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Multiscale Temporal Self-Attention and
Dynamical Graph Convolution Hybrid Network

for EEG-Based Stereogram Recognition
Lili Shen , Mingyang Sun , Qunxia Li, Beichen Li, Zhaoqing Pan, and Jianjun Lei

Abstract— Stereopsis is the ability of human beings to
get the 3D perception on real scenarios. The conventional
stereopsis measurement is based on subjective judgment
for stereograms, leading to be easily affected by personal
consciousness.To alleviate the issue, in this paper, the EEG
signals evokedby dynamic random dot stereograms (DRDS)
are collected for stereogram recognition, which can help
the ophthalmologists diagnose strabismus patients even
without real-time communication. To classify the collected
Electroencephalography (EEG) signals, a novel multi-scale
temporal self-attention and dynamical graph convolution
hybrid network (MTS-DGCHN) is proposed, including
multi-scale temporal self-attention module, dynamical
graph convolution module and classification module.
Firstly, the multi-scale temporal self-attention module is
employed to learn time continuity information, where the
temporal self-attention block is designed to highlight the
global importance of each time segments in one EEG trial,
and the multi-scale convolutionblock is developedto further
extract advanced temporal features in multiple receptive
fields. Meanwhile, the dynamical graph convolution module
is utilized to capture spatial functional relationships
between different EEG electrodes, in which the adjacency
matrix of each GCN layer is adaptively tuned to explore
the optimal intrinsic relationship. Finally, the temporal
and spatial features are fed into the classification module
to obtain prediction results. Extensive experiments are
conducted on collected datasets i.e., SRDA and SRDB,
and the results demonstrate the proposed MTS-DGCHN
achieves outstanding classification performance compared
with the other methods. The datasets are available at
https://github.com/YANGeeg/TJU-SRD-datasets and the
code is at https://github.com/YANGeeg/MTS-DGCHN.
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I. INTRODUCTION

STEREOPSIS, as the basis of depth perception, is the
most advanced binocular vision function, which enables

us to distinguish the distance through two-eye coordination [1].
When watching objects, the horizontal separation of two eyes
results in a disparity in the retina and stereopsis is formed sub-
sequently. As an important physiological indicator, stereopsis
is necessary for carrying out better motor control and more
accurate cognition [1]. In the clinical practice, stereopsis also
refers to stereoacuity, which is the minimum parallax that can
touch off depth perception [2]. The early methods for measur-
ing stereoacuity include Howard-dolman test and Frisby–Davis
Distance Test [3]. However, these methods exist some inherent
limitations due to the effects of monocular cues and low mea-
surement sensitivity. To address these issues, many excellent
methods based on static random dot stereogram (RDS) [4], [5]
are applied in stereoacuity test. Recently, research has found
that human beings are more sensitive to dynamic random dot
stereogram (DRDS), and adopting DRDS in stereoacuity test
can achieve higher sensitivity [6]. For recognition tasks, one
of the most popular work is developed using physiological
signals as in [7]–[9]. Among them, EEG is widely applied in
visual recognition field by offering high temporal resolution
in noninvasive and cost-effective acquisition manner.

Many traditional machine learning algorithms for EEG clas-
sification [10], [11] are generally comprised of two primary
stages, hand-crafted features extraction and the classification.
For feature extraction, Liu et al. [12] adopted a short-time
Fourier transform (STFT) with nonoverlapping Hanning
window to extract time-frequency features. Bose et al. [13]
utilized the Welch’s method to capture power spectral den-
sity (PSD) as frequency features. Ang et al. [14] used filter
bank CSP (FBSCP) to capture the optimal spatial features
through a group of bandpass filters. Zeng [15] and Kakkos [16]
utilized functional connectivity to construct brain feature space
for EEG analysis. Subsequently, the extracted EEG features
were sent to the classifiers like linear discriminant analy-
sis (LDA) [17], random forest (RF) [18] or support vector
machine (SVM) [19] for classification. However, these above
methods rely on designer’s prior knowledge in the specific
domain, which might ignore some underlying information and
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fail to capture the representative information from raw EEG
signals.

Recently, deep learning has shown great potential in many
fields, such as natural language processing [20], computer
vision [21]–[23], speech recognition [24], on the basis of
the ability to obtain deeper intrinsic representation from
pristine data automatically. Besides, deep learning has also
been applied to EEG signals classification tasks, and achieved
great performance improvement [25], [26]. Some studies
demonstrated that the spatial-temporal joint feature extrac-
tion strategy can better represent EEG signal characteris-
tics [27], [28]. Therefore, EEG classification based on the
spatial-temporal network model has become the mainstream
research direction. For instance, Zhang et al. [28] introduced
a spatial–temporal recurrent neural network (STRNN) to
integrate both temporal and spatial EEG information for
emotion recognition. Jeong et al. [29] designed a bidirec-
tional long short-term memory (LSTM) network followed by
multi-directional convolutional neural network (CNN) to cap-
ture the spatial-temporal EEG features for motor imagery (MI)
classification. Zhang et al. [30] developed a parallel convolu-
tional recurrent neural network for MI classification, in which
the CNN was exploited to learn local spatial information,
and the LSTM network was adopted to extract temporal
information. In the above-mentioned models, the CNNs were
utilized to explore spatial features, while the RNNs were
applied to capture temporal dependencies in time-series EEG
data. However, the RNN should traverse all units sequentially
to acquire Long-term information before entering the current
unit, which may lead to the gradient disappearance problem
and thus it makes RNNs difficult to be trained.

To solve this issue, some scholars employed CNNs to
obtain temporal information instead of RNNs, which achieved
satisfying results. For example, Li et al. [31] proposed a
channel-projection mixed-scale CNN to extract the mixed-
scale spatial-temporal features for MI EEG classification.
Li et al. [32] further proposed an attention-based multi-scale
fusion CNN for MI EEG signals decoding, where used 1-D
spatial and temporal CNNs to learn spatial-temporal infor-
mation, and introduced the attention mechanism to make
the features more distinguishable. Some methods [33], [34]
transformed raw EEG sequences into mesh-like representa-
tions according to the spatial location of different electrodes,
then captured the spatial and temporal characteristic with
2-D CNNs. These CNNs illustrate promising performance
on capturing temporal contextual information and local dis-
criminative features in spatial domain with the localized
convolutional kernels. Despite of the advantage on local fea-
ture extraction, CNNs experience difficulty to learn global
spatial functional relationships among electrodes. An intu-
itive solution is enlarging the receptive field, which however
might damage functional dependencies among different EEG
regions. Neuroimaging studies [35], [36] have found that
visual pathways across in several brain regions are responsible
for visual information processing. Besides, paper [37] has
indicated that the complicated relationships among different
EEG electrodes are significant for recognition tasks. Therefore,

the characteristics of spatial connections in the brain need to
be explored when designing networks for EEG classification.

With the development of graph theory, graph convolu-
tional networks (GCN) [38] have been employed to learn
the potential spatial connections between different nodes,
which provides an effective way to acquire EEG spatial
characteristics. Each EEG electrode can be regarded as a
node of the graph, and the connection between the electrodes
correspond to the edge of the graph. The weights (represent-
ing functional relationships among electrodes) of all edges
constitute adjacent matrix of the graph. In this way, the
spatial functional relationships between different EEG elec-
trodes can be learned by GCN. A series of studies about GCN
have been carried out. Song et al. [39] proposed a dynamic
graph convolution neural network (DGCNN) to optimize a
weighted graph to characterize the strength of functional
relationships between different EEG electrodes for emotion
recognition. Furthermore, Song et al. [40] introduced a varia-
tional instance-adaptive graph method with GCN to estimate
the underlying uncertain information and learn the individual
dependencies among different EEG electrodes, simultaneously.
Zhang et al. [41] developed a sparse DGCNN model, which
adds sparse constraints on the graph to make the weights local-
ized and sparse to improve the performance. These GCN mod-
els firstly extracted hand-crafted EEG features such as power
spectral density (PSD) and differential entropy (DE), and then
fed them into GCN as nodes of graph to get the intrinsic
relationships between EEG electrodes. In this kind of structure,
the input features are designed in advance without optimization
by network training and may ignore the heterogeneity among
subjects, leading to suboptimal results. To address the issue,
some end-to-end GCN models are proposed to automati-
cally learn optimal spatial-temporal features of EEG signals.
For instance, Wang et al. [42] designed an attention-based
multi-scale convolutional neural network-dynamic graph con-
volutional network (AMCNN-DGCN) model to detect driving
fatigue. Li et al. [43] adopted a spatial-temporal-spectral
hierarchical graph convolutional network (STS-HGCN) to
obtain the spatial and temporal features for seizure prediction.
However, there are still some limitations in these EEG clas-
sification methods. First, existing end-to-end GCN methods
usually extract temporal features from raw signals, and then
apply GCN on these extracted features to capture the spatial
connections between different brain regions, resulting in the
original spatial connections be affected. Second, although
some attention-based CNNs methods consider the local tempo-
ral importance in single EEG segment, they ignore the global
importance dependences from the other EEG segments.

To tackle the aforementioned issues, we propose a
dual network framework, termed multi-scale temporal
self-attention and dynamical graph convolution hybrid
network (MTS-DGCHN), including multi-scale temporal self-
attention module (MTSM), dynamic graph convolution mod-
ule (DGCM) and classification module. The multi-scale
temporal self-attention module is composed of a temporal
self-attention block and a multiscale convolution block. The
temporal self-attention block emphasizes more discrimina-
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Fig. 1. An illustration of the proposed MTS-DGCHN framework, where 3-D feature maps are flatted.

tive segmented EEG information on the intact trail, and
the multi-scale convolution block further extracts the global
and local temporal context information. Simultaneously, the
dynamic graph convolution module aims to acquire the poten-
tial spatial functional relationships between different EEG
electrodes by dynamic GCN layers, in which a data-driven
way is used to adjust the adjacency matrix adaptively, so as to
make full use of the intrinsic relationships between electrodes.
Finally, the extracted temporal and spatial features are sent to
the classification module for predicting results.

The main contributions of this paper are summarized as
follows:

1) In order to mine valuable temporal information, the tem-
poral self-attention block and the multi-scale convolution
block are proposed to highlight important time segments
in an EEG trial and learn global and local information
in multiple receptive fields. The multi-scale temporal
self-attention module can fully capture significant time
continuity representation information.

2) Aiming to obtain the spatial functional relation-
ships between different EEG electrodes, the dynamic
graph convolution module with several GCN layers is
exploited, in which the adjacency matrix can update
dynamically through the loss function in the process of
network training.

3) The concurrent MTS-DGCHN can learn multi-scale time
continuity and spatial functional dependences jointly.
We evaluate the classification performance of the pro-
posed MTS-DGCHN on the stereogram recognition
EEG dataset A and B, and the experimental results
demonstrate that the MTS-DGCHN is superior to the
state-of-art methods.

The remaining of this paper is organized as follows.
In Section II, we describe the proposed method in detail.
Section III conducts extensive experiments on the dataset
of stereogram recognition. Finally, a discussion is given in
Section IV, and the conclusion is drawn in Section V.

II. METHOD

In this section, we first describe the notations and definitions
used in this paper. Then, as shown in Fig. 1, overall framework
of the proposed MTS-DGCHN is introduced. Finally, the
implementation details of each module in MTS-DGCHN are
described.

A. Notations and Definitions

Assume that the EEG signals of each subject is defined
as S = {(Xi , yi ) , i = 1, 2, . . . , M}, where Xi ∈ RN×T is a
two-dimension matrix representing the i-th trial of the EEG
sample with N electrodes and T discretized time sampling
points. M is the total number of EEG trials. yi as the label of
Xi takes values from the set Y , which contains H classes in the
stereogram recognition task.For instance, the three-type stere-
ogram recognition dataset contains corresponding label set
Y = {

y1 =�� unclearly ��, y2 =�� slightly ��, y3 =�� clearly ��}.
In the network, the size of the feature map is detonated as
c × h × w, which describes the number, height and width
of the feature map respectively. For each EEG sample, the
shape of Xi is regarded as N × 1 × T in the model.
We need to reshape it to 1 × N × T as input. The size of
each convolutional kernel can be defined as h0 × w0 where
h0 is the electrode (channel) dimension and w0 is the time
dimension.
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B. Multiscale Temporal Self-Attention and Dynamical
Graph Convolution Hybrid Network

To take advantage of temporal and spatial features of
EEG signals, we propose a concurrent network, termed
MTS-DGCHN, as shown in Fig. 1. Specifically, we design a
multi-scale temporal self-attention module, in which a tempo-
ral self-attention block is utilized to emphasize more valuable
time segments, and a multi-scale convolution block is adopted
to learn temporal context information in global and local
receptive fields. Meanwhile, the dynamic graph convolution
module is developed to characterize the spatial functional
dependencies among different EEG electrodes via GCNs.
Finally, the discriminative temporal and spatial features are
fed into the classification module for stereogram recognition.
In the following, we will detailly exhibit each module of the
proposed MTS-DGCHN.

1) Multiscale Temporal Self-Attention Module: EEG signals
have a high time resolution, and each trail can be divided into a
series of time segments. Different time segments are correlated
with each other and play diverse roles in describing EEG
time characteristics. In order to focus on valuable temporal
information, the more useful time segments are assigned
higher importance scores by the temporal self-attention block.
In particular, the raw input EEG signal is X = [x1, . . . , xN ] ∈
RN×T , xN ∈ RT where N is the number of electrodes, and
T is the length of time sequence in each electrode, where
N = 30 and T = 256. Firstly, raw signal X implements
a convolution operation over time with the kernel size of
1 × 7 and the stride of 1 × 4 to get the shallow temporal
features X∗ ∈ R1×N×T1 . Additionally, in order to calculate
the importance scores in temporal self-attention block, the
extracted temporal feature X∗ is taken as query (Q), key (K )
and value (V ), so Q = K = V = X∗. The Q, K and V are
further permuted into T1 one-dimensional column vectors with
the size of N × 1 as queries, keys and values. Then, each query
is conducted dot products with T1 keys, and sent to a Softmax
layer to obtain the importance scores of each value. In practice,
the attention function on a set of queries is combined into
a matrix QT , and the keys are reshaped into matrix K . The
global importance score matrix ϕ can be calculated as follows.

ϕ (Q, K ) = so f t max
(

QT K
)

, ϕ ∈ RT1×T1 (1)

Guided by this global importance score matrix ϕ, each
one-dimensional column vector in V can aggregate valuable
information to update itself, which is essentially a weighted
sum updating process in the unit of each vector. The updated
result is denoted as.

V ∗ = ϕ (Q, K ) V ∈ RT1×N×1 (2)

The skip connection is utilized to prevent gradient vanishing
problem. The output feature X F of temporal self-attention
block is obtained.

X F = X∗ + permute
(
V ∗) ∈ R1×N×T1 (3)

To further capture advanced temporal context features, three
kinds of convolution kernels are applied in multi-scale convo-
lution block, including global-scale, mid-scale and small-scale.

To be more specific, global-scale convolution kernels are used
to capture global features F1 while mid-scale and small-scale
convolution kernels are employed for local features F2 and
F3. The three transformations F1 : X F → F1 ∈ RC1×N×t1 ,
F2 : X F → F2 ∈ RC2×N×t2 , F3 : X F → F3 ∈ RC3×N×t3 are
performed via a set of 1-D convolution kernels with three kinds
of kernel sizes k, k/2r, k/4r , where k = T1 = 43, reduction
ratio r is set to 4 in this paper, C1 = 348, C2 = 12, C3 =
12 are the number of convolution kernels. Then, three kinds
of features are reshaped to F1 ∈ RC×N×(C1×t1/C ), F2 ∈
RC×N×(C2×t2/C ), F3 ∈ RC×N×(C3×t3/C ) and concatenated
into the feature F along the channel dimension. F is defined
as follows.

F = concat (F1, F2, F3) ∈ RC×N×T2 (4)

where C = 18, T2 = (C1t1 + C2t2 + C3t3)/C = 43. Finally,
F is fed into a one-dimensional convolutional layer of size
N × 1 to average the influence of different electrodes.
Therefore, discriminative temporal feature F∗ ∈ RC×1×T2 is
obtained after the multiscale temporal self-attention module,
which contains the significant temporal context information in
local and global receptive fields.

2) Dynamic Graph Convolution Module: The functional rela-
tionships between EEG electrodes play a crucial role in EEG
classification. Previous studies [39], [42] have indicated that
GCNs can be employed to describe the dependencies among
nodes. In order to stimulate the functional relationships, the
dynamic graph convolution module is designed by adopting
GCN layers. Based on GCN, where each EEG electrode is
referred to one node of the graph whereas the connection
between different EEG electrodes is corresponded to the edge
of the graph.

Concretely, an undirected and weighted graph is represented
as G = (V , A). V = {v1, v2, . . . , vi , . . . , vN } is the node set,
in which vi represents an electrode. The N × N matrix A is
the adjacency matrix of G, describing the edge weight between
nodes in V . Each ai j in A denotes the connection importance
from node i to node j . The key to build a better graph structure
is how to determine the appropriate adjacency matrix. Phase
locking value (PLV) measures phase synchronous change of
two signals over a period of time, and contains interactive
information to some extent between signals [44]. Therefore,
PLV is applied to depict the functional connectivity of the EEG
electrodes in the dynamic graph convolution module, where
each ai j in adjacency matrix A is represented by PLV. The
PLV values of signal p and signal q are calculated by the
following formula.

P LVpq = 1

T

∣∣∣∣∑T

t
e(ϕp(t)−ϕq (t))

∣∣∣∣ (5)

where ϕ(t) is the signal phase at time t , and T is the length
of the signal, and PLV value range [0,1]. Based on PLV, the
element ai j in adjacency matrix A is determined by.

ai j =
{

P LVij P LVi j ≥ τ

0 otherwi se
(6)

where τ is an artificial threshold to make the adjacency matrix
sparse. In this paper, τ is set to 0.5. About 70 percentage on
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average of PLV values were above threshold. We use A to
further compute the Laplace matrix L as follows.

L = D̂−1/2 ÂD̂−1/2 (7)

where Â = A + IN , Â is identity matrix, D̂ =
diag ([d1, d2, . . . , dN ]) is the degree matrix of A, and di =∑

j ai j . The GCN update formula for each layer can be defined
as.

S = σ (L Xθ) ∈ RN×G (8)

where the input is X = [x1, . . . , xN] ∈ RN×T, θ ∈ RT ×G is
the filter’s parameter matrix of GCN, σ is the RELU activation
function, and G is the number of nodes after the GCN layer.
Therefore, the spatial feature S3 can be obtained through three
GCN layers for original EEG signal X . The transformation is
G1 : X → S1 ∈ R1×N×G1 , G2 : S1 → S2 ∈ R1×N×G2 ,
G1 : S2 → S3 ∈ R1×N×G3 , where G1,G2,G3 are the operation
of GCN, and G1 = 192, G2 = 128, G3 = 43 are the feature
numbers obtained after each GCN layer.

In order to fuse the spatial and temporal feature map
in the classification module, the number of C convolution
kernels with the size of N × 1 is employed to change the
dimension of the feature map S3. Therefore, we get the final
feature map S∗ ∈ RC×1×T2 after dynamic graph convolution
module, which is corresponding to the dimension of output F∗
from the multi-scale temporal self-attention module. Besides,
the adjacency matrix A of the graph convolution module
is constantly updated during the training of this network.
The process of dynamic updating A will be introduced in
Algorithm 1.

3) Classification Module: In this module, the captured tem-
poral and spatial features is firstly fused after multiscale
temporal self-attention module and dynamic graph convolution
module. Specifically, the temporal feature F∗ and the spatial
feature S∗ are connected among the channel dimension to
obtain the discriminative feature Z by the following formula.

Z = concat
(
S∗, F∗) ∈ R2C×1×T2 (9)

Then, Z is further refined among channel dimension
by 1 × 1 convolution to obtain the final spatial-temporal
feature Z∗.

Z∗ = Conv (Z) ∈ RC×1×T2 (10)

where Conv (·) is the convolution operation. Finally, the
feature Z∗ is sent to two fully connected layers and one
Softmax layer to get the predicted label ŷ. The calculation
formula is as follows.

ŷ = Sof t max
(
W2

(
Re lu

(
W1 Z∗ + b1

)) + b2
)

(11)

where Wi , bi are the weight matrix and bias matrix of the
fully connected layers, ŷ ∈ RH is the predicted label with H
classes.

In summary, the detailed steps of the optimizing procedure
of the model are shown in Algorithm 1.

Specifically, supposed that we are given M labeled training
data set {S, Y } = {Xi , yi }M

i=1, where S ∈ RM×N×T , Y ∈
RM×H . In the MTS-DGCHN model, Xi is fed into the

Algorithm 1 The Optimizing Procedure of the MTS-DGCHN

Input: A labeled EEG dataset {S, Y } = {Xi , yi }M
i=1 The

number of epoch E , the batch size of each epoch B and
other hyperparameters.

Output: The optimal set of the model parameter � and the
learned adjacency matrix A.
Initialize the parameters in the proposed MTS-DGCHN,
including � and other hyperparameters, and Initialize adja-
cency matrix A according to Eq.(5)(6).

1: for epoch = 1 : E do
2: while this epoch is not complete do
3: Sample one batch size of samples X B and yB from S

and Y , respectively.
4: Calculate the temporal feature map F∗

B by passing X B

into the MTSM based on Eq. (1)(2)(3)(4).
5: Calculate the Laplacian matrix L based on Eq. (7).
6: Calculate the spatial feature map S∗

B by passing X B

into the DGCM based on Eq. (8).
7: Calculate the fused spatial-temporal feature map Z∗

B

by passing F∗
B and S∗

B into the classification module
based on Eq. (9)(10).

8: Calculate the prediction label ŷB by passing Z∗
B into

Eq. (11).
9: Utilize yB and ŷB to calculate the loss function based

on Eq. (12).
10: Update the model parameter set � and the adjacency

matrix A via SGD optimizer according to the loss
function.

11: end while
12: end for

multi-scale temporal self-attention module and dynamic graph
convolution module simultaneously to capture the temporal
feature F∗ and spatial feature S∗. Then, the temporal and spa-
tial features are refined to get the spatial-temporal feature Z∗.
Finally, the prediction label ŷ is obtained by the classification
module based on Eq. (11).

In the output of MTS-DGCHN, the cross-entropy loss L is
utilized to evaluate the inconsistencies between real label yi

and predicted label ŷ.

L = − 1

M

K∑
k=1

M∑
i=1

yi
k log

(
ŷk

i

)
+ λ���1 + μ�A�1 (12)

where � is all model parameters during the training process,
�·�1 represents the l1 − norm, λ and μ are constants. The
regularization term λ���1 + μ�A�1 is used to prevent over-
fitting and dynamically update adjacency matrix A. In the
process of implementation, the batch size is 32, the learn-
ing rate is set to 0.01 and the SGD optimizer is adopted.
The λ and μ in Eq. (5) are 0.00001 and 0.2, respectively.
The peoposed MTS-DGCHN is trained on the NVIDIA
GPU (RTX 3090) with Python 3.6 and Pytorch 1.9. After
100 epochs, it takes 14.5 mins to get the optimal model. The
five-fold cross validation is used to evaluate the MTS-DGCHN
comprehensively.
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TABLE I
THE DATA FORMAT FOR EACH SUBJECT

III. EXPERIMENTAL RESULTS

A. EEG Datasets

In this study, two stereogram recognition EEG datasets
are built to evaluate the performance of the proposed
MTS-DGCHN. The details of the EEG datasets are described
as follows.

1) Stereogram Recognition EEG Dataset a: (SRDA) contains
EEG data of 5 subjects (2 males and 3 females), which
are recorded by 32 EEG electrodes at 1000 Hz when the
subjects are watching 24 high-contrast DRDS vides with three
parallax patterns, i.e., stereoscopic graphics in DRDS can be
recognized clearly, slightly and unclearly. The EEG acquisition
consists of 6 sessions, and each session contains 72 trials,
so that each subject owns a total of 432 EEG trials. More
details of the SRDA can be found in [45].

2) StereogramRecognitionEEG Dataset B: (SRDB) contains
EEG data of 8 subjects (5 males and 3 females), which
are collected when they are watching 24 low-contrast DRDS
vides with three parallax patterns. The SRDB is established
following the details of SRDA, and the subjects in the two
databases do not overlap.

In this paper, the sampling frequency in SRDA and SRDB
are down-sampled from 1000 Hz to 256 Hz. The invalid
information and power line interference are filtered out through
a 1-40hz band-pass filter. Then, the baseline removal is
performed through the EEGLAB toolbox in MATLAB, the
artifacts are removed by independent component analysis
(ICA). Only 30 electrodes, except for the reference A1, A2,
are adopted. The data format is illustrated in Table I. For data
augmentation, we take overlapping slices of the signals (80%
overlap), and obtain a series of 1s samples. Finally, the trials
will be expanded from 432 to 6,912 for each subject.

B. Overall Performance

The proposed MTS-DGCHN is a competitive model, which
can effectively capture the temporal context information and
the spatial intrinsic relationships between different electrodes.
To verify the performance advantage of MTS-DGCHN, eight
state-of-the-art models were chosen for comparison on the
SRDA and SRDB datasets. These models are briefly described
in the following.

1) MCS-STWCSG [45]: A traditional machine learning
model we proposed previously, which is based on
multi-channel selection and CSP for the same work.

2) EEGNet [46]: A compact convolutional neural network
model for EEG classification tasks, which combined
deep convolution and separable convolution closely.

3) RCNN [47]: A CNN combined with RNN network
structure for EEG classification.

TABLE II
THE OVERALL COMPARISON RESULTS OF AVERAGE

CLASSIFICATION PERFORMANCE

4) DGCNN [39]: The handcrafted features, such as DE
and PSD, were fed into dynamic graph convolutional
network for emotion recognition.

5) AMCNN-DGCN [42]: A serial framework combining an
attention-based multiscale CNN with a dynamical GCN
for detecting driving fatigue from EEG signals.

6) TSception [48]: A spatial-temporal multi-scale CNN
framework for emotion recognition.

7) AttnSleep [49]: An attention-based deep learning model
named AttnSleep for EEG classification of sleep stages.

8) TS-SEFFNet [50]: An EEG decoding framework, which
applies squeeze and-excitation feature fusion network
to capture temporal-spectral features for motor imagery
task.

Table II summarizes the overall classification results of
different methods on both datasets. We selcet the accuracy,
precision, recall, F1-score and Kappa values as evalua-
tion metrics to comprehensively evaluate the classification
performance.

From Table II, it can be seen that, on the SRDA dataset,
the MTS-DGCHN achieves the highest average accuracy of
95.47%, which is 7.97%, 8.67%, 13.91%, 1.81%, 4.65%,
2.50%, 1.88% and 0.82% higher than MCS-STWCSG, RCNN,
EEGNet, TSception, DGCNN, AMCNN-DGCN, AttnSleep
and TS-SEFFNet, indicating the ability of MTS-DGCHN to
learn multi-scale temporal representations and spatial func-
tional dependences. Meanwhile, for the other evaluation met-
rics such as the precision, recall, F1-score and Kappa values,
the proposed MTS-DGCHN yields 94.91%, 94.06%, 0.945 and
0.928, respectively, which are the highest among all the meth-
ods. For the attention-based models, the MTS-DGCHN outper-
forms the AMCNN-DGCN, AttnSleep and TS-SEFFNet on all
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Fig. 2. average accuracy comparison between different reduction ratios
in MCB on (a) SRDA, (b) SRDB.

evaluation metrics. Therefore, the model achieves best results
and proves excellent performance for EEG classification.

To demonstrate the adaptability of the proposed
MTS-DGCHN, the performance of the MTS-DGCHN
and other methods is also evaluated on SRDB dataset.
Table II clearly shows that the average classification accuracy
of MTS-DGCHN is encouraging as it gains the highest
accuracy of 95.19%. Moreover, the proposed model yields
average precision of 94.65%, average recall of 95.17% and
average F1-score of 0.949, which outperform all the other
methods. Besides, the proposed MTS-DGCHN can achieve
promising results of 0.928 in Kappa value, which is at least
0.018 higher than the compared methods. In general, the
above experimental results shows the outstanding performance
of the MTS-DGCHN for stereogram recognition on SRDA
and SRDB datasets.

C. The Impact of Model Parameters
In this section, we will conduct experiments on the SRDA

and SRDB to explore the impact of different parameters on
the overall performance of the model. The main parame-
ters include the reduction ratios of multi-scale convolution
block (MCB) in MTSM, the number of GCN layers in DGCM
and the parameter μ in the loss function in Eq. (12). When
changing one of the above parameters, the other parameters
are fixed to ensure the experimental effectiveness.

With high time resolution, EEG contains rich time context
information. Generally, the reduction ratios corresponds to
the receptive fields of EEG information. In the MCB of
the MTSM, the convolution kernels of size k are used to
capture global information, while the convolution kernels of
size k/2r, k/4r are used to capture local information, and r
is the reduction ratio. The impact of the reduction ratio r in
MCB are discussed particularly in Fig 2. The results show
that the convolution kernels with r = 4 has achieved the best
classification accuracy.

To verify the impact of the number of GCN layers in
DGCM, we set the number ranging from 1 to 5. Table III
depicts the average results of all subjects with different number
of GCN layers, and it can be observed that the MTS-DGCHN
reaches the optimal performance with three GCN layers.
Besides, the ROC curves are further draw in Fig. 3. We can
see that the MTS-DGCHN with three GCN layers obtains the
highest AUC of 0.981 and 0.971 on SRDA and SRDB, show-
ing strong robustness. Therefore, a conclusion can be drawn
that the three GCN layers is the best for the MTS-DGCHN.

Fig. 3. ROC curves comparison between different numbers of GCN
layers on (a) SRDA, (b) SRDB.

TABLE III
AVERAGE ACCURACY COMPARISON BETWEEN DIFFERENT

NUMBERS OF GCN LAYERS

Fig. 4. average accuracy comparison between different µ in the loss
function on (a) SRDA, (b) SRDB.

Apart from the parameters of the network structure, the
parameters μ in Eq. (12) will also affect classification
performance. The parameter μ in the loss function controls
the adaptive adjustment of the adjacency matrix A in GCN
layers, and determines the trends of network optimization.
We conduct experiments on value μ ∈ (0.1, . . . , 0.5) with
step 0.1 to search for the best setting. Fig. 4 shows results of
the proposed MTS-DGCHN with parameter μ. Experimental
results indicates that the MTS-DGCHN can reach the highest
classification accuracy when μ is set to 0.2.

D. Ablation Study

In this section, we conducted ablation experiments to
verify the impact of each part in the MTS-DGCHN. Firstly,
we explore the importance of MTSM and DGCM in the
proposed model. Table IV shows the result of each subject on
SRDA and SRDB. It is observed that the average accuracy
and the Kappa value of MTS-DGCHN are both improved
compared with the MTS-DGCHN without DGCM or MTSM.
The results obviously proved that MTSM and DGCM are both
significant in the MTS-DGCHN model. The reason is that
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TABLE IV
THE COMPARISON RESULTS OF MTS-DGCHN W/O DGCM OR MTSM

Fig. 5. The confusion matrixes on both (a) SRDA and (b) SRDB.

the MTSM mainly captures global and local time continuity
information, while the DGCM learns the spatial relationships
between different EEG electrodes. Therefore, missing any
one of them will make the classification performance decline
inevitably.

In addition, we construct the confusion matrix with the
data of all subjects in Fig. 5, where the values on the diag-
onal represent the correct recognition, and the others are
wrong. As we can see, the classification accuracy of the
MTS-DGCHN in each category is better than that of models
without MTSM or DGCM. Therefore, the MTSM and DGCM
in the MTS-DGCHN are both critical to the overall success of
the proposed model. Furthermore, the temporal self-attention
block (TSB) is performed ablation validation to illustrate the
function in the MTSM. According to Fig. 6, the classification
performance of each subject is improved due to the existence
of the TSB, which demonstrate the effectiveness of the TSB.

In order to further demonstrate the benefits of the temporal
self-attention block, we compared our self-attention block with
other two attention blocks. Specifically, we apply two existing
attention blocks in temporal domain, which are combined with
our multi-scale convolution block (MCB) for classification

Fig. 6. Performance comparison of MTS-DGCHN w/o TSB on (a) SRDA,
(b) SRDB.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT MODULE COMPONENTS

TABLE VI
AVERAGE ACCURACY(�) COMPARISON BETWEEN

DIFFERENT ADJACENCY MATRICES

on SRDA and SRDB. As shown in Table V, the proposed
self-attention block can achieve the highest average accuracy
and Kappa value on both two datasets, which illustrates the
advantages of the multi-scale temporal self-attention module.

Finally, we explore the impact of different types of adja-
cency matrix of GCN layers in Table VI, in which the fixed
means that adjacency matrix A will not be optimized by
loss function in Algorithm 1, while the dynamic means that
adjacency matrix A will be updated as learnable network para-
meter. For fixed adjacency matrix, the classification accuracy
of PLV matrix is obviously higher than random matrix. The
reason is that the random matrix will ignore the correlation
among EEG electrodes. On the contrary, the PLV matrix
quantifies the phase synchronization between signals, which
can provide some useful information about the relationships
between different EEG electrodes. For dynamically updated
adjacency matrix, the classification accuracy of PLV matrix
is also higher than random matrix, which indicates the PLV
matrix enables the DGCM take advantage of prior knowledge
to optimize the network towards optimal results. Besides,
we can find that the dynamically updated adjacency matrix can
achieve better performance than the fixed adjacency matrix.
It demonstrates that the dynamically updated adjacency matrix
can learn the potential spatial connections of EEG electrodes,
and help to improve the model performance of the proposed
MTS-DGCHN.

E. Performance of Subject-Independent Experiments
To investigate the model generalizability across sub-

jects for EEG-based stereogram recognition, we conduct
subject-independent experiments on datasets SRDA and
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TABLE VII
ACCURACIES (�) COMPARISON OF

SUBJECT-INDEPENDENT EXPERIMENTS

TABLE VIII
SIGNIFICANCE TEST FOR THE COMPARISON METHODS ON SRDB

SRDB, and the results are listed in Table VII. Specifically, the
leave-one-subject-out cross-validation (LOSO-CV) is adopted
in subject-independent experiments [52]. For example, assum-
ing that S1 is the test subject. Except for S1, all the other
subjects were used to train the proposed MTS-DGCHN, and
the data from S1 was utilized for the performance evaluation.

Table VII shows that the MTS-DGCHN achieves the highest
accuracy and F1-score across subjects on both two datasets,
which indicates the proposed model outperforms the other
methods. Compared with subject-dependent experiments, the
subject-independent experiments will lead to significant per-
formance degradation, which is caused by the individual differ-
ences among different subjects. However, the proposed model
can still achieve promising accuracies and F1-scores (much
better than the random results in three-class classification
case), which illustrates the MTS-DGCHN owns the ability
to learn individual differences to some extent in EEG-Based
stereogram recognition tasks.

F. Statistical Analysis

Additionally, the Wilcoxon signed-rank test [53] is per-
formed between the proposed MTS-DGCHN and other meth-
ods on SRDB to explore the statistical significance of the
comparison results. The significance tests results are shown
in Table VIII, it can be observed that the p-values are all
smaller than 0.05, which indicates the differences of average
classification performance between the MTS-DGCHN and
every comparison model are statistically significant. Therefore,
the proposed MTS-DGCHN significantly improve the perfor-
mance for EEG stereogram recognition.

IV. DISCUSSION

A. Study on Computational Complexity
To demonstrate the benefits of the proposed MTS-DGCHN,

the computational complexity and average classification

TABLE IX
COMPARISON OF COMPUTATIONAL COMPLEXITY

Fig. 7. The t-SNE visualization in 2D embedding space of features
learned from the subject S1 on SRDA and SRDB. Red points denote
recognized unclearly, green points denote recognized slightly and blue
points denote recognized clearly.

performance of the MTS-DGCHN is compared with other
seven methods, and the results are exhibited in Table IX. The
MTS-DGCHN involves approximately 4.2 × 105 parameters,
and is more than the EEGNet with only 3 × 104 parameters,
observably less than RCNN and AMCNN-DGCN. Moreover,
the model inference time, indicating the time a deep learning
model required to give a recognition for each EEG trial,
is evaluated and the results are shown in Table IX. We can see
that the inference time of the MTS-DGCHN is 1.97 ms, which
is slower than EEGNet, but significantly faster than RCNN,
AMCNN-DGCN and TS-SEFFNet. Besides, the model decod-
ing time defined as the duration from raw EEG to decoding
results is reported. The decoding time of the proposed method
on one EEG trial is 13.10 ms. which is also slower than
EEGNet. We can see that EEGNet achieves the lowest compu-
tational complexity, but the poorest classification performance,
about 15% lower than the proposed MTS-DGCHN on both two
datasets. Therefore, the MTS-DGCHN has achieved the state-
of-the-art performance with acceptable complexity, which
demonstrates the advantages of the proposed MTS-DGCHN.

B. T-SNE Visualization of MTS-DGCHN

In order to study the distribution of features captured by
the proposed MTS-DGCHN, the extracted EEG features are
transformed into a 2-D embedding dimension with t-SNE
visualization technology. As shown in Fig. 7, three different
types of EEG signals are mixed when they are in initial state.

After training, the EEG signals will be recognized effi-
ciently. There are still a few samples cannot be distinguished,
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Fig. 8. Topographic maps learned from the MTS-DGCHN model on
SRDB dataset for different subjects based on “clearly” recognition state.

but most samples are predicted correctly. Compared with the
TSception, the MTS-DGCHN generates more separable fea-
tures, which can easily recognize the classes of EEG signals.
Therefore, the t-SNE visualization results demonstrate that
the MTS-DGCHN extracts the discriminative EEG features,
indicating the proposed model is effective.

C. The Visualization of Critical Connections in the Graph
To further investigate obtained spatial relationship among

EEG electrodes, we try to employ Degree Centrality to visu-
alize the graph connections. The degree centrality has been
commonly used to evaluate the connectivity of the nodes,
which measures the importance of a node with the other nodes.
In the proposed MTS-DGCHN, the learned adjacency matrix
A characterizes the connections between EEG electrodes. The
values in the i-th row and the j-th column of A represent
the weights associated with the i-th node. Thus, the degree
centrality Ci of the i-th EEG electrode can be calculated by.

Ci =
30∑

m=1

Am,i +
30∑

n=1

Ai,n − 2Ai,i (i = 1, . . . , 30) (13)

As shown in Fig. 8, the degree centrality C of eight
subjects on SRDB is visualized based on clear recognition
state on SRDB dataset. For better visualization, all values are
normalized to [0,1]. We can observe that the learned spatial
connections are different among subjects, which illustrates
the proposed MTS-DGCHN can adaptively capture the spatial
relationship of EEG electrodes for each subject. Consistently,
the degree centrality is high in the occipital lobe since the
stereogram recognition has high relations with the occipital
lobe.

We also try to visualize the critical connections in graph
based on the average of all subjects for DRDS recognition,
as shown in Fig. 9. In adjacency matrix A, only the 45 highest
edge weights, termed the top-45 connections (about 5% of
the total connections) are preserved for better illustration.
From Fig. 9, we can see that the frontal-frontal, frontal-
central, Temporal-central and occipital-occipital are closely
related. This phenomenon can also be observed in Fig. 8 for
most subjects. Previous studies have shown that the occipital
region is related to visual tasks [54], and the frontal region is

Fig. 9. Top-45 connections (about 5� of the total connections) between
channels learned on SRDB with MTS-DGCHN model, which is the
average of all subjects. Fp: frontal pole region; F: frontal region; C: central
region; T: temporal region; P: parietal region and O: occipital region.

often associated with attention-related activity [57]. Besides,
neurophysiological researches [55], [56] indicate that object
shape perception is processed by the ventral visual pathway
across the occipital region to the temporal region. In the
stereogram recognition task, subjects are required to judge
shapes of the DRDS, which exactly refer to attention-related
shape perception task with binocular vision function. The
visualization results demonstrate the consistency of active
brain regions between the critical connection in the graph
learned by MTS-DGCHN and neurophysiological evidence.

D. The Visualization of Weights on EEG Time Segments
To demonstrate the effectiveness of temporal self-attention

block, we further visualize the attention weights added to
the EEG time segments by the self-attention block. In our
stereogram recognition task, there are three kinds of recog-
nition states, clearly, slightly and unclearly. We visualized
the weight sequence of two different trials for S1 and S2
in each state. As shown in Fig. 10, each row represents one
trial, and each column corresponds to a weight added to
one time segment. From Fig. 10, we can see that some time
segments will be highlighted by assigning higher attention
weight. Besides, the weights for each subject are different
between trials and between states.Moreover, the discrepancy
in the same recognition state also exists between subjects.
The visualization has illustrated that the proposed model
can highlight important time segments within and between
subjects, thus achieving better EEG stereogram recognition
performance.

E. Limitations and Future Directions

Although the proposed MTS-DGCHN has achieved out-
standing EEG classification performance, there are still two
main limitations in our present work. First, Phase Locking
Value is applied to depict the functional connectivity for
constructing the adjacency matrix in the dynamic graph con-
volution module. However, studies [58], [59] have shown that
the Phase Locking Value exists some problems, such as active
reference electrodes and volume conduction when measuring
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Fig. 10. The visualization of weight sequences learned by the self-
attention block. In each state, two different trials (1, 2) of two subjects
(S1, S2) are visualized. Each row represents one trial, and each column
corresponds to a weight added to one time segment.

functional connectivity. Therefore, in our future work, we will
research for the optimal metrics to assess functional connec-
tivity for the stereogram recognition task. Second, the pro-
posed model shows the effectiveness in subject-independent
EEG classification. However, the performance is reduced by
about 30% compared with subject-dependent experiments. The
reasons may be complicated and diverse. On one hand, our
EEG datasets do not have enough subjects for an deep learning
model to carry out subject-independent experiments. On the
other hand, there are significant individual differences in the
SRDA and SRDB, which causes drifting issue in data distrib-
utions among different subjects, so that the proposed method
cannot commendably address it. Therefore, some solutions
like the transfer learning will be considered to improve the
MTS-DGCHN model in the feature.

V. CONCLUSION

In this paper, we propose a dual network termed
MTS-DGCHN for EEG-Based stereogram recognition. The
proposed model consists of the multi-scale temporal self-
attention module and the dynamic graph convolution module.
On one hand, the multi-scale temporal self-attention module
learns global importance of different time segments in an
EEG trial with self-attention block, and the local and global
temporal continuity features of EEG signals with multi-scale
convolution. On the other hand, the dynamic graph convolution
module obtains the potential spatial functional relationships
of different electrodes. The results indicate that the proposed
model achieves average accuracy of 95.47% and 95.19% on
SRDA and SRDB, which are superior to other six state-of-the-
art methods.In conclusion, the MTS-DGCHN is an effective
model for stereogram recognition. The subjects we collected
are all healthy groups with visual function. In the future, some
subjects suffer from stereopsis disorders like strabismus will be
added. We hope this study will make a substantial contribution
to find patients in a timely manner.
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