spectrum between paired time series, the proposed
method avoids the model dependency and parameter trap
usually encountered in the traditional parametric GC model.

III. RESULTS

To evaluate the efficiency of mndGC and ADTF in time-
varying directed network EEG construction, both simula-
tion study and real MI EEG application were conducted.
In the following experiments, consistent with previous studies
[17], [29], Akaike Information Criterion (AIC) was used to
estimate the model order on each trial for ADTF.

A. Simulation Experiments

1) Simulation Procedures: Firstly, a 5-node time-varying
directed network (Fig.1) which characterized the causal rela-
tionship between 5 jointly stationary stochastic processes was
predefined based on a three-order MVAAR model as,

x1(t) = ε1(t)− 0.35x1(t − 1)+ 0.2x1(t − 2)

x2(t) = ε2(t)− 0.25x2(t − 1)+ a12(t)x1(t − 2)

+ a52(t)x5(t − 3)

x3(t) = ε3(t)− 0.25x3(t − 1)+ a23(t)x2(t − 2)

+ a13(t)x1(t − 3)

x4(t) = ε4(t)− 0.25x4(t − 1)+ a24(t)x2(t − 2)

+ a34(t)x3(t − 2)+ a14(t)x1(t − 3)

x5(t) = ε5(t)− 0.35x5(t − 1)+ 0.2x5(t − 2)

+ a25(t)x2(t − 2)+ a45(t)x4(t − 2) (14)

Fig. 1. The predefined time-varying directed network: the black lines on
the top are the MVAAR coefficients that indicate the dynamical causality
among the 5 nodes; below it, the subfigures denote the corresponding
time-varying directed network patterns in the three stages defined by the
MVAAR model, in which each solid circle represents a subnetwork, and
the black arrow denotes the information flow in the network.

where εl(t), l = 1, 2, . . . , 5 denotes the white noise with
mean 0 and variance 0.25, amn(t) is the MVAAR coeffi-
cient represents the dynamical influence between xm and xn

at discrete-time index t . The predefined functions for the
MVAAR coefficients are given below,

Coefficients a12(t) a13(t), and a14(t) were step functions
as,

ali l j (t) =
�

0.6 0 < t ≤ 100

0 otherwi se
(15)

Coefficients a23(t) and a24(t) were piecewise functions for-
mulated as,

a23(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.6 100 < t ≤ 150

−0.6

50
(t − 200) 150 < t ≤ 200

0 otherwi se

a24(t) =
⎧⎨
⎩

0.9(
t − 200

100
) 200 < t ≤ 300

0 otherwi se
(16)

Coefficients a34(t) and a52(t) had the same function type, as
well as a25(t) and a45(t). Their formulations were,

a34(t) = a52(t) =
�

0.6 100 < t ≤ 200

0 otherwi se

a25(t) = a45(t) =
�

0.6 200 < t ≤ 300

0 otherwi se
(17)

As shown in Fig. 1, in a specific stage, the a23(t) and a24(t)
would gradually change, while the other coefficients have
fixed values. Correspondingly, the network changes over time,
in which stage 1 has a fixed pattern (i.e., pattern 1), while
stages 2 and 3 have changing patterns (i.e., as time goes by,
the network would change from pattern 2 to pattern 3 due to
the linear decrease of a23 in stage 2, and from pattern 4 to
pattern 5 due to increase of a24 in stage 3).
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Fig. 2. The time-varying directed network estimated by mndGC and
ADTF under various SNR conditions. On the top, is the predefined
structure that shows the time-varying patterns that should be recovered
over the 100 runs. Below it, each row represents the network varied
across the three stages over the 100 runs. In each subfigure, a line with
a black arrow on it represents the information flow between two nodes
and the thickness of it denotes the total numbers it appears. The line
marked in red indicates this line appears more than μ + σ times, with
μ and σ representing the mean value and standard deviation of all the
connections’ appearance times in the estimated network, respectively.

Then, we conducted 100 simulation experiments. In each
experiment, 15 trials of multivariate signals were generated
according to equation (14). Each trial consisted of 5 time series
which last 3 seconds with a sampling frequency of 100 Hz.
Subsequently, the Gaussian noises with different signal-to-
noise ratios (SNRs), i.e., SNR = −5, 0, 5, 10, were added to
each trial. Finally, using mndGC and ADTF, we estimated the
time-varying connectivity matrices (dimension: 5 × 5 × 300)
for the 100 experiments. Consistent with the predefinitions,
the top-ranked 3 connections at each time point formed the
final binarized network.

2) Simulation Assessments: Fig. 2. shows the reconstructed
time-varying directed network by mndGC and ADTF. Each
row represents the network varied across the three stages with
representative patterns. The thickness of a line indicates the
number that this connection was recovered out of 100 runs.
The red lines indicate the connections with higher appearance
times. The more the network composed of these connections is

Fig. 3. The normalized connection strength variation of the 100 runs
under various SNRs. Each subfigure represents the causality variation
between two nodes. The black line is the predefined MVAAR coefficients.
The blue and red lines denote the mean time-varying causality strength
of the 100 runs of mndGC and ADTF, respectively. The shades with the
same color next to them are the corresponding standard deviations. The
predefinition of connection 1 → 5 is not normalized since it is a zero
vector.

consistent with the predefined structure, the better performance
the corresponding method has.

Comparatively, under different SNR conditions, the network
estimated by mndGC has a more consistent structure with the
predefined one, i.e., the thicker red lines are mostly overlapped
with the true patterns. While ADTF has disturbed network
structures, even at the highest SNR (10 dB), the red lines still
have structures that are different from the predefinitions. Under
the low SNRs like −5 dB and 0 dB, though the performance is
lowered, mndGC still can recover the fundamental predefined
networks with large overlaps between the red linkages and
predefined linkages. However, the network pattern recovered
by ADTF is almost corrupted, where there is very little
consistency between the red linkages and the ground truth.

The variation of connection strength gives further evidence
to reflect the performance between the two approaches. Here
9 connections that have different values across the three
stages (information flow changes over time) and 1 connection
1→ 5 as a representative connection that always keeps 0 (no
causality relationship) during the whole process were shown
in Fig. 3. For better visualization, except for predefinitions
of connection 1 → 5 that is a zero vector, all the other
strength time courses of these connections were normalized
to a uniform scale using z-scores.

As shown in Fig. 3, compared to ADTF, under each noise
condition, the connection strength curves estimated by mndGC
are more consistent (almost overlapped under 5 dB and 10 dB)
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Fig. 4. The tv-CRRs obtained by mndGC and ADTF under the
various SNR conditions. The blue and red solid lines denote the mean
tv-CRRs of the 100 runs calculated by mndGC and ADTF, respectively.
The shades with the same color next to them are the corresponding
standard deviations. The blue dot indicates the CRR value of mndGC
is significantly higher than that of ADTF, and in contrast, the red dot
represents the CRR value of ADTF is significantly higher (p < 0.05).

with the predefined MVAAR coefficients series, where the
fundamental fluctuation trends could be well recovered under
all SNRs. While ADTF only can capture the time-varying
MVAAR patterns under the relatively higher SNRs like 5 and
10 dB. When a signal is contaminated with stronger noise like
0 and −5 dB, ADTF fails to track the fluctuation patterns well.
In addition, when edge linkage strength changes to a new state,
ADTF will need a relatively long transition duration to adapt
to this change, while mndGC can capture this change timely.

To quantitatively assess the performance of mndGC, we fur-
ther defined the ratio of the correctly recovered connections
to the total connections (20 in this study) in a network at a
specific time point as,

CRR(t) = GC(t)

GT (t)
(18)

where GC (t) and GT (t) are the number of correctly recovered
edges and the total edges (20 for a 5-node network) in the
network at that time point, respectively. The CRR(t) was
calculated at each time point in each experiment and the time-
varying CRR (tv-CRR) and mean CRR (m-CRR) across all the
time points are presented in Fig. 4 and TABLE I, respectively.
As demonstrated in Fig. 4, under each noise condition, the
mndGC has statistically higher tv-CRR (p < 0.05) and m-CRR
(p < 0.000) values compared to ADTF at almost all time
points.

B. Real Data Application: MI EEG Data Set

1) Data Recording and Preprocessing: The experiment was
authorized by the Institution Ethics Committee of the Univer-
sity of Electronic Science and Technology of China. Twenty-
seven healthy right-handed graduate students with normal
or correct-to-normal vision (females 9, ages ranged from

TABLE I
THE m-CRR WITH INCREASING SNR

Fig. 5. The MI paradigm used in this study.

19 to 26 years) were recruited to participate in our experiment.
They neither are alcohol or drug addicts nor have cognitive
dysfunctions or neurological impairments. Before the experi-
ment, the experimenter would explain the MI task guidelines to
participants in detail and collect their signed written informed
consent.

The environment preparations and procedures of our experi-
ment follow the standard MI paradigm, and the procedures are
given in Fig. 5. In the beginning, 2-minute eyes-closed resting-
state EEG data were collected, then, 4-run of MI tasks follows,
in which a 2-minute break was allowed between two runs.
Each run contains 50 trials, 25 left-hand and 25 right-hand
MI trials, the left- and right-hand trials appear on the screen
randomly. Each trial consisted of a 1-second cue (yellow bar
lay on the left or right side of the screen), 5-second MI
execution (green bar lay on the same position), and 4-second
short break (gray bar lay on both sides of the screen). The
left and right positions of the yellow and green bar indicated
the left and right MI tasks, respectively. Once the bar turned
green, the participant was required to accomplish the imagery
of bouncing a ball in 5 seconds. Any real hand movement
would lead to a stop of the experiment.

Using the Symtop amplifier (Symtop Instrument, Beijing,
China), EEG signals were recorded by 15 Ag/AgCl electrodes
(i.e., F3, F4, FC3, FC4, Cz, C3, C4, C5, C6, CP3, CP4, P3, P4,
O1, and O2) that follow the 10-20 system and digitized with
a sampling rate of 1000 Hz. There are also three additional
electrodes, in which vertical and horizontal EOG were used
to detect the eyes’ activities and AFz serves as the reference.
All electrode impedance was set below 10 k
 and the online
band-pass filter is 0.5-45Hz.

To obtain the clean MI related data, the raw EEG sig-
nals were preprocessed by the following procedures, includ-
ing Reference electrode standardization technique (REST)
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Fig. 6. MI time-varying directed network for the left- and right-hand MIs. The long black arrow indicates the time; above it, the subfigures surrounded
by the red dash lines denote the time-varying directed networks for left-hand MI; below it, the subfigures surrounded by the blue dash lines represent
the time-varying directed networks for right-hand MI. In each subfigure, a green line with an arrow indicates the information flow between electrodes
(brain areas), and the red line denotes bidirectional connection.

referencing [47], 8-30 Hz bandpass filtering, [−1s, 9s] data
segmenting (0 s denotes when the green bar appears, i.e., the
time that participants starting to executing MI action), and
artifact trials removal with a threshold of ±70 μv. Then, the
obtained clean MI-related EEG trials were down-sampled to
100 Hz for subsequent analysis. With such procedures, each
trial consists of a 1-second “Motor preparation”, a 5-second
MI execution, and a 4-second after-task short resting state.

2) MI Time-Varying Directed EEG Network: As MI mostly
involves the μ (8-13) rhythm [48], ith mndGC and ADTF, the
MI time-varying directed EEG network was constructed in this
band for both left- and right-hand MIs of each subject. The
mean time-varying directed connectivity matrix of the 27 sub-
jects is taken as the final connectivity matrix. Then, consistent
with the previous study, a cost threshold strategy (keep the
top 10% connections in the network) was used to binarize the
connectivity matrices [49], [50]. The different time-varying
directed networks for different kinds of MI consisting of
three stages (1-second “Motor preparation”, 5-second “MI
execution”, and 4-second “Short rest”) with a time interval
of 1 second were shown in Fig. 6 for mndGC and Fig. S1 for
ADTF (see supplementary materials).

Compared to ADTF, the network of mndGC shows more
distinct stage characteristics for the left- and right-hand MI.
The “Motor preparation” stage shows bilateral and symmetry
connections that originate from sensorimotor areas. During
the “MI execution” stage, the network has distinguishable
patterns (i.e., contralateral lateralization, the left-hand MI has
more right-hemisphere directed connections and right-hand
MI has more left-hemisphere directed connections) between
left- and right-hand MIs and the lateralization of left-hand
MI is comparatively more prominent. Then, such lateral-
ization gradually fades out during the “Short rest” stage.
Finally, in the late “Short rest” period, the network reverts

the bilateral and symmetric activities characterized by com-
paratively decreasing motor areas and increasing frontal and
occipital connections for both two MI tasks. Besides, the
time-varying directed networks under different thresholds (i.e.,
5%, 15%, and 20%) show similar patterns as that under the
10% threshold, which consistently demonstrates the reliability
of the identified network patterns by our developed mndGC.
While for the ADTF, during the whole process, the network
shows stable motor area activities and a degree of contralateral
lateralization, the stage character is a little blurred.

The out-degree is a kind of network measurement that
assesses the centrality (specifically, the origin and the prop-
agation characteristics) of a node [51]. To investigate such
characters quantitatively during the MI process, we fur-
ther calculated the time-varying out-degree in the left- and
right-side brain, respectively, for each subject based on the
network. Following the brain connectivity toolbox (BCT,
http://www.nitrc.org/projects/bct/) [51], the out-degree of the
left-hemisphere brain is computed at each time point as,

D(t) =
�

m∈�le f t

�
n∈� d(t)mn, m 	= n (19)

where d(t)mn denotes the outflow from node m to n (if
yes d(t)mn = 1, else d(t)mn = 0), � indicates the set of
all nodes in the network, and �le f t is the left-hemisphere
brain electrodes set. The left- and right-hemisphere electrodes
sets were divided according to the 10-20 system. Specifically,
after excluding the midline electrodes, the odd/even status of
the number in the electrode name determines whether this
electrode belongs to the left or right hemisphere (i.e., odd-
left, even-right) [52]. The variations of the left-and right-
hemisphere brain hemisphere out-degree across the 27 subjects
were shown in Fig. 7 for mndGC and Fig. S2 for ADTF
(see supplementary materials). For mndGC, the hemisphere
outdegree shows evident stage characters. For left-hand MI,



YI et al.: CONSTRUCTING TIME-VARYING DIRECTED EEG NETWORK BY mndGC 1419

Fig. 7. Time-varying directed network out-degree evolution of left- and
right-hand MIs. The abbreviation “Pre” denotes stage “Motor prepa-
ration”. The red and blue lines indicate the mean time-varying out-
degree across the 27 subjects, respectively, and the corresponding
shade denotes the standard deviation. The blue dot represents the out-
degree of right-hemisphere brain regions is significantly higher than the
left hemisphere, and the red dot means the out-degree of left-hemisphere
brain regions is significantly higher than that of the right hemisphere
(p < 0.05).

during the early “Motor preparation” and the late “Short
rest” period, the out-degree of left-hemisphere regions is
significantly higher than the right-hemisphere regions, while
during the “MI execution” period, the out-degree of right-
hemisphere regions is significantly higher. For right-hand MI,
most of the time, the left-hemisphere brain has a significantly
higher out-degree than the right hemisphere, especially around
the early and late “MI execution” period. As it moves away
from the “MI execution” period (i.e., the early “Motor prepa-
ration” and late “Short rest”), the left- and right-hemisphere
brain out-degrees gradually become no significant difference.
Whereas for ADTF, the network maintains higher contralateral
hemisphere outdegree during the three stages and shows
significance during the “MI execution” and late “Short rest”
periods.

IV. DISCUSSION

EEG-based time-varying directed network analysis is of
great importance in investigating the dynamical causality
among multiple brain areas and discovering the key inter-
vention targets. In this study, we extend the nonparametric
time-varying directed EEG network explorations with mndGC
to avoid the parametric trap of the traditional methods repre-
sented by the most widely use ADTF.

The simulation study evaluated the performance of mndGC
compared to the traditional parametric ADTF under different
noise conditions, through network patterns, connection
strength variations, tv-CRR, and m-CRR values. As shown in
Fig. 2, the time-varying directed network estimated by mndGC
has better consistency (i.e., consistent structure indicated by
red lines and fewer pseudo connections) than ADTF under
each noise condition. The significantly higher tv-CRR (Fig. 4)
and m-CRR (TABLE I) of mndGC than those of ADTF also
give intuitive numerical evidence. In essence, the time-varying
network patterns are determined by how the time-varying
MVAAR coefficients could be tracked. As shown in Fig. 3, the
connection strength recovered by mndGC is more consistent

with the predefined MVAAR coefficients, and their fluctuation
trends are almost overlapped under the high SNR condition,
e.g., 10 dB and 5 dB (Fig. 3). However, as for ADTF,
the true fluctuation of MVAAR coefficients cannot be well
tracked, especially under the relatively lower 0 and −5 dB
SNRs, most of the state change information is missed. This
difference accounts for the performance difference between the
two approaches. The better performance of mndGC attributes
much to the direct calculation of the causality in a data-
driven way. The performance of the parametric approach
relies a lot on the accurate modeling of the data. Although
Kalman filter is comparatively good at getting the adapt
MVAR parameters compared to the sliding window strategies
[22], [53], as Kalman filter applied the continuous assumption
for state changes, ADTF takes a relatively long duration
to reach stability [22], [54], which will fail to capture the
states with abrupt changes when the network state changes
to another new one as shown in Fig.3. Consequently, mndGC
is more noise-resistant and more competitive at capturing the
instantaneous directed network changes flexibly.

As a multidimensional and dynamical high-level cognition
process, MI has gained much attention in recent years. Knowl-
edge of time-varying directed networks helps a lot in revealing
the underlying mechanism of efficient MI processing, which
will further profit the more efficient MI BCI and motor
rehabilitation system. In this study, considering the good
performance of mndGC, we applied it to the real EEG MI
data set and observed the dynamical information flow in the
brain during the MI process in the μ band, whose oscil-
lations are demonstrated to be important for MI processing
[48], [55], [56].

During the “Motor preparation” stage, considering the sub-
ject is waiting for a MI stimulus, the time-varying directed net-
work show relatively symmetric sensorimotor areas activities
are reasonable. As is reported, brain contralateral lateralization
is an essential characteristic of the MI process [18], [43], [57],
therefore, during the period of MI processing and execution,
the networks of different MIs during the “MI execution” stage
show distinct lateralization (i.e., the left-hand MI show more
right-hemisphere directed connections, while right-hand MI
show more left-hemisphere directed connections). Then, the
lateralization gradually fades out and reverts the bilateral and
symmetric activities with decreasing motor areas and increas-
ing frontal and occipital areas activities during the “Short rest”
stage. After finishing the MI task, the brain is essentially at a
resting state, and therefore shows the default-mode-network-
like long-range connections between frontal and occipital
areas. These stage characteristics can only be revealed clearly
by mndGC (Fig. 6). As for ADTF, the networks show later-
alization sustainability, while the stage characteristics of the
three stages are a little blurred, except during the “Motor
preparation” stage, the network patterns in the rest of the
process are relatively similar.

The network hemisphere out-degree further gives the quan-
titative indicator, i.e., the causality dominance of left- and
right-brain of such laterality during MI processes [51].
As shown in Fig.7, mndGC can trace the network changes
well. Consistent with the network topology and previous
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studies [18], [58], the brain contralateral hemisphere out-
degree is significantly higher during the “MI execution” period
both for left- and right-hand MIs. During the early “Motor
preparation” and late “Short rest” stage, left-hand MI has
a significantly higher left hemisphere out-degree, while for
right-hand MI, although not significant, its left hemisphere
out-degree is also relatively higher. This is probably due to
that all the subjects recruited for our study are right-handed.
The long history of using the right hand has already enhanced
the relevant functions in the left-side brain [18]. This is also
why the network lateralization of the easier right-hand task
is less obvious, e.g., the network during “MI execution” of
mndGC (Fig. 6, and Fig. S1) and the network of ADTF
(Fig. 7 and Fig. S2). As for ADTF (Fig. S2), the relatively
higher contralateral hemisphere out-degree keeps during the
whole three stages, it cannot trace the brain state changes
immediately. That is coincident with the fact that the ADTF
needs a relatively long duration to reach stability. It is fair to
say that constructing the time-varying directed EEG network
with a nonparametric approach, i.e., mndGC in this study,
has a nice performance in mining the instantaneous directed
network changes.

V. CONCLUSION

In this study, we proposed to construct a time-varying
directed EEG network in a nonparametric data-driven way
with mndGC instead of the traditional parametric approaches
represented by the most widely used ADTF. simulation
study demonstrated that the mndGC is more noise-resistant
and better at capturing the instantaneous directed network
changes compared to ADTF. As applications in real MI
EEG data, the mndGC also reveals more distinct network
stage characters. Therefore, mndGC is worthy of consider-
ation for the time-varying directed EEG network analysis,
as well as the extensive neurophysiological signals. Our study
extends the exploration of mining the causality operation
mechanisms in the brain with time-varying directed EEG
networks in a nonparametric and data-driven way and provides
practical experience and suggestions.
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