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Abstract— In order to evaluate refractive amblyopia
suppression and understand the neural mechanism of
amblyopia suppression and push-pull perception training,
we recorded the EEG of refractive amblyopia children
before, during, and after push-pull perception train-
ing. We compared the brain activity in different states
through the steady-state visual evoked potentials (SSVEPs)
response and power topography and compared them with
normal children. We found that amblyopic and fellow eyes
have different performances in fundamental and harmonic
frequency responses. They also show different charac-
teristics when be masked. Push-pull perception training
improved the SSVEP performance of amblyopia children
by reducing the SSVEP response difference between eyes
and improving the intermodulation frequency response.
The result of topography showed that push-pull perception
reduced the alpha power of occipital and temporal lobes,
which was conducive to improving binocular function. The
changes of intermodulation response and occipital alpha
power were significantly correlated with the clinical indica-
tor. Thus, EEG is a potential method to measure amblyopia
suppression and the efficacy of push-pull perception.
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I. INTRODUCTION

THE American Academy of Ophthalmology defines
amblyopia as a unilateral or rarely bilateral reduction in

best-corrected vision, which can not be directly attributed to
structural eye abnormalities [1], [2]. According to the defi-
nition of the strabismus and pediatric ophthalmology branch
of the Chinese Medical Association [3], refractive amblyopia
means the best-corrected visual acuity of monocular or binocu-
lar is lower than that of normal children of the corresponding
age. Compared with both healthy eyes of normal children,
both amblyopia eyes and fellow eyes of amblyopic children
may have deficits in various degrees [4]–[9].

Suppression and rewiring, two theories to explain amblyopia
defects, may exist in different courses of amblyopia. When
the visual stimuli received by both eyes are inconsistent, sup-
pression often occurs to avoid diplopia and confusion. If the
inconsistent visual stimuli exist for some time and suppression
is invoked on a more sustained basis, rewiring may occur in the
cortex to produce a pathological adaptation. In this case, not
only abnormal visual stimuli need to be removed, but visual
training, whose time course and extensiveness depend on age
and brain plasticity, is also needed [10].

Psychophysical methods are usually used in the clinical
evaluation of amblyopia, including most methods that rely
on subjective reports [11], such as the contrast sensitivity
examination. It is usually difficult for nonverbal or uncoopera-
tive subjects (such as infants) to perform such psychophysical
vision tests. Even adults, the performance of such tests will
be affected by intelligence or malingering [12]. Visual evoked
potentials (VEPs) technology provides an objective alternative
means for visual function evaluation [13]. The steady-state
visual evoked potentials (SSVEPs) have high stability charac-
teristics, so they are favored by many researchers [14], [15].
Most previous studies on amblyopia SSVEP focused more on
the fundamental frequency response [16]–[18], lacking consid-
eration of harmonic response. The fundamental and harmonic
responses have been proved to originate from different parts
of the visual cortex [19], [20]. Therefore, paying attention to
both the fundamental frequency response and the harmonic
response of amblyopia SSVEP may be helpful for a compre-
hensive understanding of the function of the amblyopia visual
cortex.
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As for the treatment of amblyopia, the traditional patching
treatment forces the use of amblyopic eyes by covering the
dominant eyes of patients. However, the patching treatment
has poor efficacy on most amblyopia children, and it is inef-
fective for adolescent and adult patients most of the time [21].
Perceptual learning technology is also used in the treatment
of amblyopia. Through repeated visual stimuli, perceptual
learning restores the function of amblyopia, including the
improvement of contrast sensitivity, visual acuity, letter recog-
nition ability, and the alleviation of crowding effect [22]. There
is evidence that the recovery of visual function is lasting and
extensive [23]. Push-pull perception training, one perceptual
learning technology, gives amblyopic eyes intense stimulation
and fellow eyes weak stimulation [24], [25]. It recalibrates the
interocular balance [26], [27] and establishes better binocular
visual function [28]. Push-pull perception provides further
evidence for the binocular nature of amblyopia, but how push-
pull perception affects cortical activities and which brain areas
are the key to recovery are still unclear.

Considering the shortcomings of current research, in this
study, we used a cosine modulated black-and-white block stim-
ulation to induce SSVEP fundamental frequency responses and
harmonic responses of refractive amblyopia children, which
could provide a more comprehensive and quantitative descrip-
tion of the function of the amblyopia cortex. We then com-
pared the SSVEP and power topography differences before and
after training to measure the efficacy of push-pull perception
training and explain its neural mechanism. As a result, refrac-
tive amblyopic children showed different characteristics in fun-
damental frequency and harmonic responses, suggesting some
modulation or compensation effect of the advanced visual
cortex. Push-pull perception widely inhibited alpha activity
in occipital and temporal lobes, and the change of activity
in the occipital lobe was correlated with the improvement of
binocular balance.

II. METHOD

A. Participants

Eleven children with refractive amblyopia (ametropia or
anisometropia), recruited from the Department of Ophthalmol-
ogy, Beijing Children’s Hospital, Capital Medical University,
participated in the experiment. Their clinical details are shown
in Table I. They were 4–8 years old (6.1 ± 1.4 years). Three
(S2, S3, S9) had binocular disease, and the rest had monocular
disease. In our study, the eye with poorer vision was recorded
as the amblyopia eye, while the eye with better vision was
recorded as the fellow eye. In addition, eight normal chil-
dren (7.5 ± 3.1 years) also participated in the pre-training
measurement of the experiment. All participants wore their
best optical correction. Our experiments were approved by the
ethics committee of Beijing Children’s Hospital.

B. Apparatus

A wireless EEG system (Neusen W, Neuron, Changzhou,
China) was used to collect EEG signals in this experiment,
and the sampling frequency was 1 kHz. According to the
World Health Organization’s standard [29], we selected the
64-channel S-size EEG cap (50–54 cm). The reference

TABLE I
CLINICAL DETAILS OF AMBLYOPIC SUBJECTS

electrode was placed at the vertex and the ground electrode
was located in the midpoint of the FPz and Fz connecting. The
other two electrodes were placed at the left and right earlobes
for re-reference.

C. Experimental Procedure and Stimulation

The experimental flow is shown in the middle panel of
Fig. 1. The subjects sat 1.2 m in front of the display and used
a headrest to reduce the head movement. They first accepted a
5 min clinical visual function examination, then wore the EEG
cap for a 2 min resting state (closing or opening eyes to the
white wall) and about 7 min SSVEP signal acquisition, fol-
lowed by 10 min push-pull perception training. After finishing
the training, a similar process was performed, including resting
and SSVEP signal acquisition and visual function examination.
In order to reduce the interaction between SSVEP stimu-
lation and push-pull perception, a few minutes’ rests was
conducted before and after push-pull training. The length of
rest depends on the subjects. During the experiment, subjects
wore polarized glasses (Reedoon, Shanghai, China) to receive
the dichoptic stimulation of SSVEP and push-pull training.

1) SSVEP: SSVEP stimulation was presented on a 23-inch
polarized display (D2367ph, AOC, Fujian, China) through
the Psychophysics Toolbox in MATLAB (MathWorks, Natick,
United States). The stimulation target was a square block,
whose maximum brightness was about 25 cd/m2, and the
visual angle was about 4◦ × 4◦. Stimulation frequency f 1
was 7 Hz and f 2 was 9 Hz, and the gray level was determined
by the cosine function of the targeted frequency. We used a
luminance meter (ST-86la, Beijing Shida Photoelectric Tech-
nology Co., Beijing, China) to unify the flickering brightness
of the two frequencies to reduce the brightness interference.

As shown in the bottom panel of Fig. 1, the SSVEP exper-
iment included six stimulation conditions. Subjects were first
stimulated monocularly with two different frequencies. In this
case, a flashing square was presented to one eye, and a non-
flashing white square was presented to the other eye and then
interchanged. After monocular stimulation, the eyes were stim-
ulated binocularly with different frequencies. Each stimulus
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Fig. 1. Experimental flow chart. Subjects were measured for visual function before and after push-pull perception training, including clinical visual
function examination and EEG measurement of resting-state and SSVEP. SSVEP experiment included six stimulation conditions, including monocular
single-frequency stimulation and binocular different-frequency stimulation. AE = amblyopic eye, FE = fellow eye.

included five trials. Each trial included 1 s cue, 3 s stimulus,
0.5 s fruit picture, and 1.5 s rest. After seeing the fruit picture,
the subjects fed back the types of fruit they saw by pressing
the key to ensure the effectiveness of the EEG data.

We give a brief description of the above stimulation con-
dition. When the research object is an eye, we will present it
with a specific stimulus, such as 7 Hz stimulation, which we
call target stimulation; If a different stimulus is presented to
the other eye at the same time, such as 9 Hz stimulation, this
different stimulus is called masking stimulation.

2) Push-Pull Perception: The push-pull and disinhibition
models provided by the National Engineering Research Center
for Healthcare Devices (Guangzhou, China) were adopted for
push-pull perception training. The stimulation was presented
on a 32-inch polarized display (2342p, LG, Seoul, Korea).
Subjects adjusted the contrast level of the stimulation for
binocular balance before a disinhibition model was added
to the stimulation, and they recognized the flickering image
received by the amblyopic eye during the training process and
pressed the key for feedback. (See supplementary materials
for more details.)

D. Signal Processing

All signal processing was completed on MATLAB. We first
downsampled the signal to 250 Hz, and then denoised it with
a 50 Hz notch filter and a 0.1 Hz–50 Hz band-pass filter.
For the signal of the SSVEP experiment, we further removed
trials whose absolute value of amplitude was greater than

Fig. 2. The average SSVEP Fourier spectrum of dichoptic stimulation.
SSVEP response includes fundamental frequency, second and third
harmonic response and sum intermodulation frequency response of two
stimulation frequencies.

200 μV [30], [31]. For the signals of the resting and push-
pull training state, we used the clean-rawdata plug-in [32]
for further preprocessing and re-referenced the signals to the
earlobe in EEGLAB [33], [34].

1) SSVEP: Four occipital electrodes (POz, O1, O2, Oz)
were selected to calculate the SSVEP response. The SSVEP
paradigm used in this study could induce multiple harmonic
responses [35]. Thus, we calculated the SSVEP response
of the fundamental frequency, second, third harmonic, and
intermodulation frequency of the target frequencies (Fig. 2).
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We measured SSVEP response by the signal-to-noise ratio
(SNR) [35]–[38] and canonical correlation analysis signal-to-
noise ratio (CCA SNR) [18].

SNR is defined as the ratio of the amplitude of the tar-
get frequency to the average amplitude of the surrounding
frequencies:

SNR = M ·F( f )�M/2
m=1[(F( f )−� f · m)+(F( f )+� f · m)]

(1)

where f is the stimulation frequency, �f is the frequency
resolution, and F(f ) is the Fourier spectrum amplitude at
the stimulation frequency. Since the resampling frequency
is 250 Hz, �f is 0.33 Hz. M is set to 6, corresponding to 1 Hz
around the target frequency.

CCA is a commonly used signal analysis method in brain-
computer interface (BCI) research based on SSVEP [35]–[39].
It is used to calculate the correlation between two groups of
variables, one of which is the multi-channel EEG signal X,
and the other is the reference signal Y. Y is generally defined
by the sinusoidal template:

Y f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin(2π f t)

cos(2π f t)

...

sin(2π Nh f t)

cos(2π Nh f t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where f is the stimulation frequency and Nh is the harmonic
number. CCA maximizes the correlation coefficient of its
linear combination x = XT wx and y = Y T wy by finding the
weights wx and wy :

ρ = E[wT
x XY T wT

y ]	
E[wT

x X X T wT
x ]E[wT

y Y Y T wT
y ]

(3)

where ρ is the maximum canonical correlation coefficient
between variables X and Y. The CCA spectrum consists of the
canonical correlation coefficient between X and the reference
signal Y with different frequencies (f i = 0.1, 0.2, 0.3, …,
30.0), and the CCA SNR is defined in the same way as SNR:

CCASNR = N · C( f )�N/2
n=1[(C( f )−� f � · n)+(C( f )+� f � · n)]

(4)

where f is the targeted stimulation frequency, �f � is the
frequency resolution of the CCA spectrum, set to 0.1. C(f )
is the CCA coefficient at the targeted frequency. N is set to
correspond to 1Hz around the stimulation frequency.

In order to measure the response time of different eyes to
stimulation, we also studied the fundamental frequency phase
of SSVEP, calculated by the phase of the Fourier spectrum at
the targeted frequency. We averaged the results of all subjects
across trials and then channels.

2) Resting and Training State: We used power topography to
observe the changes in brain state before, during, and after the
push-pull training. Welch’s method [40] was used for power
calculation. The parameters were set as 1s window length and
50% overlap. The topoplot function in EEGLAB was used to

draw the relative power data of four frequency bands (delta:
0.1–4 Hz, theta: 4–8 Hz, alpha: 8–14 Hz, beta: 14–30 Hz) into
topographic maps.

E. Clinical Data Processing

The balance point (BP) is a common-used index to measure
the degree of interocular suppression clinically. It reflects the
ability of one eye to resist the suppression of the other eye.
The greater BP of an eye, the stronger the anti-suppression
ability of that eye; the smaller difference between BP of two
eyes, the better interocular balance. (More details about BP
are described in the supplementary materials.)

In order to describe the clinical significance of BP more
simply, we define the balance point measurement (BPM):

BPM = RBP+LBP

|RBP−LBP|+k
(5)

where RBP and LBP are the BP of the right eye and the left
eye, respectively (Table I). k is added to the denominator to
avoid the situation that the denominator is 0. The greater BPM,
the weaker interocular suppression, and the better interocular
balance. If the difference of BPM after and before training
is positive, the interocular balance has been improved; con-
versely, there is no improvement in the interocular balance.
In this study, when the value of k was between 0.5 and 5.5,
the change of BPM was consistent with the clinical diagnosis
results. In the subsequent analysis, we set k to 2.

F. Statistical Analysis

We conducted paired t-test on SSVEP response under var-
ious stimulus conditions before or after training. Specifically,
as shown in the middle and bottom panel in Fig. 1, we com-
pared the monocular response between eyes to study the differ-
ences in response to target stimulation between amblyopic eyes
and fellow eyes. The monocular and binocular stimulations
were compared to study the response differences with and
without masking stimulation. That was to study the masking
effect of different eyes. Then we compared the response and
masking effect before and after training to measure the efficacy
of push-pull perception. In addition, to find the critical brain
regions during push-pull perception training, as shown in
the upper panel of Fig. 1, we used one-way ANOVA and
Tukey-Kramer test to analyze the impact of training stages
(before, during, and after training) on power topography.
Finally, to find the EEG indexes correlated to interocular
suppression, we analyzed the correlation between the change
of intermodulation frequency response, power topography, and
the change of BPM.

III. RESULTS

A. SSVEP

We recorded a total of 900 trials of SSVEP data, of which
660 trials were from amblyopic children and 240 trials were
from normal children. In the preprocessing, we removed 73 tri-
als of amblyopic children and 16 trials of normal children,
accounting for 11.06% and 6.67%, respectively.
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TABLE II
SSVEP RESPONSE OF AMBLYOPIA CHILDREN BEFORE TRAINING

TABLE III
SSVEP RESPONSE OF AMBLYOPIA CHILDREN AFTER TRAINING

Note that 9 Hz is in the alpha band, where children have
strong spontaneous oscillation [41], [42]. Thus, spontaneous
oscillation easily interfered with the fundamental frequency
response at 9 Hz. Although we still put the response results
of 9 Hz in the supplementary materials, they may not be
accurate enough. Therefore, we mainly analyze the results
of 7 Hz below.

The suppression of amblyopia was analyzed through SSVEP
results before the push-pull perception training. Table II shows
the fundamental and harmonic response of 7 Hz in ambly-
opic children before training. According to T-test results, the
fundamental frequency response of amblyopic eyes (AE) is
significantly weaker than that of fellow eyes (FE) at 7 Hz. The
fundamental frequency response of fellow eyes is decreased
significantly when different frequency stimuli are applied to
the other eye, which is the masking effect. At 14 Hz, there
is no significant difference in the response between eyes, and
there is no significant masking effect either. At 21 Hz, the
results of SNR illustrate that the response of amblyopic eyes
is stronger than that of fellow eyes and is masked by fellow
eyes, while the results of CCA SNR illustrate that amblyopic
eyes mask fellow eyes.

Table III shows the fundamental and harmonic response
of 7 Hz in amblyopic children after training. At 7 Hz, there
is no significant response difference between amblyopic eyes
and fellow eyes, and there is no significant response change

Fig. 3. A scatterplot and correlation analysis of response change at
sum intermodulation frequency and BPM change. The asterisks indicate
significant difference (* p < 0.05).

of fellow eyes when masked, but fellow eyes may mask
amblyopic eyes according to the results of CCA SNR. As for
14 Hz and 21 Hz, there is no significant response difference
between eyes, and neither eye is masked by the other.

We also found some significant differences between SSVEP
responses before and after training. The results of CCA SNR
shows the response of fellow eyes at 7 Hz is decreased
significantly ( t10 = 2.480, p = 0.032), and the response at
the intermodulation frequency 16 Hz is significantly improved
(t10 = −2.440, p = 0.0348)). The results of SNR shows the
response of amblyopic eyes at 21 Hz is significantly improved
(t10 = −2.277, p = 0.046).
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TABLE IV
SSVEP RESPONSE OF NORMAL CHILDREN

Fig. 4. CCA spectrum of subject S1 with improved interocular balance
and subject S5 with little-improved interocular balance. Different subjects
have different response changes at 16 Hz before and after training.

Fig. 4 shows the difference of response at intermodulation
frequency 16 Hz after and before training (after training −
before training) is significantly positively correlated with the
difference of BPM (ρ = 0.712, p = 0.013), and the value
of k in BPM does not affect the results (Fig S3(a)). Fig. 5
shows the frequency spectrum of two subjects under binocular
stimulation. The left and the right figures are from subjects S1
and S5, respectively. According to Table I, after training, the
BP of S1 is raised from (6,8) to (8,8), and BPM is raised from
3.5 to 8. Correspondingly, his response at 16 Hz is also greatly
improved. The BP of S5 is changed from (6,3) to (7,4), and
BPM is increased slightly from 1.8 to 2.2. Correspondingly,
his response at 16 Hz has little improvement.

Fig. 6 shows that the response phase at 7 Hz of fellow eyes
before training is significantly greater than that of weak eyes
(t10 = 3.126, p = 0.010). There is no significant difference
at the phase between eyes after training (t10 = −0.835,
p = 0.423). Compared with before training, the response
phase of fellow eyes is decreased significantly after training
(t10 = 2.670, p = 0.023).

Table IV shows the fundamental and harmonic response
of 7 Hz in normal children after training. As for normal
children, there is no significant difference in the fundamen-
tal frequency response between left and right eyes, and the
masking effect exists in both left and right eyes at 7 Hz.
For harmonic response, the results of CCA SNR illustrate
that right eyes mask left eyes at 14 Hz; the response of
left eyes at 21 Hz is significantly higher than that of right
eyes, and right eyes also mask left eyes. In addition, there

Fig. 5. Comparison of fellow and amblyopic eyes response phases
before and after training. The asterisks indicate significant difference
(* p < 0.05).

is no significant difference in the response phase at 7 Hz
between eyes of normal children (LE = 98.719◦ ± 36.169◦,
RE = 107.000◦ ± 34.209◦, t7 = −0.535, p = 0.609).

B. Topography

We compared the topography of the four frequency bands
before, during, and after training (Fig. 6(a)). The results of
ANOVA showed that only the topography of the alpha band
had extensive and significant changes. Fig. 7(a) shows the
result of ANOVA of the alpha band in a topographic map.
According to the color bar, the non-blue areas in the figure
have changed significantly (FC6, C6, TP7, P5, P6, P8, POz,
PO3, PO4, Oz, O1, p < 0.05; T7, T8, PO5, PO6, PO7, PO8,
O2, p < 0.01). The power of some occipital and temporal
lobe areas has changed very significantly. The results of the
Tukey-Kramer test showed that significant differences mainly
occurred between before and during training. Topography
before and during training is compared furtherly (Fig. 7(b)).
The power of the areas with significant differences is reduced
during training. The power of some electrodes in temporal and
occipital regions during training is between the power before
and after training (Fig. 6(b)). Results of correlation analysis
showed that among these electrodes with significant changes,
the changes of alpha power of some electrodes in occipital
region are significantly negatively correlated with the changes
of BPM (PO4, ρ = −0.613, p = 0.045; PO6, ρ = −0.643,
p = 0.032; PO8, ρ = −0.622, p = 0.040; Oz, ρ = −0.62,
p = 0.041; O2, ρ = −0.656, p = 0.028), and the correlation



CHEN et al.: EEG MEASUREMENT FOR SUPPRESSION IN REFRACTIVE AMBLYOPIA AND PUSH-PULL PERCEPTION EFFICACY 1327

Fig. 6. (a)Average power topography across amblyopia children of delta, theta, alpha and gamma in different stages and (b)power changes of some
occipital and temporal electrodes in alpha band.

Fig. 7. (a) P-value topography (only areas with p < 0.05) and (b) power
difference topography between during and before training of the alpha
band.

results of PO6 and O2 are not affected by k of BPM
(Fig. S3(b)).

IV. DISCUSSION

A. Amblyopia Measurement

In order to understand the visual cortex defects of refractive
amblyopic children, we used the fundamental frequency and
harmonic response of SSVEP to measure monocular deficits
and interocular suppression of amblyopia [43], [44]. As a
result, the fundamental frequency response of amblyopic eyes
is significantly weaker than that of fellow eyes, but the
harmonic response is not necessarily. When amblyopia eyes
receive different stimuli, the fundamental response of fellow
eyes is decreased significantly, which means amblyopic eyes
mask fellow eyes in the fundamental frequency response.
However, amblyopic eyes may be masked by fellow eyes in
the harmonic response. In addition, the response of amblyopic
eyes lags behind that of fellow eyes. These results show the
relationship between eyes of refractive amblyopia: first, the
amblyopic eyes also receive and process visual information,
but the processing efficiency is lower than that of fellow eyes;
second, in the process of binocular vision, amblyopic eyes also
have a certain impact on fellow eyes.

1) Active Advanced Visual Cortex in Amblyopia: Previous
studies have found a neural generator of fundamental fre-
quency response in the primary visual cortex [45], [46], while
the harmonic response has been confirmed to occur in other
larger areas, such as the second harmonic response limited to
the extrastriatal visual area [45]. The fundamental response
and harmonic response represent the bottom-up and top-down
processes of the brain, respectively [47]. Thus, the fundamen-
tal and harmonic responses may represent the primary and
advanced visual cortex functions, respectively.

Based on our results, we hold that the weaker response
of amblyopic eyes in the fundamental response corresponds
to the defects of the primary visual cortex. Defects in the
primary visual cortex usually cause the reduced visual acuity
of neurons driven by amblyopic eyes [48] and reduced contrast
sensitivity [49]. The stronger harmonic response indicates the
top-down processing function of the advanced visual cortex,
suggesting some modulation or compensation effect from the
advanced visual cortex. In addition, some studies have shown
that the harmonic response may be related to the regulation
of attention [47], [50], so the performance difference between
eyes in harmonic response may be related to attention. In this
regard, some studies have shown that the attention resources of
amblyopia patients are complete [51], [52], while others result
that amblyopia children have attention problems [53]. There-
fore, it is necessary to improve the experimental paradigm to
study the attention problems of different types of amblyopia
on SSVEP.

2) Amblyopia Suppression in Advanced Visual Cortex: Under
the condition of the dichoptic mask, the fundamental response
of fellow eyes is masked by amblyopic eyes, which may
be due to the compensatory allocation of neurons driven by
fellow eyes to complete the response of amblyopic eyes to
different stimuli. On the contrary, fellow eyes may mask
amblyopic eyes in the harmonic response, indicating that the
interocular suppression from fellow eyes to amblyopic eyes
may also occur in the advanced visual cortex. It may provide
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a reasonable explanation for previous studies believing that the
loss of sensitivity in the primary visual cortex is not enough
to explain other defects in behavioral measurement [10], [54].

The phenomenon that there is no masking effect in some
harmonic responses could be explained by the synchrony
hypothesis [16]. This hypothesis points out that a strong
stimulus in the other eye can induce binocular neurons to
respond synchronously, resulting in an increased response at
the target stimulation frequency. Based on this hypothesis,
when both eyes are simultaneously stimulated differently, neu-
rons driven by amblyopic eyes in the primary visual cortex
are easier to be recruited and enter the synchronous state than
those in advanced visual cortex neurons, which results in the
improvement of the response of the primary visual cortex so
that fellow eyes do not mask them.

3) Response Lag of Amblyopic Eye: Our results show that
amblyopic eyes lag behind fellow eyes in the phase of fun-
damental frequency response, which is not found in normal
children. Some studies have also resulted in that [19]. The
phase difference between the fellow and amblyopic eyes
implies the difference in response time, which may be caused
by slower signal transmission in the optic nerve or bundle
or slower signal integration of cortical visual neurons. The
latency of amblyopic eye signals reaching the cerebral cortex
is longer [55], [56], suggesting that the brain may prefer
the earlier-reaching signals and then trigger the amblyopia
inhibition. [10].

B. Push-Pull Perception Mechanism

1) Recovery of Interocular Balance: Our results show that
after training, the fundamental frequency response of fellow
eyes is reduced significantly, and the harmonic response of
amblyopic eyes when masked is improved significantly. Also,
the sum intermodulation frequency response is improved and
the interocular response that had significant differences before
training becomes insignificant after training. These results
show that the interocular response tends to be balanced, and
the masking effect becomes weaker after training, indicating
that push-pull training has an acute effect on improving ambly-
opic eye function and reducing interocular suppression. The
intermodulation frequency is a sign of the interocular interac-
tion in the cortex [57]. Therefore, the response improvement
at intermodulation frequency after training may be related to
the recovery of interocular interaction.

As for the correlation results, we found a strong positive
correlation between the change of BPM and the response
change at the intermodulation frequency. The higher intermod-
ulation frequency change indicates better interocular balance.
There is one point that must be illustrated. The only data
with negative BPM change in Fig. 4 comes from S8, whose
balance point becomes worse (table I) after training. It is pretty
rare in practical clinical application. If we eliminate it, the
correlation result will become ρ = 0.780 (p = 0.008), higher
than the previous result. Thus, the response change of SSVEP
intermodulation frequency is a potential index to measure the
training effect and needs to be verified by large sample data
before applied to clinical examination.

In addition, the response phase differences between eyes
become insignificant after training, meaning the interocular
balance in response speed, which confirms the effectiveness
of push-pull perception.

2) Inhibition of Alpha Activity in Visual Cortex: We try to
explain the neural mechanism of the push-pull perception
model by power topography. As a result, there is a significant
reduction in alpha power in the occipital and temporal lobe
before and during training, indicating that push-pull perception
can effectively modulate the alpha rhythm of the occipital and
temporal region of amblyopia. A previous study shows that the
push-pull perception model could stimulate the middle tempo-
ral lobe (where MT is located) and visual cortex and activate
the striate dorsal processing flow [58], which is consistent with
our results. The extrastriate cortex such as V2, MT or V5,
and V4 shows the neural correlation of relative disparity, thus
showing stereoscopic depth perception [59]–[61], which may
explain why push-pull perception contributes to the recovery
of stereopsis.

Previous studies have shown that active alpha activity is
related to reducing visual processing and cognitive activ-
ity [62], [63],and minor alpha power is related to the improve-
ment of visual processing [64]. As for attention, push-pull
perception is a process of external attention, which selects
and adjusts sensory information, including spatial location,
time, or specific modal input [65]. Studies have shown that
the decrease of alpha power under external attention reflects
the increase of excitability of the sensory cortex, thereby
enhancing stimulation processing [66]–[70]. Therefore, the
extensive decrease of alpha activity in push-pull perception
may indicate the improving visual and perceptual function,
confirmed by the correlation results of topography. The alpha
power of some occipital electrodes indicates whether push-pull
training is effective and the recovery of interocular function.
Therefore, alpha power change is another potential index to
measure the efficacy besides the response change of SSVEP
intermodulation frequency.

The duration of push-pull perception training in our exper-
iment is short, which is not enough to make a broad and
significant change in power before and after training, account-
ing for there is no significant difference between the power
topography after and before training. Another explanation is
that the visual cortex does not need to recruit too many visual-
related neurons in the state of resting and opening eyes, and
the changes might be found when performing specific tasks.
The average power in specific areas after training is between
the power before and during training, so the brain state after
training may transition from before training to during training.
If the subjects are trained for a longer time, the visual cortex
may complete the transition, resulting in significant changes,
which needs to be further verified.

C. BCI in Amblyopia Examination

In this study, we used some methods of SSVEP-BCI to
examine refractive amblyopia. Based on the previous applica-
tion of CCA coefficient [18], [71], we introduced CCA SNR
and compared it with SNR. From the results, the two SNR



CHEN et al.: EEG MEASUREMENT FOR SUPPRESSION IN REFRACTIVE AMBLYOPIA AND PUSH-PULL PERCEPTION EFFICACY 1329

are not the same, but the conclusions are generally consistent.
In terms of intermodulation frequency, CCA SNR seems to get
more helpful information. Considering the small number of
samples in our study and similar studies [16]–[18], we cannot
say which SNR is better. The strategies of the two SNR are
different, so the information they get may be complementary.

An inevitable problem in applying SSVEP-BCI is BCI
illiteracy, which refers to those who cannot operate the BCI
system effectively. The illiteracy of SSVEP-BCI, accounting
for about 10% [72], [73], may limit the clinical application of
BCI. However, the above rate is calculated under the multi-
target task, and our experiment is only a two-target task, which
can reduce the rate to a certain extent. A more practical way
to solve the problem is to use more complex algorithms.
Generally speaking, the training algorithm can extract the
subjects’ personalized EEG patterns to improve their perfor-
mance, but it needs data and time to train the model. Such
a time-consuming and personalized algorithm seems to be
infeasible in clinical examination. However, it is gratifying
that with the development of algorithms, the time of training
models has been shortened [74]–[76]. In addition, the training-
free algorithm is also improving. For example, the algorithm
based on chaos theory [77] improves the performance of BCI
illiteracy. We believe that BCI illiteracy will not become a
significant obstacle in the clinical detection of BCI with the
development of algorithms.

The indicators used in clinical examination need strong
robustness. At present, the indicators used in amblyopia
SSVEP research, such as amplitude, SNR, CCA coefficient,
and CCA SNR, are vulnerable to different experimental
conditions. Therefore, applying these indicators to clinical
examination needs careful consideration and large sample
data verification. In further research, we will improve the
robustness of BCI indicators by introducing and improving
paradigms and algorithms.
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