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Abstract— In order to reduce the gap between the
laboratory environment and actual use in daily life of
human-machine interaction based on surface electromyo-
gram (sEMG) intent recognition, this paper presents a
benchmark datasetof sEMG in non-idealconditions (SeNic).
The dataset mainly consists of 8-channel sEMG signals, and
electrode shifts from an 3D-printed annular ruler. A total of
36 subjects participate in our data acquisition experiments
of 7 gestures in non-ideal conditions, where non-ideal fac-
tors of 1) electrode shifts, 2) individual difference, 3) muscle
fatigue, 4) inter-day difference, and 5) arm postures are
elaborately involved. Signals of sEMG are validated first in
temporal and frequency domains. Results of recognizing
gestures in ideal conditions indicate the high quality of
the dataset. Adverse impacts in non-ideal conditions are
further revealed in the amplitudes of these data and recog-
nition accuracies. To be concluded, SeNic is a benchmark
dataset that introduces several non-ideal factors which
often degrade the robustness of sEMG-based systems. It
could be used as a freely available dataset and a common
platform for researchers in the sEMG-based recognition
community. The benchmark dataset SeNic are available
online via the website (https://github.com/bozhubo/SeNic
and https://gitee.com/bozhubo/SeNic).

Index Terms— Surface electromyogram (sEMG), bench-
mark dataset, gesture recognition, non-ideal conditions.

I. INTRODUCTION

SUBSTANTIAL progress of intelligent rehabilitation
equipments such as prostheses and exoskeleton have
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been made both on mechatronic design and manipulation
control [1]. Signals of surface electromyogram (sEMG) are
non-invasively acquired from the surface of the skin, and
they reflect abundant information related to the limbs motion.
Thus, sEMG-based human-robot interaction (HRI) is becom-
ing a mainstream manner to control these rehabilitation equip-
ments [2]. Applications of sEMG-based recognition have
produced great importance on the life quality of the disabled.
Since the 1960s, sEMG has been used as the on-off control
signals of artificial limbs [3]. Gradually, with the develop-
ment of sensors and microprocessors, high precision sEMG
signals are acquired and processed with advanced algorithms.
At present, more than 50 discrete gestures are accurately
classified and continuous angles of limbs are predicted [4]–[6].
For these purposes, pattern recognition (PR) based methods
are always employed, including feature extractions and recog-
nition models [7], [8].

However, PR-based methods always assume that similar
distributions are shared between the offline training data and
testing data. In real applications, there is existing a vast gap of
sEMG-based recognition between accuracies in the ideal labo-
ratory and those in non-ideal daily life environments [9]–[12].

In this paper, the environments that involve many adverse
impacts of disturbances are called the non-ideal conditions,
which potentially include 1) electrode shifts, 2) individual
difference, 3) muscle fatigue, 4) inter-day difference, 5) arm
postures.

1) Electrode shifts. An inevitable problem in daily use of
prosthetic limbs, is electrode shifts from the doffing and
donning of the prosthetic sockets [11], [13]. Displace-
ments away from their default positions and correspond-
ing sEMG changes will reduce the performance of the
system.

2) Individual difference. Signals of sEMG vary substan-
tially from one person to another. They are changed with
the body mass, surface muscular tissue, the way they
perform the same gesture, and so on. It is well known
that sEMG-based recognition accuracies of inter-subject
are far worse than those of intra-subject [14]–[16].

3) Inter-day difference. It refers to the variability of using
the same sEMG-based prostheses in different days. The
inter-day difference often covers two kinds of distur-
bances. One is the user’s adaptation or motor learning to
get used to the sEMG-based control system. Especially
for the disabled, their muscles are getting rehabilitated
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with rehabilitation training [17]. The other one com-
bines other different causes, such as electrode/socket
displacements/shifts from doffing and donning among
different days.

4) Muscle Fatigue. Muscle fatigue is a physiological phe-
nomenon when muscles are contracted for a long time or
repeatedly. Both amplitude and power spectrum density
of sEMG are affected by muscle fatigue [18], [19].

5) Arm postures. Different postures result from differ-
ent muscles coordination. These differences ultimately
affect sEMG signals and sEMG-based recognition accu-
racies [20]–[22].

Various non-ideal factors including above-mentioned restrict
the developing of sEMG-based systems from laboratory to
scenario of actual use. From the experience of rapid devel-
opment in the field of machine learning, especially in the
field of image recognition in recent years, the establishment of
data sets is extremely important to promote the development
of a pattern recognition related field. As a pointview of
Atzori et al., they believed that “solid benchmarking protocols
and publicly available databases” would promote comparisons
among different methods [4]. In deep learning community, the
huge dataset ImageNet proposed by Li. Fei. Fei et al. has
proven to be a milestone [23], [24]. Based on the ImageNet
and the competition, impressive progresses are achieved, such
as AlexNet [25], ResNet [26], and so on. Thus, it is one
of our initial motivations to build a benchmark dataset for
sEMG-based pattern recognition to promote the development
of EMG-related fields. It is a consensus that “an open and
large dataset is one of the most important contributors in this
field” [23].

Starting from 2012, Atzori et al. initiated a project and
built a database called Ninapro (Non-Invasive Adaptive Hand
Prosthetics) [27]–[29]. The database consists of several sub-
datasets, covering many currently available acquisitions sys-
tems [30]. Many subjects, including the healthy and the
disabled, participate in their acquisition experiments. Up to
53 common hand movements in daily life are considered.
And baselines of both traditioinal machine learning and deep
learning methods are established [4], [31]. It is absolutely
an useful promoter for sEMG-based recognition in the
field.

Geng et al. proposed a deep learning methods with
their instantaneous 128-channel high-density EMG signals,
and the dataset CapgMyo is hosted in his homepage [32].
Christoph et al. also built a 192-channel high-density EMG
dataset, CSL-HDEMG [33]. Movements in this dataset are
related to fine fingers. But, only five subjects participate
in the data acquisition experiments. Also, many pieces of
sEMG signals could be freely available from the UCI Machine
Learning Repository.

However, these above datasets are collected from the ideal
laboratory environments. Many adverse factors in real daily
life are not involved. It is our another motivation to build
and release a benchmark dataset for sEMG-based recognition,
focusing on the detections and eliminations of interferences in
non-ideal conditions.

In this paper, we detail the SeNic (Surface electromyo-
graphy in Non-ideal conditions) benchmark dataset. Totally,
there are 36 intact-abled sujects in our experiments.

Many subjects participate to the acquisition experiments
more than once in different days. The dataset contains two
important types of data, one is 8-channel non-invasive sEMG
signals, and the other is the electrodes shifted angles rep-
resented by a 3D-printed annular ruler. In summary, a total
of 24486 trials of experimental data are collected and each
trial contains 6-9 seconds of data. Importantly, impacts of
the forementioned five factors and their combinations are
elabrately involved. The SeNic dataset we build provides a
platform for researchers to compare their methods and to
eliminate adverse impacts in real non-ideal conditions.

The SeNic dataset has the following distinct features and
contributions.

1) Rich data. A large number of subjects participate in the
acquisition with tens of thousands of trials.

2) Non-ideal factors. As many factors as possible in
non-ideal conditions are taken into consideration.

3) A benchmark dataset. It can be used to evaluate differ-
ent sEMG-based recognition methods without collecting
different data.

4) A consumer-grade Myo armband. Only a consumer-
grade sEMG acquisition system is required. It would be
easy for reseachers to evalute advanced algorithms in
real applications.

5) Strong validations. The dataset is comprehensively
discussed in this paper, and further validated in our
recent studies [13].

The rest of this paper is organized as follows. Section II
provides the data acquisition setups and how these factors
in non-ideal conditions are involved into the acquisition.
Section III explains acquired data and other related files and
materials. Section IV describes the basic analyses on the
dataset and validates how the gesture recognition is affected by
non-ideal impacts. In the last Section V, it makes conclusions
and discussions of the dataset, and it looks ahead into what
researchers could do by utilizing the benchmark dataset.

II. METHODS OF DATA ACQUISITION

In this section, data acquisition systems, steps and subjects
are detailed. Factors in non-ideal conditions, including elec-
trode shifts, individual difference, muscle fatigue, inter-day
difference, and arm postures, are taken into consideration to
construct the benchmark dataset.

A. Subjects

This study is reviewed and approved by the Ethical Com-
mittee of the Shenyang Institute of Automation. Totally,
36 intact-abled subjects ( 24.6±2.2 years old, 62.8±12.0 Kg,
170±8.1 cm, 11 females) participate in the following sEMG
data acquisition experiments. In order to simulate real usage
scenarios as much as possible, all subjects are novices for
sEMG data collection. Before the data acquisition, subjects are
informed of the detailed experimental motivations, acquisition
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Fig. 1. (a) The Myo armband. (b) The 3D printed annular elastic ruler,
where scale numbers are evently marked around the [0◦,360◦]. (c) The
Myo armband and the ruler are worn around the forearm.

steps and potential risks. And they are asked to give the
informed consent forms before acquisition experiments.

B. Acquisition Systems
The acquisition setup consists of two import measurement

tools: a Myo armband (Thalmic Lab, Canada) for sEMG
signals acquisition and an annular elastic ruler for angular
measurements, as shown in Fig. 1.

Signals of sEMG with different gestures are acquired by a
Myo armband, which is worn around the forearm of subjects.
The Myo armband is well known in the sEMG-based recog-
nition field and is applied to many human-computer-interface
(HMI) applications. It is a low-cost consumer-grade device
having eight differential sEMG channels with a maximum
sampling rate of 200Hz to ensure real-time online usage.
Acquired data are transmitted to the host computer by the
wireless Bluetooth technology.

The other measurement tool is an annular ruler. It is an
soft elastic band with the 3D printing technology. Around the
band, it is evently divided into 36 parts with 36 big slots,
which are marked with numbers from 0 to 35. These slots and
marked numbers offer an easy way to locate every electrode
around the ruler of [0◦, 360◦]. In the middle of two adjacent
big slots, there is a small slot, and thus the minimum precision
scale and the estimated accuracy are 5◦ and 1◦ respectively.
In this way, the ruler is used to keep electrodes fixed during
the same acquisition. And for electrode-shifted experiments,
shifts relative to the initial positions can be quantified and
recorded.

C. Experimental Design

The main steps as shown in Fig. 2 for the data acquisition
experiments consist of: a) gesture guide: instruct the partic-
ipant what action should be done after rest or now; b) data

Fig. 2. Main steps for data acquisition: (a) gesture guide, (b) data
preview, and (c) data storage.

Fig. 3. (a) Schematic diagram of the data collection process for one
session. (b) Eight common gestures that subjects would follow for the
benchmark dataset.

preview for initial validation; c) data storage. Before the data
acquisition, subjects are requested to clean the forearm with
the alcohol to guarantee a good contact. After familiar with
details of the experimental design, they are asked to sit in front
of a desk and make one of the seven gestures by following
commands shown in the screen.

As shown in Fig. 3 (a), for one session, there are 11 shifted
positions. At each position, subjects performed 21 gestures
consisting of 7 gestures repeated 3 times. A set of 7 different
gestures constituted a repetition, and each gesture corresponds
to the EMG signal of one trial. For each trial, the locations
of each channel relative to the annular ruler are recorded and
saved in Excel files. According to the official requirements
of Myo when using its application, users need to align the
channel where the Myo’s logo is located with the middle finger
when the palm is facing the ground. As shown in Fig. 1(c),
this position is the initial position of Myo, which is also the 0◦
position of the annular ruler. In order to maximize the quality
of the sEMG signal, the subjects asked to wear Myo on the
thickest part of the forearm. At the same time the position of
the ruler relative to the elbow will be recorded, which can also
prevent a large longitudinal deviation each time it is worn.

The selected gestures are shown in Fig. 3 (b), including
{Rest, Fist, Pinch the Middle, Make a 2-sign, Open Hand,
Pinch the Index, Add of Wrist, Abd of Wrist}. To make sure
the consistency of the gesture labels and their corresponding
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data, for each trial, only one gesture is made from the rest
state. The start and stop of a new trial are controlled by the
subject using the free hand to press the enter key. This can
ensure that they are prepared for each trial, which can improve
the quality of the data. From the beginning of a trial, subjects
make the shown gesture from a 2-second rest state followed
by a gesture hold time of 4-7 seconds. That is to say, about
6-9 seconds of data per trial are saved in a comma-separated
values(CSV) format file with the name of the gesture.

D. Signal Pre-Processing
No signal pre-processing procedures are conducted. Raw

data retrieved from the Myo armband are stored into files.
Researchers who plan to validate their algorithms can perform
any signal processing.

E. Factors in Non-Ideal Conditions

As one of the most important motivations, factors in
non-ideal conditions are taken into consideration, including
1) electrode shifts, 2) individual difference, 3) muscle fatigue,
4) inter-day difference, 5) arm postures. Elaborate acquisition
steps upon the experimental design in II-C are conducted to
involve these factors. The explainations are as follows:

1) Electrode Shifts: For each subject, Fig. 3(a) shows that
eight channels of the Myo armband are shifted in arbitrarily
rotary positions around the forearm ranging from 0◦ to 360◦
relative to the initial position. Measurements shifts for each
channel are quantified and recorded by the annular ruler.
In data collection, the direction of rotation, the size of the
rotation angle, and the randomness of the rotation of the Myo
were taken into consideration. For each subject in each session,
11 different shift positions were collected, among which the
first 9 positions were designed, and the last 2 times required
the participants to shift randomly. In the first 9 offsets of each
acquisition session, 24 subjects were asked to rotate between
30 and 60 degrees in each increment, of which 18 participants
rotated inward and 6 subjects rotated outward. The remaining
6 subjects collected data containing small angle offsets, each
rotation increment was 10 degrees, and they were rotated in
the order of { 0◦, 10◦, 350◦, 20◦, 340◦, 30◦, 330◦, 40◦, 320◦,
Random, Random }.

2) Individual Difference: In the benchmark dataset, a total
of 36 subjects participated in the data acquisition, which
contained a lot of individual differences. All participants’
weight, height, forearm length, forearm circumference, and
location of the Myo with ruler were recorded.

3) Inter-Day Difference: For many of subjects, their data
acquisitions were repeated for several times in different ses-
sions. Specifically, a total of 14 subjects participated in the
inter-day data collection, 6 (2 females and 4 males) of them
collected 10 times in different 10 sessions and 8 (3 females
and 5 males) of them collected 3 times in different 3 days.

4) Muscle Fatigue: To investigate the effect of forearm
muscle fatigue on sEMG-based gesture recognition, fatigue-
enhanced data were collected from 6 subjects (1 female).
When collecting fatigue-enhanced data, the electrodes were
no longer offset and instead some wrist exercises were done.

Fig. 4. (a) Exercises for fatigue-enhanced: DWC - Dumbbell Wrist
Curl; DWE - Dumbbell Wrist Extension. (b) The Postures: SBE - support
the benting elbow on a table; uSBE - unsupport the benting elbow;
DAN - drooping arm naturally.

After each collection of 21 gestures (3 sets of repetitions),
subjects were required to perform a set of wrist exercises to
enhance muscle fatigue. Each set of wrist exercises consists of
5 reps of Dumbbell Wrist Curl (DWC) and 5 reps of Dumbbell
Wrist Extension(DWE) with dumbbell load weight of 1Kg as
shown in Fig. 4 (a). In total, each participant performed a total
of 231 gestures and 100 dumbbell-wrist exercises during a
fatigue-enhancing session.

5) Arm Postures: As shown in Fig. 4 (b), in the SeNic
dataset, three common postures of arm when using Myo were
included: support the benting elbow (SBE) on a table, unsup-
port the benting elbow (uSBE) and drooping arm naturally
(DAN). A total of 8 subjects used these three different postures
for data collection in three different sessions respectively, and
the others used SBE for data collection.

III. DATA RECORDS

For each data collection session, a secondary folder con-
tains 231 CSV files from 11 shifted positions with 7 gestures
of 3 repetitions. The name of every CSV file is formated as:
emg_pi_rj_gesture.csv, where i = 0, 1, · · · , 10, j =
0, 1, 2, and the gesture stands for one name of the
labeled 7 gestures (e.g. h3\2\emg_p6_r1_fist.csv). From an
example CSV file, h3\2\emg_p6_r1_fist.csv, more dataset
details are explained as follows:

A. Subjects Information

Who Real names of these subjects were changed to be
anonymous as h0 to h29. As mentioned, names can be obtained
from the first level folder names. They also appear in the
names of the Excel file for recorded electrodes shifts. The
basic information of all participants was recorded as shown
in Tab. I.

When The number of the names of the second level folders
indicates when the subject participates to the acquisition
experiment relative to the first time.

B. Shifts in Excel Files

Where Shifted electrode positions relative to the initial
position are recorded in some specific Excel files named
by Angle_hx_sessiony.xlsx, where hx = 0, 1, …, 29, and
sessiony = 0, 1, …, 9.
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TABLE I
SUBJECTS’ MAIN INFORMATION: GENDER(M: MALE, F: FEMALE), AGE, WEIGHT, HEIGHT, ARM LENGTH (FOREARM LENGTH: THE DISTANCE

FROM THE INNER SIDE OF THE ELBOW TO THE WRIST LINE), ARM CIRCUM (THE CIRCUMFERENCE OF THE FOREARM NEXT TO THE RUBBER

RING), ER-LENGTH (THE DISTANCE FROM THE INSIDE OF THE ELBOW TO THE RUBBER RING), SESSIONS (NUMBER OF

SESSIONS PARTICIPATING IN THE COLLECTION), DESCRIPTION (RI: ROTATE INWARD; RO: ROTATE OUTWARD; RM:
SMALL ANGLE ROTATION; FE: FATIGUE ENHANCED)

C. EMG Data

Surface EMG signals from eight channels are stored in
these well-named folders and files. In every CSV file, columns
from 1 to 8 represents sEMG signals correspond to 8 channels.

IV. TECHNICAL VALIDATIONS

A. Signal Waveform and Spectrum
Fig. 5 shows raw sEMG signals and their frequency spec-

trum from eight channels of the Myo armband. In Fig. 5(a),
subjects start making shown gestures after about 2-second rest
state. The spectrums aound 50 Hz in Fig. 5(b) indicate that the
power frequency noise is removed by the Myo hardware or its
software algorithms.

B. Gesture Classification in Ideal Conditions
In ideal conditions without impacts of electrode shifts,

individual difference, muscle fatigue, inter-day difference and
arm postures, validations of the acquired data are conducted
first. For each subject, seven gestures are recognized when
their corresponding sEMG signals are collected in the same
position. We perform the same procedure of feature extraction

Fig. 5. (a) Raw sEMG signals of one trial from 8 channels. (b) Frequency
spectrum of the raw sEMG signals.

and classification with the Ninapro dataset by Atzori et al. [4].
The length of a sample window for calculating features is
250 ms (LW = 50) and the overlap is 200 ms (LI = 10).
Five features are considered, including: 1) root mean square
(RMS), 2) one common feature in the time domain of the
mean absolute value (TD(mav)), 3) the histogram of the raw
signals that are divided into 10 bins, 4) the mean absolute
value of the continuous wavelet transform by using a Ricker
wavelet with 7 levels (CWT(mav)), and 5) the combination of
the above four features. Of the same gesture repeated three
times at each position, the first two times are used as the
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Fig. 6. Gesture recognition results for different classifiers and features
in ideal conditions.

training set, and the third time is used as the test set. For
the classification, 1) the k-nearest neighbors (k-nn), 2) the
Support Vector Machinel (SVM), 3) the random forest (RF),
and 4) the Linear Discriminant Analysis (LDA), are conducted
and compared as shown in Fig. 6. In ideal conditions, it can
be seen from the results that the average accuracy of all
classifiers exceeds 90% when using the combined features.
General benchmark accuracies are achieved in the proposed
dataset.

C. Validations of Non-Ideal Conditions

According the experimental design in II-E, common
non-ideal factors are considered in the proposed dataset. In this
section, we will detail how these factors affect the sEMG-
based recognition.

1) Electrode Shifts: As the acquisition protocol goes,
11 rotary shifted positions are arbitrarily selected to acquire
data and corresponding rotary shifts are recorded. As shown
in Fig. 7, 11 recorded shifts relative to the initial position are
statisticed. These shifts mainly range from 0◦ to 360◦, which
indicate arbitrarily rotary positions around the forearm. Among
them, the Fig. 7 (a) and Fig. 7 (b) are the large-angle shifts of
inward and outward, respectively, and the Fig. 7 (c) shows the
situation with small shifts. For all subjects, the last two shifts
are random, and the shifts covers the range of 0 to 360 degrees
of a circle as shown in Fig. 7.

An obvious feature of the effect of electrode shifts on the
sEMG signal is that the sEMG amplitude corresponding to
each electrode changes drastically with the change of the
shifts. As an example, for the first sesson from h0 subject
in 11 shifted positions, sEMG amplitudes (MAV of eight
channels) are displayed, as shown in Fig. 8. It can be seen
from the figure that in different positions, these amplitudes
are seriously affected by the impact of electrode shifts. These
results indicate that the impact of electrode shifts is one
of the most important causes to worsen robust sEMG-based
recognition.

Furhter to qualify the impact of electrode shifts on gesture
recognition, a classifier (SVM with a linear kernel as above)
is trained first by the supervised or labeled sEMG data in
the initial position. Recognition accuracies in other shifted
positions are computed by the pre-trained classifier. The results
are recorded in Fig. 9, for small angle shifts, the accuracy
decreases as the offset angle increases. For big shifts, these
accuracies exhibite a trend that first decline and then rise up,
when the shifts range from 0◦ to 360◦. Around the forearm,

Fig. 7. The angles scatter diagram from all subjects in eleven arbitrary
positions (from 0 to 10). (a) Rotation inward. (b) Rotation outward.
(c) Rotation with small angle shift in the order of {0◦, 10◦, 350◦, 20◦,
340◦, 30◦, 330◦, 40◦, 320◦, Random, Random }.

Fig. 8. In these eleven shifted positions from opening a hand gesture,
the MAV values of the raw signals from these eight channels.

Fig. 9. Recognition results of shifted positions under SVM trained by
initial position.

displacements between the current and initial positions go to
the maximium when the shift is about 180◦.

2) Individual Difference: Different people usually have dif-
ferent muscle sizes and fat thicknesses, and they also
have different ways of exerting force. The impact of
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Fig. 10. Effects of individual/inter-day difference on the muscular activity
of the Myo armband. The central red bar indicates the median value, the
green triangle points represent the mean, and the upper and lower edges
are the 25th and 75th percentiles, respectively. The whiskers imply the
limitations. (a) Ticks in the x-axis represent different subjects hxx/0 with
first session of each subject. (b) Ticks in the x-axis represent different
sessions h0/xx from h0 subject.

individual difference is analysised and compared, as shown in
Fig. 10 (a) and Fig. 11 (a). For different subjects (as shown
in Fig. 10 (a)), their amplitudes varies widely. They display
different distributions around the median values, mean values,
or between the 25th and 75th percentiles. Different character-
istics of sEMG from different subjects bring a huge challenge
for sEMG-based recognition in clinical applications.

For accuracy comparisons (as shown in Fig. 11 (a)),
an intial SVM classifier is first trained by the training data
of the subject h0/0, and tested by the data of other subjects
hxx/0. It can be seen from the results that, compared with the
ideal situation without individual differences, the non-ideal sit-
uations with individual differences will cause the recognition
results of the ordinary model to become poor.

3) Inter-Day Difference: Compared with individual differ-
ences, the impact of inter-day is relatively small for same
subject, but there are still effects that cannot be ignored,
as shown in Fig. 10 (b) and Fig. 11 (b). When using the first
two repetitions of the initial position in the first session of the
same subject as the training set to train SVM and use it to
recognize gestures at the same position in other sessions, the
recognition rate is usually reduced by more than ten percent.
Fig. 11 (b) shows the test result of subject h0. As the results
given in [17], [34], the influence of inter-day will significantly
reduce the accuracy of the model. The accuracy of the model
decreases with the increase of the interval and this trend has
also been verified in our tests.

4) Muscle Fatigue: Muscle fatigue can cause the drift of
sEMG features thus it will lead to a decrease in the accuracy
of sEMG-based gesture recognition [11], [18], [19], [35]–[38].
The effect of fatigue in SeNic is shown in Fig. 12. For the
fatigue-enhanced(FE) data, the two repetitions non-fatigued
data before exercise were used as the training set to train the
model, and the trained model was used for recognition follow-
ing gradual fatigued data. It can be seen that the recognition
accuracy gradually decreases with the increase of acquisition

Fig. 11. The influence of individual differences and inter-day differences
on recognition results. (a) Accuracies of different subjects of first session
under SVM trained by first position from h0 subject. (b) Accuracies of
different sessions under SVM trained by first position from h0 subject.

Fig. 12. The influence of fatigue on recognition results. In the
figure, The curve represents the average accuracy across subjects.
FE means fatigue enhanced data from subjects h30-h35 and nFE means
non-fatigue enhanced data from h0-h29. NRT means that the model
only uses the first two repetitions of the first position as the training
set. RT means that the model is repeatedly trained using the first two
repeated data at each position.

time. The accuracy decreases by more than 10% after the 5th
position. The recognition accuracy still decreases by 3-5%
with increasing fatigue even after retraining the model(RT)
using the first two repetitions of each position and using the
third repetition as the test set for FE data. Similarly, accuracy
dropped by 2-3% for non-fatigue enhancement(nFE).

5) Arm Postures: The impacts of arm postures have been
investigated by many researchers [20], [21]. The three different
postures shown in Fig. 4 were collected in three different
sessions. In order to verify the effect of postures on the
recognition results in the SeNic, the EMG signals from the
first session are used for training the SVM model. The trained
SVM is used for the remaining two postures tests. Compared
to the ideal situation, the 2 different postures from 8 subjecs
caused a 31.95% decrease in average accuracy. This reduction
also covers the effect of inter-day difference. As a comparison,
the same method is used for the first three sessions of the
6 subjects that collected data while the posture remains same.
The test results show that the average accuracy rate is only
reduced by 19.33% without the influence of different postures.
In other words, different postures will reduce the recognition
rate of ordinary models by more than 10%.
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D. Limitations of the SeNic
Although the dataset introduces numerous non-ideal con-

ditions to solve some gaps in sEMG technology from the
laboratory to daily applications or commercial products, there
are still many restrictions on its use. First of all, the max-
imum sampling rate of the data collection Myo system is
200Hz. According to Shannon’s sampling theorem, compo-
nents exceeding 100Hz cannot be obtained from the dataset.
However, the 200Hz sampling rate is sufficient for recognizing
several gestures in daily use from the fact that Myo bracelets
are widely used in EMG recognition and related data sets
in Ninapro are widely used [4], [27]–[29]. Secondly, due to
the feature that Myo makes a ring, SeNic currently mainly
introduces rotational shifts, and does not consider the lon-
gitudinal offsets. For the EMG differences collected by the
forearm, considering that the direction of the muscle fibers is
basically parallel to the forearm, the influence of longitudinal
offsets is smaller than that of rotational shifts [39], [40].
In addition, it should be noted that the participants in this
dataset are all healthy people, and the difference should be
noted when transferring the corresponding research methods
to the disabled.

V. DISCUSSIONS AND CONCLUSION

Relying on the consumer-grade Myo armband, this paper
presents an sEMG benchmark dataset for studying the robust-
ness of sEMG-based gesture recognition in real applications.
Factors involved in these non-ideal conditions include 1) elec-
trode shifts, 2) individual difference, 3) inter-day difference,
4) muscle fatigue, and 5) arm postures. Adverse impacts of
these factors are detailed and compared between ideal and non-
ideal conditions, especially in the aspect of the gesture recog-
nition accuracy. It is concluded that these factors are main
causes to degrade the sEMG-based recognition performance.

It should be noted that in the field of intent recognition
based on EMG, there is no consensus on the best acqui-
sition protocol. Pizzolato et al. compared different acqui-
sition setups on hand movement classification tasks [30].
The Ninapro database they built includes several different
sEMG datasets and lays foundation for developing advanced
methods to improve sEMG-based performance in relatively
ideal conditions and comparisons among these methods. The
benchmark dataset SeNic we built in the non-ideal conditions
could be an extended one of the Ninapro. On the one hand,
more attentions should be paid in impacts of adverse factors
in real applications, and datasets in different situations are
necessary to be built and shared in the sEMG-base recognition
community. On the other hand, the gap between achievements
in laboratories and daily lifes could be bridged with the help
of SeNic. It provides a platform for comparisons between ideal
and non-ideal conditions, especially for comparisons among
many potential methods. If researchers can find a model to
improve the performance of SeNic dataset, it will play a
huge role in solving the problem of the gap between sEMG
applications from the laboratory to the daily life.

In many real applications, more than one causes have seri-
ous impacts on the sEMG-based performance. For example,
one subject continuously uses an sEMG-based prosthese for a

long time, impacts of electrode shifts, muscle fatigue, and even
the perspiration [41] happened at the same time. It is essential
that potential methods or frameworks have abilities to tackle
all possible factors. There are several different approaches that
have the potential to address interference in these non-ideal
situations [9], [12]. Most of these methods try to improve
the performance of a specific non-ideal factor based on prior
knowledge [11], [13]. An experience that can be learned
from the field of image recognition and natural language
processing is that the community can create a large number
of datasets to find some features or models such as CNN,
LSTM, transformer etc. that can be a strong baseline for
most sEMG-based recognition task through big data driven
methods [23]–[26]. In addition, transfer learning also shows
potential to improve performance for some non-ideal factors
such as individual differences and inter-day differences when
the amount of data is not particularly large [42], [43].

According to our previous experience of sEMG and its
application research [5], [44]–[48], especially for research
under non-ideal conditions [11], [13], [49], designing experi-
mental paradigms and collecting experimental data will con-
sume a lot of time and energy. However, what is more
important in the research process is usually the analysis of
sEMG features and the improvement of models. The open
source of data and methods can increase the efficiency of
researchers in related research, reduce the time spent on unnec-
essary experimental design and data collection, and enable
researchers to focus on solving more important problems.

As future work, more improvements of the benchmark
dataset will be required from two aspects: 1) more data by
other sEMG acquisition systems and from other situations,
and 2) potential methods to remove adverse impacts of these
factors will be further studied.
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