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Wearable Supernumerary Robotic Limb System
Using a Hybrid Control Approach Based on

Motor Imagery and Object Detection
Zhichuan Tang , Lingtao Zhang, Xin Chen, Jichen Ying, Xinyang Wang, and Hang Wang

Abstract— Motor disorder of upper limbs has seriously
affected the daily life of the patients with hemiplegia after
stroke. We developed a wearable supernumerary robotic
limb (SRL) system using a hybrid control approach based
on motor imagery (MI) and object detection for upper-limb
motion assistance. SRL system included an SRL hardware
subsystem and a hybrid control software subsystem. The
system obtained the patient’s motion intention through MI
electroencephalogram (EEG) recognition method based on
graph convolutionalnetwork (GCN) and gated recurrent unit
network (GRU) to control the left and right movements of
SRL, and the object detection technology was used together
for a quick grasp of target objects to compensate for the
disadvantages when using MI EEG alone like fewer control
instructions and lower control efficiency. Offline training
experiment was designed to obtain subjects’ MI recognition
models and evaluate the feasibility of the MI EEG recognition
method; online control experiment was designed to verify
the effectiveness of our wearable SRL system. The results
showed that the proposed MI EEG recognition method
(GCN+GRU) could effectively improve the MI classification
accuracy (90.04% ± 2.36%) compared with traditional meth-
ods; all subjects were able to complete the target object
grasping tasks within 23 seconds by controlling the SRL,
and the highest average grasping success rate achieved
90.67% in bag grasping task. The SRL system can effectively
assist people with upper-limb motor disorder to perform
upper-limb tasks in daily life by natural human-robot inter-
action, and improve their ability of self-help and enhance
their confidence of life.
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I. INTRODUCTION

W ITH the growing number of aging population in
the worldwide, stroke incidence has continuously and

sharply increased in recent years. More than 80% of stroke
patients with hemiplegia suffered upper-limb motor disorder
in different degree due to the nervous system injury [1]. Upper-
limb motor disorder severely affects the daily life of patients,
resulting in serious financial and life burden to families and
great mental pressure to patients. How to help these people
improve their ability of self-help and living independently is
especially important for social development [2].

Supernumerary Robotic Limb (SRL) is a wearable robotic
device to enhance wearer’s capability in different tasks. Parietti
and Asada [3] designed a wearable supernumerary robotic
upper limb that could provide extra support for workers;
Ciullo et al. [2] developed a supernumerary robotic hand
that could assist patients with severe stroke to perform a
variety of hand motions. Unlike the traditional exoskeletons
and prostheses, SRL can attach to different parts of a patient’s
body to assist him to execute one-hand tasks or to augment
the functionality of the remaining healthy hand to perform the
two-hand tasks [1]. SRL can supplement and enhance wearer’s
capability additional robotic structures, which has clear advan-
tages over exoskeletons and prostheses [4]. While the physical
hardware is developed, how to control SRL naturally and accu-
rately remains an important challenge. There are two strategies
to control SRLs: direct control and indirect control [5]. Direct
control is a way that users input control commands directly
to SRLs by buttons, visual interfaces or physiological signals.
Some previous studies used different parts of body, not just
limbs, to control SRLs. Guggenh et al. [6] used different levels
of force on the fingertips to control different grasp motions of
an SRL in order not to affect operator’s normal actions in the
work; Salvietti et al. [7] obtained the wearer’s motion inten-
tions by analyzing surface electromyography (sEMG) signals
of muscles around the eyebrows to control the “six” finger.
Indirect control is a way that users do not need to input spe-
cific control commands but the SRLs can move automatically
through analyzing users’ body movements. Peternel et al. [8]
constructed a human motion recognition model based on
sEMG signals of muscles on limbs, and this model could pre-
dict body motion trajectories automatically to control an SRL
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indirectly to help users complete target tasks. Some other stud-
ies have focused on using hybrid control methods (direct con-
trol + indirect control) to control SRLs. Muhammad et al. [9]
applied a hybrid control strategy based on sEMG signals and
inertial sensors to control a supernumerary robotic arm; Song
and Asada [10] preset the automatic motion trajectory of
SRLs based on the users’ posture data when using a knife
and fork, and controlled an SRL by different motions of left
foot; Cio et al. [11] proposed a hybrid control system based
on stereo vision and eye-tracking technologies to control an
SRL in real time. The above hybrid control strategies could
effectively transfer multiple control information to let users to
interact with SRLs. However, most of these control methods
used the parts of body which were not the limbs to be assisted
to control SRLs, e.g., use feet to control an SRL for upper-
limb assistance, resulting in spending a lot of pre-training time
on adapting to this control manner. Besides, the unnatural
interaction experience between user and SRL led to greater
cognitive efforts and higher learning costs for users.

Brain-computer interface (BCI) provides communication
and control capabilities to people with severe motor dis-
abilities. BCI systems support communication through direct
measures of electroencephalogram (EEG), functional magnetic
resonance imaging (FMRI) and electrocorticogram (ECOG)
to operate and control devices like cursor, wheelchair, and
exoskeleton [12]. Patients with upper-limb motor disorder
are unable to move their limbs, but their brains are normal.
Therefore, patient’s EEG signals can be decoded and converted
into control signals to control SRLs in two-dimensional or
three-dimensional space [13]. Motor imagery (MI) EEG classi-
fication is a widely applied paradigm in BCI systems. Patients
can imagine limb movements to control external devices [14].
Pinheiro et al. [15] designed an intelligent wheelchair system
based on MI EEG control for patients with lower-limb motor
disorder to improve their walking ability; Lee et al. [16] devel-
oped a control approach by classifying users’ MI intentions to
control an exoskeleton to move in three different directions.
The control strategy based on MI EEG is more natural and can
reduce cognitive efforts for patients during SRL operation.

One problem in current MI-based BCI applications is that
the low signal-to-noise ratio of EEG signals lead to a low
EEG decoding accuracy. To tackle this problem, researchers
have focused on looking for reliable features to improve
the classification performance [17], [18]. Some latest studies
aimed to select optimal EEG features which do not contain
redundant information and noise through feature selection
methods like the common spatial pattern (CSP) based on L1-
Norm and Dempster–Shafer theory [19], the correlation-based
channel selection (CCS) method [20], etc. The others aimed
to obtain the deep features which can describe different MI
classes through deep learning methods like the deep belief
network (DBN) [21], the long short-term memory (LSTM)
network [22], the convolutional neural network (CNN) [23],
etc. In these methods, CNN can directly be used for automatic
feature extraction of the raw input signals, and can obtain
deeper-level and more differentiated feature information for
EEG signal recognition [24]–[26]. However, the traditional
CNN approaches do not consider the topological relationship

and structure information of EEG electrodes. The distribution
structure of EEG channel is irregular, and EEG signals do
not belong to the standard non-Euclidean structure data [27].
Graph convolutional network (GCN) provides an effective way
to describe the intrinsic relationship between different nodes
of the graph, which is suitable for the topological feature
extraction of EEG signals in the discrete spatial domain. Some
previous studies have focused on using GCN for emotion fea-
ture extraction and recognition based on EEG signals, and they
found that GCN achieved the higher recognition accuracies
than CNN [28]. In addition, when human imagines the move-
ment of unilateral limb, the power of mu and beta rhythms will
decrease or increase in the sensorimotor area of the contralat-
eral hemisphere and the ipsilateral hemisphere in different time
periods [29]. Therefore, MI EEG signals also contain temporal
feature information. Long short-term memory (LSTM) [30]
and gated recurrent unit network (GRU) [31] can solve some
problems such as gradient vanishing and gradient exploding.
Both LSTM and GRU use gating mechanisms to memorize as
much long-term information as possible. GRU has the fewer
parameters, simpler structure, shorter model training time and
faster convergence than LSTM [32]. In our study, we used
GCN and GRU to extract spatial topological features and
temporal features of EEG, respectively.

The other problem is that when only MI is used in the
control strategy, no enough control dimensions/commands can
be output to control different motions of SRLs, which affects
the control accuracy and efficiency during SRL operation. For
example, common MI can output three control commands by
imagining left hand, right hand and feet movements, but the
control of SRLs needs four control commands (up, down,
left and right) at least. Some previous studies have used
hybrid control approaches by combing MI and other assistant
methods (electrooculography (EOG) [33], P300 [34], object
detection [35], etc.) to improve the control efficiency of BCI
applications. In these assistant methods, object detection can
identify semantic objects of a certain class (such as humans,
buildings, or cars) in digital images and videos [36]. This
technology has been applied in the control of external devices
like robotic arm and prosthesis. Shi et al. [37] used com-
puter vision-based object detection technology and sEMG to
control a multi-fingered prosthetic hand, which helped users
rapidly complete grasping tasks on various daily objects;
Chen et al. [38] developed a robotic arm control system by
combing augmented reality (AR), object detection, and steady-
state visual evoked potential (SSVEP) to autonomously picked
up the target objects. Object detection technology can be used
together with MI for a quick grasp of target objects to improve
the control accuracy and efficiency of SRLs.

In this paper, we developed a wearable SRL system using
a hybrid control approach based on motor imagery and
object detection for upper-limb motion assistance. SRL system
included an SRL hardware subsystem and a hybrid control
software subsystem. The SRL hardware subsystem consisted
of a self-developed robotic arm and a camera. The hybrid
control software subsystem consisted of an MI recognition
module, an object detection module and a hybrid control
module. MI recognition module was used to recognize users’
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Fig. 1. The architecture diagram of the wearable SRL system.

motion intentions through an MI recognition model based
on GCN that extracted spatial topological features of EEG
and GRU that extracted temporal features of EEG; the object
detection module was used to recognize different target objects
in the target area and provide position information of this
object; the hybrid control module was used to estimate the
motion trajectory of SRL and control the SRL in real time.
During the online control, users’ MI EEG data were processed
by MI recognition module to output the control commands of
left/right movement, and the YOLO object detection system
in the object detection module was used together for a quick
grasp of target objects to compensate for the disadvantage of
MI control dimension and improve the control accuracy of
the SRL. An offline training experiment and an online control
experiment were designed to evaluate and verify our proposed
method and SRL system.

II. WEARABLE SRL SYSTEM

A. System Architecture

The wearable SRL system included an SRL hardware sub-
system and a hybrid control software subsystem, as shown
in Fig. 1. The SRL hardware subsystem including a robotic
arm, a bionic hand and some other hardware accessories was
used for upper-limb assistance; the hybrid control software
subsystem including an MI recognition module, an object
detection module and a hybrid control module was used to
recognize users’ motion intention, detect target objects pre-
cisely and output SRL’s control signals. In hybrid control soft-
ware subsystem, the MI recognition module recognized users’
motion intention based on GCN and GRU; the object detection
module acquires the visual information of target area from the
camera on SRL hardware subsystem to analyze the category
of target object and output accurate position information; the
hybrid control module controlled the SRL to move to left or
right according to the recognized MI intentions firstly, and
then realized the precise grasping of the target object based
on accurate position information which was output from the
object detection module when the camera captured the target
object (i.e., the target object appeared in the target area).

B. SRL Hardware Subsystem

We fabricated a lightweight wearable SRL hardware subsys-
tem, as shown in Fig. 2. SRL hardware subsystem consisted of
a robotic arm, a three-fingered bionic hand, a camera, a fixed

Fig. 2. SRL hardware subsystem. (a) robotic arm and bionic hand;
(b) motor driver board, lithium battery and Raspberry Pi; (c) fixing method
of SRL.

base, a motor driver board, a lithium battery and a Raspberry
Pi microcomputer. The robotic arm with 5 degrees of freedom
could simulate the normal arm motions and postures to per-
form complex upper-limb tasks. The five joints of the robotic
arm were actuated by steering gears. A camera was fixed at
the end of the robot arm to capture the target object for object
detection. The three-fingered bionic hand actuated by steering
gears was located at the end of the robotic arm. The fixed base
was mounted on the users’ right shoulder with an elastic strap
to support the SRL and make it steady, as shown in Fig. 2c. All
steering gears of The SRL hardware subsystem was controlled
by a motor driver board and powered by a lithium battery
(12V, 2400mA), as shown in Fig. 2b. The motor driver board
(PCA9685, WeixueElectronics Co. Ltd, China) and the micro
camera were connected to a Raspberry Pi microcomputer. The
microcomputer with a 64-M storage space, a linux system and
a Tensorflow Lite framework [39] could run deep learning
models independently for MI recognition and object detection,
and transmit data to the computer through the TCP port.

C. Hybrid Control Software Subsystem

The hybrid control software subsystem including an MI
recognition module, an object detection module and a hybrid
control module was used for the recognition of patient’s
motion intent, the precise detection of target objects and the
output of hardware control signals.

1) MI Recognition Module: We constructed an MI recogni-
tion model based on GCN and GRU, including the feature
extraction part and the classification part, as shown in Fig. 3.
GCN and GRU were used to extract spatial topological fea-
tures and temporal features of EEG, respectively. The input
of the model was MI EEG signals and the output was motion
intentions (left or right). EEG signals of different EEG fre-
quency bands in one input sample were divided into several
time segmentations through overlapping window method, and
these time segmentations were input into the feature extraction
part separately.
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Fig. 3. Framework diagram of MI recognition model. Different EEG frequency bands of one input sample were segmented into several time windows,
and input into the feature extraction part based on GCN and GRU models and the classification part based on a softmax classifier to obtain the MI
motion intention.

In the feature extraction part, firstly, the EEG data of each
segmentation were converted to graph data to input into the
GCN model. Each EEG channel corresponded to a node of
the graph data, and the connections between two different
nodes corresponded to the edges of the graph. A undirected
graph to describe the topological structure of the EEG data is
defined as G = {V , E}, where V represents the set of nodes
with the number of |V | = N and E represents the set of
edges connecting these nodes. Graph convolutional operation
in GCN model can be expressed as

H l+1 = f
�

Lsym H lWl
�

, (1)

where H l and H l+1 are the lth graph convolutional layer and
l + 1th graph convolutional layer, f (·) is ReLU activation
function, Wl is weight matrix of the lth graph convolutional
layer, and Lsym is symmetric normalized Laplacian matrix.
Lsym can be calculated by

Lsym = D−
1
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1
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where L = D− A is the combinatorial Laplacian matrix, D is
the degree matrix with diagonal entries, IN is the unit matrix,
and A is the adjacency matrix describing the connection
relationships between any two nodes. The entry of adjacency
matrix is denoted by wi j to measure the importance of the
connection between the i -th node and the j -th node. The
distance function method [40] is used to determine the entries
wi j of the adjacency matrix. The Gaussian kernel function was
selected as the distance function in our study, and it can be

expressed as

wi j =

⎧⎪⎨
⎪⎩
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�
− [dist (i, j)]2

2θ2

	
, i f dist (i, j) ≤ τ

0, otherwi se,

(3)

where τ and θ are two fixed parameters, dist (i, j) represents
the distance between the i -th node and the j -th node. The
output graph features were extracted from the input graph data
through graph convolutional operations in graph convolutional
layers, and were transformed to a one-dimension vector x by
linear affine transformation and flattening operation. The flat-
tening vectors of all time segmentations formed the time series
data [x1, x2. . .xt ], where t is the number of time segmentations
in one EEG frequency band. Secondly, the time series data
were input into the GRU model to extract temporal features.
There are two kinds of gate in the GRU model, i.e. update
gate zt and reset gate rt . The update gate helps the model
to determine how much of the past information needs to be
passed along to the future, and the reset gate is used from the
model to decide how much of the past information to forget.
At each timestamp t , it takes an input xt and the hidden state
ht−1 from the previous timestamp t − 1. Later it outputs yt

and a new hidden state ht which again passed to the next
timestamp. The formula for each gate and outputs at time step
t are

zt = σ(Wxz xt +Whzht−1 + bz), (4)

rt = σ(Wxr xt +Whr ht−1 + br ), (5)

h̃t = tanh(Wxh̃ xt + rt �Whh̃ht−1 + bh̃), (6)

ht = (1− zt )� ht−1 + zt � h̃t , (7)

yt = σ(Whyht ), (8)
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Fig. 4. Visual information from the camera and the recognition results
of object category and coordinate.

where σ denotes the sigmoid function, tanh denotes the hyper-
bolic tangent function, W is the weight matrix, b is the bias,
h̃ is the candidate hidden state, and � denotes Hadamard
product.

In the classification part, the outputs of the GRU model
were poured into a fully connected layer, followed by a
softmax layer and a classification output layer to generate
predicted class labels (left or right) and recognize the MI
motion intents. The model with best classification performance
in different EEG frequency bands was selected as the optimal
MI recognition model for this subject.

The hyperparameters in the model training process were
mainly empirically chosen. We set the learning rate was 0.001,
the batch size was 1024, the dropout rate was 50% for the
fully connected layer, and the maximum number of iterations
was 10000. The Stochastic Gradient Descent (SGD) algorithm
implemented by the Adam optimizer was used to update
the model parameters [41]. Batch normalization (BN) was
employed for graph convolutions. The early stopping method
was used to determine the optimal parameters of model, i.e.,
when the accuracy of the validation set data did not increase
within 20 epochs, the parameters at this epoch was saved as the
optimal parameters. The loss curves during the model training
process was used to evaluate the convergence of the models.

2) Object Detection Module: The object detection module
was used to recognize different target objects in the target
area and provide position information of this object to further
control the SRL precisely.

We used YOLO object detection system [42] which was
running on the Raspberry Pi with the Tensorflow Lite [39]
framework to real-time detect target objects. The visual infor-
mation from the camera fixed at the end of the robot arm was
transferred to YOLO to output the probability of the category
of the object and the coordinate values of the object’s border,
as shown in Fig. 4.

3) Hybrid Control Module: The hybrid control module was
used to estimate the motion trajectory of SRL and control the
SRL in real time based on the motion intention information
from MI recognition module and the target position infor-
mation from object detection module. The SRL could move
following the patient’s motion intention and could perform the
grasping task quickly and precisely through the hybrid control.
The flow chart of the hybrid control module is shown in Fig. 5.

Firstly, the SRL needed to ensure whether the target objects
was in the target area or not. The robotic arm of the SRL could
move to left or right based on patient’s motion intention from
MI recognition module. At the same time, the camera at the
end of the SRL captured the visual information of the target

Fig. 5. The flow chart of the hybrid control module.

area and recognized the target object by the object detection
module. Then, the hybrid control module determined whether
the target object was located in the target area or not according
to the output information returned by the object detection
module. If the target object was not in the target area, patient
could control the SRL to move by MI until the target object
was detected.

Secondly, when the target object was detected in the tar-
get area, the hybrid control module would adjust the SRL
automatically to face to the target object, i.e., let the target
object locate in the center of the camera view. We set the
coordinate origin at the top left of the camera view and
establish a plane coordinate system, as shown in Fig. 6a.
The size of the camera view was 640px ∗ 480px, and the
coordinate values of the bounding box’s four points of the tar-
get object (Xmin , Ymin ; Xmax, Ymin ; Xmin , Ymax ; Xmax , Ymax)
were obtained from the object detection module. The coordi-
nate values of the center point of the camera was (320, 240),
and the coordinate values of the center point of the target
object (Xcenter , Ycenter ) could be calculated by


Xcenter = Xmax − (Xmax − Xmin)/2

Ycenter = Ymax − (Ymax − Ymin)/2
(9)

If the target object was not in the center of the camera view,
i.e., Xcenter �= 320 and Ycenter �= 240, the incremental PID
algorithm was used for SRL’s adaptive adjustment to face to
the target object. This algorithm could calculate the rotation
angle values �μ that different steering gears needed to adjust
in each time point based on the input deviation values e (the
distance between the center of the camera view and the center
of the object, as shown in Fig. 6b):

�μ (k) = K p (e (k)− e (k − 1))+ Ki e (k)+ Kd(e (k)

− 2e (k − 1)+ e (k − 2)) (10)
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Fig. 6. Coordinate system (a) for coordinate values calculation and
deviation value (b) between the center of the camera view and the center
of the object.

where�μ (k) is the rotation angle value at the kth control
cycle, the K p denotes the proportional coefficient, Ki denotes
the integral coefficient, Kd denotes the differential coefficient,
and e (k) is the deviation value at the kth control cycle.

Finally, when the target object was detected in the center
of the camera view, the hybrid control module automatically
executed the corresponding grasp command based on the
object category information from the object detection mod-
ule to grasp the object; the SRL would hold the object for
5 seconds, and then the hybrid control module automatically
executed the corresponding release command to release the
object on the desk. This grasp-release process represents one
successful grasping trial. We preset three grasp commands
and the corresponding release commands for different target
objects (cup, bag and bowl), and the time-sequence control
commands of different steering gears in the SRL were set in
each grasp command and each release command.

III. EXPERIMENTS

We designed the offline training experiment and online
control experiment to verify the effectiveness of the SRL
system. In the offline training experiment, we built the EEG-
based MI recognition model for each subject to recognize his
motion intention. In the online control experiment, subjects
control the SRL to grasp the target objects based on MI and
object detection, and the results of the grasping tasks were
evaluated.

A. Subjects

Ten healthy graduate students (5 males and 5 females, aged
22-29 years) participated in our experiment. Each subject
signed informed consent forms before the experiment. The
experimental procedure was reviewed and approved by the
human ethical clearance committee of Zhejiang University of
Technology.

B. Offline Training Experiment

The aim of the offline training experiment was to obtain
the MI recognition model for each subject. In the offline
training experiment, subjects wore an EEG cap connecting to
the Biosemi acquisition device (ActiveTwo, BioSemi instru-
mentation, the Netherlands) to collect 64-channel EEG data.
The reference electrode was placed at the left ear mastoid and
the ground electrode was replaced by two separate electrodes

Fig. 7. Offline training experimental scenario (a) and timing diagram of
one trial (b).

(CMS and DRL). Before placing the electrodes, the conductive
gel was used to reduce the impedance between the electrodes
and the scalp. The impedance of each electrode was kept below
5 k�. The sample rate was 1024 Hz.

After all electrodes were placed, subjects sat in front of the
computer screen and put their hands naturally on the table,
as shown in Fig. 7a. They were asked to avoid blinking their
eyes and unnecessary head/body movements as possible. Each
subject was required to complete 280 cue-based trials in the
offline experiment, including 140 trials of left hand MI and
140 trials of right hand MI. The timing diagram of one trial is
shown in Fig. 7b. Each trial lasted for 8 seconds, and started
with an acoustical warning tone at second 2 and a 2-s “+” sign
presentation. Then a cue (“←” or “→”) randomly appeared
on the screen (second 4-8) to indicate the left or right hand
movement that the subject needed to imagine, corresponding
to the left or right movement of the SRL. To avoid fatigue,
there was a 5-s interval between each trial and a 2-min rest
period between every 35 trials.

The 4-s MI EEG (second 4-8) of each trial was selected
as one input sample of MI recognition model. Due to the
individual differences of EEG, event-related desynchroniza-
tion (ERD) and event-related synchronization (ERS) patterns
which are used as important features in the discrimination
between right/left MI presented in different EEG frequency
bands for different subjects [43], [44]. To select the optimal
frequency bands to build the MI recognition model, we divided
the 8-30 Hz MI EEG signal into 11 frequency bands (8-10 Hz,
10-12 Hz, 12-14 Hz, 14-16 Hz, 16-18 Hz, 18-20 Hz, 20-22 Hz,
22-24 Hz, 24-26 Hz, 26-28 Hz, 28-30 Hz). Then, MI EEG of
each frequency band was divided into 7 time segmentations
through 1-s time window with 0.5-s overlapping, and the
time segmentations were converted to the graph data for MI
recognition model training.
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Fig. 8. Online control experimental scenario.

In the MI recognition model training process, each subject’s
data were used to train his own model. All data were divided
into five parts randomly: three parts were used as the training
set (60% of the data) for model construction, one part was used
as the validation set (20% of the data) for optimal parameter
selection, and one part was as the testing set (20% of the
data) for model evaluation. Besides, to compare with the
other methods, we selected three methods, i.e., CNN [23],
LSTM [22] and CSP+SVM [45], to train MI recognition
models respectively on the same training set, and then these
models were tested using the same testing set.

C. Online Control Experiment

The aim of the online control experiment was to evaluate
the control performance of the SRL system. The experimental
scenario is shown in Fig. 8. An experimenter fixed the SRL
hardware subsystem on the subject’s right shoulder using an
elastic strap, and adjusted the robotic arm in the sagittal plane
and kept the camera and the robotic arm in a straight line. The
subject was seated in a chair naturally and wore the 64-channel
EEG cap, and different target objects (cup, bag or bowl) were
placed on the table in front of the subject.

The task of the online control experiment was to control the
SRL system to grasp the target object. Subjects were asked to
perform MI according to the position of the target object to
control the SRL system to move to the target area. When the
target object appeared in the camera view, the SRL system
automatically adjusted the robotic arm to let the target object
locate in the center of the camera view, and then performed
the grasping tasks for different target objects based on the
corresponding preset grasp commands. Three target objects
were put in different positions on the table, i.e., the cup placed
in front on subject’s right side, the handbag placed in front
on subject’s left side, and the bowl placed in front of the
subject. The distance between the coronal plane of the three
target objects and the coronal plane of the camera was same
(20cm). Subjects were asked to control the SRL to grasp the
target object through MI after hearing the “beep”. The three
grasping tasks are shown in Fig. 9. Each subject was required

Fig. 9. The three grasping tasks in the online control experiment.

to perform 15 grasping trials for each target object, resulting
in a total of 45 grasping trials.

IV. RESULTS

A. Public Dataset Results

To verify the effectiveness of the MI recognition model
based on GCN and GRU, we firstly applied it to the public
dataset and compared it with the other three methods (CNN,
LSTM, and CSP+SVM). The public dataset we used is dataset
IIIa from BCI Competition III [46]. In this dataset, three
subjects labeled k3, k6 and l1were asked to imagine the left
hand, right hand, and tongue/foot movements according to
different visual cues. The EEG signals were recorded from
64 channels with a sample rate of 250 Hz. The number of
trials per class is 60 for each subject. We only selected the
trials of left and right hand MI tasks in this study. More
details of experimental paradigm see the following website:
http://www.bbci.de/competition/iii/. The classification accura-
cies of four methods on the dataset IIIa for each subject are
shown in Table I. For all three subjects, the average classifica-
tion accuracy of GCN+GRU (91.20%±4.68%) is higher than
those of CNN (88.06%±4.28%), LSTM (83.44%±3.17%),
and CSP+SVM (81.39%±3.76%). The real subjects had to
be participated in the online control experiment to control the
SRL in real time, since our proposed MI recognition method
was further applied to the subjects’ EEG data collected in the
offline training experiment to train their own models.

B. Results of Offline Training Experiment

1) ERD/ERS Analysis: The time course of ERD/ERS and
EEG topographies are shown in Fig. 10. For left and right
hand MI, the EEG power of C3, Cz and C4 at 8-12 Hz
frequency band was averaged across all trials and all subjects,
and was displayed as the relative percentage to the EEG
power during the reference period. During MI (second 4-8),
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Fig. 10. The time course of ERD/ERS from second 0 to 8 and EEG topographies from second 5 to 7 for left and right hand MI across all trials and
all subjects.

TABLE I
THE CLASSIFICATION ACCURACIES OF FOUR METHODS

ON THE DATASET IIIA FOR EACH SUBJECT

Fig. 11. A representative example of training loss curves of three deep
neural network models (GCN+GRU, CNN and LSTM) from subject 2.

EEG data revealed a significant ERD (second 5–7) and a
post-movement ERS (second 7–8) over the contralateral side,
and showed a weak ERS over the ipsilateral side and at
Cz. The EEG topographies of left and right hand MI from
second 5 to 7 across all trials and all subjects were calculated
to further analyze ERD/ERS patterns. Blue color stands for
ERD (power decrease), and pink color stands for ERS (power
increase).

2) Model Training Analysis: Each subject’s data were used to
train his own models using four methods. All subjects obtained
the models with good convergence results. A representative
example of training loss curves of three deep neural network

models (GCN+GRU, CNN and LSTM) from subject 2 is
shown in Fig. 11. The horizontal x-axis represents the number
of iterations, the vertical Y-axis represents the value of loss,
and the black cross represents the model with optimal parame-
ters selected by the early stopping method. The GCN+GRU
model has a lower convergence speed (i.e., the model with
optimal parameters appears later) than the other two models.
The reason was that the model structure became more com-
plicated when combining GCN and GRU algorisms. However,
low training speed during the model training process did not
affect the real-time control of the SRL in the online control
experiment. In addition, the GCN+GRU model has a smaller
loss value at the epoch with optimal parameters than the other
two models, i.e., the trained GCN+GRU model has a better
classification performance.

3) Model Classification Results: Table II shows the MI clas-
sification accuracies of GCN+GRU models at 11 EEG fre-
quency bands for all subjects. Different EEG frequency bands
presented different classification accuracies for one subject,
e.g., the highest MI classification accuracy was in 12-14 Hz
frequency band (91.43%) and the lowest MI classification
accuracy was in 28-30 Hz frequency band (76.43%) for subject
1. We selected the GCN+GRU model in the frequency band
that achieved the highest MI classification accuracy as the
optimal model for each subject.

Three other methods, i.e., CNN, LSTM, and CSP+SVM,
were also used to train the recognition models with the same
training set and the same optimal frequency band for each
subject to compare with the proposed GCN+GRU model. The
average confusion matrices of four methods for testing set
across all subject are shown in Fig. 12. The main diagonal
entries represent the average percentages of correct classifi-
cation samples and standard deviations, and the off-diagonal
entries represent the average percentages of misclassification
samples and standard deviations. To evaluate the different
recognition models, the classification accuracies of four meth-
ods on the same testing set for each subject are calculated and
shown in Table III. According to Fig. 12 and Table III, the
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TABLE II
MI CLASSIFICATION ACCURACIES OF GCN+GRU MODELS AT 11 EEG FREQUENCY BANDS FOR ALL SUBJECTS

Fig. 12. The average confusion matrices of four methods for testing set across all subjects.

TABLE III
THE OPTIMAL FREQUENCY BAND AND THE CLASSIFICATION

ACCURACIES OF FOUR METHODS ON THE SAME TESTING

SET FOR EACH SUBJECT

average classification accuracy using GCN+GRU (90.04% ±
2.36%) is 3.93%, 8.61% and 9.36% higher than those using
CNN (86.11% ± 3.42%), LSTM (81.43% ± 2.92%) and
CSP+SVM (80.68% ± 3.85%) respectively, which demon-
strate that GCN+GRU model has a better MI classification
performance. A one-way analysis of variance (ANOVA) was
applied to evaluate the main effect of the MI recognition
method on the classification accuracy. A confidence level of
95% was selected. ANOVA results demonstrated that there
was a significant main effect of the recognition method on the
classification accuracy (F = 16.044, p < 0.05). Tukey post-
hoc test indicated significant differences between GCN+GRU
and the other three recognition methods (all p < 0.05).

To further evaluate the classification performance of each
class (left hand movement or right hand movement) using
different recognition methods, the precision, recall and F-
score of the two classes using four methods for each subject
are calculated and shown in Table IV. The higher precision,
recall and F-score values indicate the better classification
performance (GCN+GRU). A 4 (GCN+GRU, CNN, LSTM,
and CSP+SVM) ×2 (left hand movement and right hand
movement) two-way ANOVA was applied to evaluate the
interaction of recognition method × MI class and the main
effect of recognition method and MI class on the classifica-
tion performance. A confidence level of 95% was selected.
ANOVA results demonstrated that no significant interaction
between the recognition method and MI class (F = 0.002, p
> 0.05); there was a main effect of recognition method on
the classification performance (F = 98.551, p < 0.05), and
there was no main effect of MI class on the classification
performance (F = 0.003, p > 0.05).

C. Results of Online Control Experiment

The results of average grasping success rate, task execution
time and target object recognition accuracy for each subject
in the online control experiment are shown in Table V. The
grasping success rate was defined as the percentage of the
number of times that the subject successfully grasped the target
objects; the task execution time was defined as the time
duration between the start of MI and the end of successful
grasping; the target object recognition accuracy was defined
as the percentage of the number of times that the target
objects were correctly recognized. As shown in Table V, for
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TABLE IV
THE PRECISION, RECALL AND F-SCORE OF THE TWO CLASSES USING FOUR METHODS FOR EACH SUBJECT

all subjects, the average grasping success rate, the average
task execution time and the average target object recognition
accuracy are 86.44 ± 3.44%, 18.85 ± 2.52 seconds and
96 ± 5.6%, respectively. In successful grasping trials, the
SRL system could be controlled by subjects to complete the
target object grasping tasks within 23 seconds, and achieved
a high target object recognition accuracy. Fig. 13 shows the
average grasping success rate of three grasping tasks across
all subjects. The results showed that the bag grasping task
achieved the highest average grasping success rate of 90.67%
± 6.44%, and the cup grasping task and the bowl grasping
task achieved the average grasping success rate of 86.67% ±
7.70% and 82.00% ± 9.45%, respectively.

V. DISCUSSION
The offline training experiment (MI recognition model

training) and online control experiment (target object
grasping tasks) were designed to verify the effectiveness of
our proposed SRL system, and both of them showed the
suitable results.

The results of offline training experiment showed that MI
recognition model trained by EEG data of different frequency
bands achieved different classification accuracies for one sub-
ject, i.e., the optimal EEG frequency band for different sub-
jects were different. Due to the individual differences, one
subject’ MI EEG presented the different levels of ERD/ERS
patterns in different frequency bands, and different subjects’
MI EEG presented the different levels of ERD/ERS patterns
in one frequency band [47], [48]. The results also showed

Fig. 13. The average grasping success rate of three grasping tasks
across all subjects.

that GCN+GRU model had the higher average classifica-
tion accuracy (90.04%) than CNN, LSTM and CSP+SVM
models. One reason is that GCN is suitable for processing
non-Euclidean structure data (EEG signals) by extracting the
deep abstract features and topological features of graph data.
Lun et al. [41] obtained topological features of EEG signals
by GCN to improve the MI classification accuracy based on
the initial CNN model. The other reason is that GRU can
extract the temporal features of EEG. The ERD/ERS patterns
change over time during MI. For example, the EEG data
reveals a significant ERD at the start and a post-movement
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TABLE V
THE RESULTS OF AVERAGE GRASPING SUCCESS RATE, TASK

EXECUTION TIME AND TARGET OBJECT RECOGNITION ACCURACY FOR

EACH SUBJECT IN THE ONLINE CONTROL EXPERIMENT

ERS over the contralateral side during left/right hand MI [49].
Qiao et al. [50] used GRU to extract EEG temporal features
from the output data of CNN model for MI classification,
and the method with GRU achieved the higher classification
accuracy than the traditional CNN model. To compare with
the traditional deep learning models, GCN+GRU model could
obtain the spatial topological features and temporal features
of EEG at the same time, and could achieve the better MI
classification performance.

The results of the online control experiment showed that the
average grasping success rate was 86.44%, the task execution
time of successful grasping trials were within 16-23s, and
the average target object recognition accuracy was 96%. All
subjects could control the SRL by MI to grasp the target
objects in a short time. The reason is that we added object
detection function together with MI control, and the target
object’s position information provided by the object detection
module could help SRL move to the target area faster and
grasp the target objects more precisely. Cio et al. [11] also
used the object detection technology to help the robotic arm
move faster and to reduce time the robotic arm moved to
the target area. The average grasping success rate of bowl
grasping task was lower than those of the other two grasping
tasks. The possible reason is that the bionic hand could not
control the strength and speed during the grasping process
so that the target object might move when the bionic hand
touched it. During the online control experiment, we tried
to test the reliability of the YOLO object detection system
under the complex environment. We found that the object
recognition also had a high level of accuracy under multi-
target environments (e.g., there were more than one object on
the desk), but the accuracy was affected adversely by a low-
light situation or an occlusion situation. Therefore, some other
algorithms like YOLO-in-the-Dark model [51] and Composi-
tionalNets [52], can be further discussed in our next research
work to improve object detection accuracy under complex
environmental conditions. In addition, one of ten subjects
(Subject 10) spent more time in grasping tasks than the others.
The possible reason is that the pre-training time before the
experiment was not enough and the SRL system was new to
him, resulting in the lower MI classification accuracy and more
times of MI to control the SRL.

One limitation in our study was that our proposed SRL
system were capable of being applied for heathy subjects to
perform grasping tasks. However, the SRL system is always
useful to augment upper limb performance for elderly or
patients suffered upper-limb motor disorder. So it is necessary
to test our proposed methods on these users in our future study.

VI. CONCLUSION

In this paper, we developed a wearable SRL system using
a hybrid control approach based on MI and object detection,
including an SRL hardware subsystem and a hybrid control
software subsystem. The system obtained the patient’s motion
intention through MI EEG signal recognition method based
on GCN and GRU to control the left and right movements of
SRL, and the object detection technology was used together
for a quick grasp of target objects to compensate for the dis-
advantages of MI control dimension and improve the control
accuracy of the SRL. The results showed that the proposed
MI EEG recognition method (GCN+GRU) could effectively
improve the MI classification accuracy compared with tradi-
tional methods; all subjects were able to complete the target
object grasping tasks by controlling the SRL in a short time,
and they all had a high grasping success rate. The proposed
SRL system can effectively assist people with upper-limb
motor disorder to perform upper-limb tasks in daily life by
natural human–robot interaction, and improve their ability of
self-help and enhance their confidence of life. In addition, our
study can provide the new thoughts and novel approaches for
the application of BCI technology in SRL control and upper-
limb motion assistance.
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