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Real-Time Finger Force Estimation Robust to a
Perturbation of Electrode Placement for

Prosthetic Hand Control
Younggeol Cho and Pyungkang Kim

Abstract— In the use of real-time myoelectric controlled
prostheses, the low accuracy of the user’s intention esti-
mation for simultaneous and proportional control (SPC)
and the vulnerability to electrode shifts make application
to real-world scenarios difficult. To overcome this barrier,
we propose a method to estimate muscle unit activation
in real time through neurophysiological modeling of the
forearm. We also propose a high-performance finger force
intention estimation model that is robust to perturbation
of electrode placement based on estimated muscle unit
activation. We compared the proposed model with previous
studies for quantitative validation of finger force inten-
tion estimation and electrode shift compensation perfor-
mance. Compared to other regression-based models in
the on/offline test, our model achieved a significantly high
intention estimation performance (p < 0.001). In addition,
it attained high performance in electrode shift compensa-
tion, and at this time, the amount of data required and the
number of models utilized were small. In conclusion, the
model proposed in this study was verified to be robust to
electrode shift and has high finger force intentionestimation
accuracy.

Index Terms— Prosthetic hand, electromyogram (EMG),
muscle activation, neurophysiologicalmodel, intention esti-
mation, electrode shift compensation, rehabilitation.

I. INTRODUCTION

IN ADDITION to the advancement of prosthetic hard-
ware for rehabilitation and functional restoration of upper

limb amputation patients, intention estimation algorithms for
intuitive control of upper limb prostheses are being actively
studied. Biosignal-based intention estimation algorithms can
be divided into two types. The first is pattern recognition-
based methods, which are adopted as control methods in
commercial prostheses because they have high recognition
accuracy and stability. Studies have classified hand and wrist
motion using various pattern recognition techniques, such as
common spatial pattern (CSP) [1], linear discriminant analysis
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(LDA) [2], and support vector machine (SVM) [3]. However,
since only specific motions defined in advance are possible and
simultaneous and proportional movement is difficult, intuitive
prosthetic control is challenging [4].

The other type of intention estimation method is regression
model-based algorithms, which are actively being consid-
ered in research and clinical trials. Such methods enable
simultaneous and proportional control (SPC) by modeling the
relationship between an electromyogram (EMG) and finger
motion/force to overcome the limitations of pattern recognition
and achieve more intuitive control of the prosthesis [5]. Model-
based intention estimation algorithms can be divided into
supervised and unsupervised learning approaches according
to the model training method. Regarding supervised learning
models, some studies have used the linear regression method
(LR) [6] and the nonlinear method with an artificial neural
network (ANN) [7]. Supervised learning-based models such
as bilateral training [7] assume that both sides move or apply
force equally. Performance differences occur according to the
degree of development of both arms and the patient’s ability.

In contrast, An unsupervised learning-based model is a
method of generating a model without target data such as fin-
ger force and position. Linear models of unsupervised learning
methods include nonnegative matrix factorization (NMF) and
NMF using the Hadamard product (NMF-HP) [8]. Recently,
a nonlinear model that enables simultaneous finger force
intention estimation with high accuracy by reflecting the
nonlinearity of the motor nervous system has been proposed
[9]. This model showed high performance in estimating wrist
force intention, and the authors emphasized the need for a
nonlinear model. We proposed a new semi-unsupervised ANN
that borrows only the structure of the autoencoder in a manner
named the constrained autoencoder (CAEN) [10]. A learning
method that maximizes the independence between fingers was
proposed, and clinical tests showed high estimation accuracy
in estimating finger force intention. CAEN is briefly described
in the Methods section as part of the intention estimation
model proposed in this paper. Previous SPC models have the
following difficulties. Unlike the case of applying force to the
wrist, the locations of the finger muscles are very close to
each other (e.g. flexor digitorum profundus), and the EMG
signal has high crosstalk. For this reason, in previous studies,
as the number of estimated fingers increased, it was difficult to
estimate intention in a situation where multiple fingers apply
forces simultaneously.

Since the methods described above use only the magnitude
of the surface EMG (sEMG) signal in the time and frequency
domains, information loss occurs in the process of extracting
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the magnitude [11]. In addition, the intention estimation model
of the existing regression method was created in the form
of a training-based black box for the relationship between
sEMG and finger force or position. This requires a large
amount of training data and has limited performance in
training situations. This is because the black box type model
requires all EMG data acquired in a representative situation
performed with prosthetic hands, and the performance of
the model cannot be guaranteed in situations outside of the
training data. Therefore, a performance decrease is caused by
many factors, such as doffing and donning of a prosthetic
hand, perturbation of electrode placement, change of muscle
condition, and retraining.

To overcome the limitations of the preceding models and
ensure high estimation accuracy and robustness of the model,
a model based on muscle activity has recently been pro-
posed [12]. The method estimates muscle unit activation from
sEMG through a mathematical model based on neurophysiol-
ogy, and the approach is applied to intention estimation. The
muscle unit (MU) is the concept of a functional unit of a
muscle and consists of alpha motor neurons and muscle fibers
that are innervated by axons. Muscle activation is information
expressed by the frequency of occurrence of action potentials
that occur when each motor unit is activated by motor neuron
stimulation [13]. The activity information of each muscle unit,
not just the amplitude of the sEMG, can be used to develop an
intention estimation model with high accuracy, and robustness
can be ensured through parameter compensation. There was a
study that estimated the joint angle of the wrist based on this
muscle unit activation [14]. High-density sEMG was used, and
the 3 degrees of freedom of the wrist joint angle were predicted
using the spike train of the motor unit decoded through convo-
lution kernel compensation (CKC). An LR model was used for
intention estimation, and the possibility of prosthetic control
using muscle activity was experimentally verified. However,
in the CKC method using high-density sEMG, processing
signals in real time is difficult due to the complexity of the
model, so offline analysis was performed based on the acquired
data. Some studies have shown that real-time estimation of
the activation of a small number of muscle units is possible
[15], but this information is difficult to use in estimating the
real-time activity of a multimuscular unit for multidegree-
of-freedom prosthetic control. There have been studies that
estimate finger force or kinematics using motor unit activation.
Motor unit spike trains (MUSTs) were decomposed from
EMGs with blind-source separation based on CKC, and finger
kinematics were estimated with high accuracy [16]. In another
study, the superiority of neural information compared to the
method using traditional EMG features such as root mean
square (RMS) and slope sign changes was shown through
finger force intention estimation results [17]. Another study
showed that the use of motor unit driving information in the
control of a prosthesis is better in terms of high intention
estimation accuracy, fast response time, and smoothness of
control [18].

A shift of the EMG electrode causes a decrease in the
performance of the previous intention estimation models.
Therefore, previous studies have been conducted to ensure
robustness to electrode shifts. There are ways to extract
features that are insensitive to electrode shifts and use them for

intention estimation [19] or to retrain the model by acquiring
data from multiple electrode shift situations [20]. Also, there
was a study to reduce the effect of electrode shift using
the transfer learning method [21]. All of these studies have
shown their applicability to pattern recognition-based intention
estimation methods. There is also a study applied to the
SPC intention estimation method [22]. After acquiring EMG
data according to wrist forces using high-density (HD)-EMGs,
they ensured robustness by varying weights according to the
sensitivity to electrode shifts. However, previous studies have
not been validated in situations where crosstalk between EMG
signals is severe, such as in estimating finger force intention,
and a large number of electrodes are required. Additionally,
the compensation results for the electrode shift in the muscle
fiber direction were excellent, while the shift in the vertical
direction was not completely compensated. This is because
they tried to solve the problem by manipulating the acquired
EMG signal, not by fundamentally compensating for the
electrode shift in terms of the model. In contrast, we intend
to present a model-based solution that compensates for the
electrode position parameters in the model. To the best of
our knowledge, none of the finger force intention estimation
models have been robust to electrode movement in this way.

In this paper, we propose a finger force intention estimation
model that is robust to electrode shift. The proposed model has
three main features. By proposing a mathematical model for
estimating muscle unit activation and using it for intention
estimation, the finger force intention can be proportionally
and simultaneously estimated with high accuracy. Real-time
calculations are also possible. In addition, the robustness of
the model is ensured via a compensation algorithm for the
perturbation of electrode placement.

II. METHODOLOGY

A. Neurophysiological Modeling of an Electromyogram

The muscle unit action potential (MUAP) is expressed as
the convolution of the fiber action potential and motor unit
discharge timing within the unit.

MU AP(t) = u(t) ∗ p(t) (1)

p is the muscle fiber action potential, expressed as the sum
of single fiber action potentials (φi ) and formulated through a
dipole model [23].

φi (t) = I

4πσz
(

1

ri,1(t)
− 1

ri,2(t)
) (2)

ri,1(t) =
√

r2
i, f + z2

e =
√

r2
i, f + (vt)2 (3)

ri,2(t) =
√

r2
i, f + (ze + b)2 =

√
r2

i, f + (vt + b)2 (4)

The parameters in the formula are the dipole current (I ),
longitudinal conductivity (σz), conduction velocity (v), end
plate-electrode distance (ze), end plate-fiber termination (L/2).
and ri,1, ri,2 are the distances from the electrode to the source
and sink currents, respectively. ri, f is the radial distance from
the electrode to fibers in i -th muscle unit.

The muscle fiber action potential (p) measured by the
sEMG electrode is defined as the sum of the multiple fiber
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Fig. 1. Configuration of electrode placement. Seven electrode pairs were
attached: four on the anterior and three on the posterior of the forearm.
The graph is a cross-sectional model of the arm and includes electrode
positions, arm cross-sectional shape and size, and muscle units. Muscle
units are arranged at regular intervals and are represented by dots.

action potentials occurring in all muscle units and is expressed
by the following formula.

pe,m(t) =
N∑

i=1

φe,m,i (t), (t = 0, 1, . . . , L/v) (5)

φe,m,i is the fiber action potential at the e-th sEMG electrode,
the m-th muscle unit, and the i -th muscle fiber, and N is the
number of fibers in each muscle unit.

u is the time of occurrence of the action potential of the
fiber, expressed as a train in the form of a spike. The frequency
of the occurrence of a muscle fiber action potential that occurs
through induction of the motor nervous system indirectly
indicates the activity of the muscle unit, which is formulated
through the recruitment threshold excitation (RTE) [13] and
interpulse frequency modulation (IPFM) [24] model. In this
study, we propose a method to estimate muscle activation
in real time based on sEMG signals and muscle unit action
potentials.

B. Proposed Model: Estimation of Muscle Unit Activation
We propose a method to estimate muscle unit activation

from an sEMG based on the above neurophysiological model.
First, for the definition of the proposed model, the circumfer-
ence of the arm where the sEMG signal was measured and
the electrode attachment position, which are values that can
be measured, are required. The circumference of the arm and
the position of the electrode can be used to define the arm
cross-section, as shown in Figure 1. The muscle units in the
cross-section are arranged at regular intervals. The number of
muscle units and muscle fibers are described in Experimental
details.

In the EMG generation model produced through neuro-
physiology, the sEMG is the sum of the muscle unit acti-
vation potentials, and each muscle unit activation potential
is expressed as the convolution of the muscle fiber action
potential and the time of occurrence. The EMG generation
model is expressed as a discrete approximation convolution
equation as follows.

se,m(t) =
n∑

τ=1

pe,m(t − τ )um(τ ) (6)

se,m is the sEMG signal obtained from electrode e at the mth
muscle unit activation potential. pe,m is the unit activation
potential in muscle unit m measured at electrode e, and um
is the motor unit discharge timing in muscle unit m. n is the
window length. We set the window length to 80 ms. This is
because the muscle fiber conduction velocity is 4 m/s and the
considered fiber length is 320 mm, so a window of at least
80 ms is required to obtain MUAPs. To ensure the real-time
performance of the model, the discrete convolution equation is
transformed into a matrix operation and expressed as follows.

⎡
⎢⎣

pe,m(t1 − τ1) · · · pe,m(t1 − τn)
...

. . .
...

pe,m(tT − τ1) · · · pe,m(tT − τn)

⎤
⎥⎦

⎡
⎢⎣

um(τ1)
...

um(τn)

⎤
⎥⎦

=
⎡
⎢⎣

se,m(t1)
...

se,m(tT )

⎤
⎥⎦ (7)

The defined matrix can be extended to all muscle unit
activation potentials and all sEMG electrode signals and is
expressed as follows.

P =
⎡
⎢⎣

P1,1 · · · P1,M
...

. . .
...

PE,1 · · · PE,M

⎤
⎥⎦ , U =

⎡
⎢⎣

U1
...

UM

⎤
⎥⎦ , S =

⎡
⎢⎣

S1
...

SE

⎤
⎥⎦ (8)

Finally, the relationship of the convolution matrix of each
muscle unit action potential P , the motor unit discharge timing
matrix U representing muscle activity, and the sEMG signal
matrix S obtained from each electrode is represented by a
simple matrix product.

PU = S (9)

S and P can be obtained by electrode measurements and
a neurophysiological model of sEMG generation. Therefore,
matrix U can be approximated via the Moore-Penrose inverse
matrix as follows.

U = P+S = (PT P)−1 PT S (10)

P+ is the Moore-Penrose pseudoinverse matrix of matrix
P and can be calculated as (PT P)−1 PT . Matrix U of all
motor unit discharge timings can be obtained by multiplying
the sEMG signal matrix S by the matrix P+. Motor unit
discharge timing is a discrete function with a value of 0 or 1,
and the time interval of occurrence is inversely related to
muscle activity. However, since matrix U calculated through
the formula is calculated in an unconstrained situation, it takes
a continuous value. In previous studies, the muscle activation
approximation value was calculated with the active muscle unit
activity frequency within a specific time window. In this study,
the approximate value of muscle activation was estimated by
applying the envelope filter. We also used all the estimated
muscle unit activations to estimate finger force intentions.

C. Finger Force Intention Estimation Model Based on
Muscle Activation

The CAEN model was used to estimate finger force
intention using muscle unit activation. CAEN is a semi-
unsupervised ANN, and a cost function has been defined
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to maximize the independence between fingers. In a pre-
vious study, CAEN was able to estimate the simultaneous
movement of fingers with high accuracy based on sEMG
signals, and the approach improved the real-time control
performance by ensuring independence between fingers. The
CAEN described in reference [10] consists of input layer
(U ), 1st hidden layer (encoding layer, E), finger intention
layer (F̂), 3rd hidden layer (decoding layer, D), and out-
put layer (U ′). the calculation process of the CAEN is as
follows.

F̂ = f2(W F̂ f1(W E U + bE) + bF̂ ) (11)

U ′ = WU f1(W D F̂ + bD) + bU (12)

U ∈ RM×T is the muscle unit activation estimated based
on the sEMG signal. In the encoding process (equation. 11),
W E and bE are the weight and bias used to calculate the
1st hidden layer, W F̂ and bF̂ are the weight and bias used
to calculate the finger force intention layer. f1 is a rectified
linear unit (RELU), and f2 is the hyperbolic tangent function.
In the decoding process (equation. 12), W D and bD are the
weight and bias used to calculate the 3rd hidden layer, WU ′

and bU ′
are the weight and bias used to calculate the output

layer. In defining the cost function, a constraint matrix C with
the same dimension as F̂ was defined as a label indicating the
finger instructed to apply force when acquiring training data.
C is a matrix indicating whether each finger is given strength
during training. Each matrix element can take values of 0 or
1 as follows.

C =
⎡
⎣

CT humb,t1 CT humb,t2 CT humb,t3 · · ·
CI ndex,t1 CI ndex,t2 CI ndex,t3 · · ·
CMiddle,t1 CMiddle,t2 CMiddle,t3 · · ·

⎤
⎦

=
⎡
⎣

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·

⎤
⎦ (13)

The cost function for training the CAEN model is as
follows.

J = ∥∥U − U ′∥∥
2 +

∥∥(1 − C)(F̂ ◦ F̂)
∥∥

2∥∥C(F̂ ◦ F̂)
∥∥

2

(14)

The operator ‘◦’ is the Hadamard product, which multiplies
the elements in the same position of two matrices with the
same dimension. The cost function is the sum of the part that
trains the input layer muscle unit activity U and the output
layer U ′ equally and the part that maximizes the independence
between the fingers while estimating the finger force intention.
The denominator of the formula after the plus sign in the cost
function only involves the node value of the finger that was
instructed to apply the force through the Hadamard product
of matrix C . In contrast, in the numerator, the matrix C
in the denominator formula is changed to 1 − C so that
only the node value of the finger that did not apply any
force remains. Therefore, by minimizing the cost function,
the finger force intention can be estimated with high interfin-
ger independence by maximizing the finger force intention
value for the finger applying the force and minimizing the
rest.

D. Compensation of a Perturbation of
Electrode Placement

Changes in electrode position inevitably occur depending
on the time of use and removal of a prosthesis. In the case of
the regression method of previous intention estimation models,
acquisition of new training data and retraining of the model
are inevitable, which requires time and effort from the user.
To overcome this issue, in this study, the robustness of the
model with respect to electrode position was ensured through
an algorithm that compensates for electrode position change,
which is one of the parameters in the proposed muscle unit
activity estimation model. We performed compensation by
changing the electrode position in the estimation model of
muscle unit activation. The finger force estimation model,
CAEN, does not change. The electrode position is a parameter
that affects the muscle unit action potential P . Then, We can
represent P+ as a function of the electrode position from the
equation.10.

U(s) = P+(s)S (15)

s is the shifted position based on the initial electrode
position. Since CAEN is a model trained using the EMG
acquired at the initial electrode position, the performance
decreases when the electrode is shifted. When the electrode
positions are shifted, we acquire EMG by grabbing three
fingers and calculated U(s) according to s. We define the cost
function J including the muscle activity (Uo) of the same
situation obtained at the initial electrode position.

J (s) = ∥∥U(s) − Uo
∥∥

2 (16)

the compensation algorithm aims to find s such that the cost
function J is minimized. This method can ensure robustness
by modifying the parameters in the model without additional
training data acquisition and model generation.

III. EXPERIMENTAL DETAILS

A. Subjects

The subjects were 10 males, ranging in age from 24 to
33 years old. All subjects were right-handed, with intact hand
function and no history of damage to the nervous system.
The sEMG signal and fingertip force were acquired on the
right arm of all participants. The experiment was approved by
the KAIST Bioethics Review Board (IRB), and consent was
obtained from all subjects after explaining the experimental
process and precautions in detail.

B. Signal Acquisition and Experimental Protocol

Self-developed equipment was used to acquire and process
sEMG signals. We obtained robust EMG using a differential
amplifier (INA 128, Texas Instruments), a bandpass filter,
and a right leg driver (RLD) circuit. The RLD is a circuit
used to actively remove external electrical interference and
common noise. The common-mode voltage obtained through
an additional electrode for the RLD attached to the body is
passed through an inverting amplifier and input to the dif-
ferential amplifier. This allows active cancellation of common
noise components acquired by the subject’s body. A disposable
electrode (Ag/AgCl, Kendall) was used as the sEMG electrode.
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Fig. 2. Schematic diagram of the experimental protocol.Subjects look at
the reference profile displayed on the monitor and apply force to fingers
to match the measured force signal. At this time, EMG and finger force
are recorded. Five models are created and analyzed performance using
two indicators, the NRMSE and IR. An online test is conducted, and the
results are analyzed using six indicators.

Electrodes were attached to the surface of the forearm close
to the wrist with 7 channels (4 channels on the anterior
and 3 channels on the posterior of the forearm) at 25 mm
intervals, excluding the area close to the radius and ulna. The
sEMG acquired through each channel passed through a signal
amplification and filter circuit, and a signal was acquired by
a desktop computer through a data acquisition (DAQ) board
(Pcie-6363, National Instruments). A second-order infinite
impulse response (IIR) Butterworth bandpass filter was applied
to separate the signal obtained through the analog filter from
the 5 – 500 Hz signal, which is the main frequency domain of
the EMG. In the case of the preceding comparison model, a
1.5 Hz IIR Butterworth low-pass filter was applied to envelop
the signal. Load cells (CBFS-10 K C-type, Bongshin Loadcell
Co., Ltd.) were used to measure the force of the fingertips
to obtain training data for the supervised learning method
comparison model and to define the performance index of the
intention estimation model. The signal was acquired with a
2 kHz sampling frequency, and the preceding signal processing
was performed identically in all sEMG channels.

For data acquisition, a method similar to that used in
previous studies was chosen for comparison with the preceding
model, as shown in Figure 2. After attaching the sEMG
electrode, the arm was placed in a comfortable position, and
the sEMG and fingertip force were measured while applying
force to each finger individually and simultaneously. The mea-
surement was repeated five times for each type of force applied
to each finger, and a total of 35 data acquisition processes were
conducted. We displayed the subject’s fingertip force obtained
through the load cell on the monitor. The load cell signal
was normalized based on the subject’s maximum voluntary
contraction (MVC). In addition, 1.5 seconds at the beginning
and end of the ten-second interval were set as rest times, and
the guide profile in the form of a sine wave was displayed
along with the load cell signal for 7 seconds. The amplitude of
the sine was selected as 50% of the MVC. The subject looked
at the profile and applied force to the fingertip to follow the
load cell signal, and at this time, the EMG signal was acquired.

Fig. 3. Schematic diagram of the proposed model and comparative
model. Supervised learning-based models (LR, ANN) were generated
using EMG signals and fingertip force information, and unsupervised
learning-based models (NMF, CAEN) were generated using only EMG
signals. The comparative models were created based on the enveloped
sEMG signal, but the proposed model estimated muscle activation based
on the neurophysiological model using the EMG signal itself.

C. Offline Test: Model Generation

A schematic diagram of the proposed model and comparison
model is shown in Figure 3. To create the proposed model, the
number and position of muscle units in the cross-section of
the arm and the position of the sEMG electrodes are defined.
Depending on the size of the muscle, the number of muscle
units and the number of muscle fibers in each muscle unit
were calculated using the values cited in previous studies [13],
[25]. We assumed that the muscle cross-section was an ellipse
with the semi-major axis of 35 mm and the semi-minor axis of
25 mm, and the thickness of the skin was assumed to be 3 mm
according to reference [26]. The same muscle cross-section
assumption was applied to all subjects, and electrodes were
attached to each subject’s upper limb by finding the location
most similar to the circumference of the ellipse. We arranged
the muscle units to be equally spaced inside the muscle
cross-section except for the skin. We performed a preliminary
test to select the number of Muscle units as a hyper para-
meter. Performance change is insignificant at more than two
hundred MUs, so we selected 218 MUs to secure real-time
performance considering computation cost. The total number
of muscle fibers was 44234, calculated based on the muscle
area (π ∗(32)∗(22)mm2) and fiber density (20 f ibers/mm2).
We assumed that the number of fibers in each MU had an
exponential distribution based on the reference [13], and the
formula is as follows.

n fi = α ∗ e−β∗i (17)

α = (1 − e−β)/(1 − e−1) ∗ N f (18)

n fi is the number of fibers in i -th MU and i is the MU
number. β is the attenuation slope set to 1/218 in this study and
is a value determined empirically as a hyper parameter. N f is
the total number of muscle fibers. Then, the convolution matrix
P of the muscle unit action potential was calculated using
the distance between the position of each muscle unit and
the sEMG electrodes and the number of fibers in the muscle
unit. The parameters taken from previous papers are shown in
Table I [23].

After constructing matrix S using the measured sEMG
signals, the activation of each muscle unit was estimated
through the proposed model. CAEN was trained based on the
estimated muscle unit activation. Data for model generation



1238 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE I
PARAMETERS FOR THE MUSCLE ACTIVATION MODEL

were acquired five trials for all combinations of finger force.
Four out of five datasets (80%) were used as training data,
and the remaining dataset (20%) was used as test data. The
training process was conducted in 5-fold manner. In addition,
since the model was trained in the mini-batch method after
randomly shuffling the training data, the influence of the model
performance according to the order of finger combination
was minimized. During training, training data were randomly
mixed and divided by 1/100 to perform minibatch learning,
and the training termination condition was defined as follows.
The independence ratio (IR) of the finger’s estimated force
intention value for each epoch was calculated, and we cal-
culated the gradient of the change in the current IR value
compared to the previous epoch. We stopped training when
the gradient value was less than 0.1 for five epochs. The
maximum number of epochs was set to 100. For verification
through performance comparison, comparative intention esti-
mation models were created. Among the preceding models,
supervised learning-based models (LR, ANN) were trained
using sEMG signals and measured fingertip force information,
and unsupervised learning-based models (NMF, CAEN) were
trained using only sEMG signals.

The model performance was analyzed with respect to two
performance indicators. First, the difference between the esti-
mated finger force intention value (F̂) and the measured finger
tip force (F) was defined as the normalized root mean square
error (NRMSE), as follows.

N RM SE = ∥∥F − F̂
∥∥

2
(19)

The other performance indicator was the independence ratio
(IR), which represents the independent movement of each fin-
ger. The IR is defined as the average value of the unintentional
finger force versus the intended finger force minus 1, and the
closer the value is to 1, the more accurately the force of the
intended finger is estimated.

I R = 1 −
∥∥F̂Unintended

∥∥
2∥∥F̂I ntended

∥∥
2

(20)

D. Online Test: Real-Time Target Reaching Experiment
We conducted a target reaching experiment (TRE) to indi-

rectly verify the real-time prosthetic control performance (see
Fig. 4). This experiment was performed in previous studies
[10], [27] and proceeded as followings.

The estimated finger force intention is normalized based on
50% maximum voluntary contraction (MVC) and expressed
as the bar’s position in three windows for each finger. The
bars can move between 0 (rest) and 1 (50% MVC). Then,

Fig. 4. Target reaching experiment (TRE). The estimated force intention
of each finger is expressed as three bars, and the goal is to have the
bars reach the black target windows simultaneously within the time limit.

TABLE II
ONLINE CONTROL PHASE PERFORMANCE INDICES

we marked the target in the form of a black box with a width of
0.2 [a.u.] in the three windows. The subjects should try to keep
all bars within the target simultaneously. Subjects performed
a total of 35 tasks involving targets in different positions for
all instances of force on individual (T, I, M) and simultaneous
(TI, TM, IM, TIM) fingers. A maximum of 20 seconds was
given for one task, and beyond that, it was recorded as a
failure. Ten seconds of rest was given between each task to
allow the muscles to return to rest. To minimize the effect
of user learning, the experimental order of the five models
was randomly set, and the participants were not informed.
In addition, In order to minimize the effect of muscle fatigue,
we gave the subjects enough rest before testing with each
model.

The results of the TRE were analyzed with respect to six
performance indicators. During the TRE, the sEMG signal
and the intention estimation trajectory for each finger were
recorded. The completion rate (α), completion time (tc),
overshoot (k), throughput (T P), speed (v), and efficiency
coefficient (�) were used as performance indicators. The
definition of each performance index is provided in Table II.

E. Experiment for Compensation of the Perturbation of
Electrode Placement

After shifting the positions of all electrodes by 25 mm,
quantitative analysis was performed using the cost function
(Equation 16), which defined the difference in activation of
each MU before and after electrode shift. We selected previous
methods for electrode position compensation to compare and
verify the performance of the proposed method. First, there is
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the group training (GT) method that trains a model using data
acquired from multiple electrode location sites [28]. There is
also the position identification (PI) method, which makes a
model for each electrode position and selects a suitable model
for use [29]. Offline analysis of 10 participants was performed,
and we compared the performance of the model trained on the
original electrode site when the electrode was moved but no
compensation method was applied (shift) and when the GT,
PI, and proposed methods were applied. We used CAEN as the
finger force intention estimation model and analyzed it through
the NRMSE and IR performance indicators. Additionally, after
analyzing the offline results of ten participants, an online test
was performed on two of them. We analyzed the performance
change of five intention estimation models before and after
electrode shift through online testing. All experimental condi-
tions were the same, except for the electrode position.

F. Statistics

In this study, one-way repeated-measures ANOVA was per-
formed to compare the performance between models. To deter-
mine the suitability of the statistical analysis assumptions,
normality was first assessed by the Kolmogorov-Smirnov
(KS) test. The assumption of homodispersity was verified
by Levene’s test, and the assumption of sphericity was ver-
ified by Mauchly’s test. In the case of insufficient spheric-
ity of the sample, the degrees of freedom were corrected
using the Greenhouse-Geisser correction. Statistical compari-
son of the performance of each model was performed using the
Bonferroni post hoc test. In all analyses, statistical significance
was indicated by a P value less than 0.05.

IV. RESULTS

A. Offline Test Results

The offline test results were analyzed according to the
previously defined performance indicators NRMSE and IR,
as shown in Figure 5. One-way repeated-measures ANOVA
based on the Greenhouse-Geisser correction indicated sta-
tistically significant differences (p<0.001) between models
in terms of both the NRMSE and IR. Bonferroni post hoc
tests were performed to compare models, and the results are
expressed as stars on the graph. The proposed model had a
higher NRMSE than that of ANN but a lower NRMSE than
the rest of the models. For the IR, which represents the inde-
pendence between fingers, the proposed model outperformed
(p<0.001) all other models. The average IR of the proposed
model was 0.936, which is considerably higher than that of the
other models (ANN: 0.883, CAEN: 0.920, LR: 0.777, NMF:
0.708). The intention estimation results are expressed as a
graph in Figure 6. A high IR means that force can be applied to
a finger independently during prosthetic control, which could
lead to excellent results in the online TRE test.

B. Online Test Results

In online testing(see. fig. 7), the proposed model showed the
highest performance on four of the six performance indicators
(completion rate, completion time, throughput, and efficiency
coefficient). In the case of success rate, the proposed model
showed a statistically significant difference (p<0.001) from

Fig. 5. Offline test results. The proposed model showed a low NRMSE
compared to that of the previous models, except for the supervised
learning nonlinear model ANN, and a high IR compared to all previous
models.

Fig. 6. Trajectory of finger force intention estimation over time. The
measured finger force (red dashed line) and estimation results using
five models are presented. The results of applying force in the order
of type (T, I, M, TI, TM, IM, TIM) are shown. Compared to the linear
models (LR, NMF), the proposed model has a small difference in the
measured force trajectory. The proposed model maintains an estimated
value close to zero in a situation where no force is applied, resulting in
high independence between the fingers.

LR and NMF and achieved the highest value among all
models. In terms of success time, the proposed model was
fast, with a statistically significant difference (p<0.001) from
ANN, LR, and NMF. In terms of overshoot, the performance
was similar to that of the other models, except for ANN.
In terms of throughput, the proposed model showed a sta-
tistically significant difference (p<0.001) from LR and NMF
and achieved the highest value among all models. In terms
of speed, the proposed model was fast, with a statistically
significant difference (p<0.001) from LR and NMF but similar
value to that of the nonlinear model. Finally, in terms of
trajectory efficiency, the proposed model showed a statistically
significant difference (p<0.001) compared to all other models
and achieved the best performance. Detailed offline and online
test results are shown in Table III.

C. Experimental Results of Compensation for the
Perturbation of Electrode Placement

To verify the robustness of the proposed model against
electrode position changes, the performance changes of all
models before and after shifting the electrodes by 25 mm
were analyzed. The cost function (Equation 16) calculated by
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Fig. 7. Online test results according to 6 performance indicators.
The proposed model outperformed the other models with respect to
4 performance indicators (completion rate, completion time, throughput,
and efficiency coefficient).

TABLE III
OFFLINE/ONLINE TEST RESULTS

Fig. 8. Cost function trajectory according to the compensation of
electrode position change. When the electrode was moved 25 mm
after the initial model creation, the minimum value was achieved at
approximately 25 mm, indicating the correct operation of the electrode
position compensation algorithm.

the electrode position compensation algorithm of the proposed
model according to the electrode position change in the model
is expressed in Figure 8. The cost function when moving the
electrode 25 mm is expressed as a graph, changing from the
case where the position of the electrode in the model was not
compensated (0 mm) to a maximum of 50 mm. At approxi-
mately 25 mm, the cost function showed the minimum value,
which corresponds to an actual physical electrode position
change of 25 mm. More intuitive analysis is possible by
viewing the electrode position compensation results for each
muscle unit. The graph on the left side of Figure 9 expresses
the cost function for each muscle unit position in the arm

Fig. 9. Graphical representation of muscle unit activation for compensa-
tion of electrode position changes. The left graph shows the cost function
value of each muscle unit before (top graph) and after (bottom graph)
electrode position shift compensation. The closer the result is to the red
color, the more severe the distortion of the muscle unit activity when the
electrode position is shifted, and black indicates the same estimation as
the muscle unit activity when the model is created. The graph on the
right shows muscle unit activation before and after electrode position
compensation in 6 muscle units.

cross-section before (upper left) and after (lower left) electrode
position compensation. The cost function represents an error
in estimating muscle activation before and after the electrode
position shift, and before electrode position compensation,
it shows a high error in all muscle units. However, the error
significantly decreases after electrode position compensation.
The graph on the right side of Figure 9 expresses the activation
of six muscle units as an example. Before the electrode
position change, each muscle unit activation is represented
by a black line, and after the 25 mm electrode position
shift, the muscle activation (red line) is greatly distorted.
However, after electrode position compensation, the muscle
activity (blue line) is very similar to that before the electrode
position change. Therefore, even though the electrode position
has changed, the method performs similarly to the first time
the prosthetic was worn.

We analyzed the performance of each compensation method
after changing the electrode position based on all previously
used performance indicators, and the results are shown in
Figure 10. When the electrode shifted by 25 mm without
compensation for the model trained on the original site,
the NRMSE increased approximately 2 times, and the IR
value was a negative value, showing an extreme performance
decrease. When the GT method was applied, the performance
improved compared to before compensation, but a significant
decrease in performance was observed compared to before
the electrode shift. When the PI method was applied, the
performance was similar to that of the original site model with
a difference of less than 6% for the NRMSE and less than 1%
for the IR. Similarly, the proposed model showed a less than
1% performance difference from the original site model in
terms of the NRMSE and IR. That is, the PI and proposed
models were compensated to achieve the performance of
the original model despite the extreme electrode movement
by 25 mm.

PI and the proposed model are similar in terms of electrode
shift compensation performance, and specific actions must
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Fig. 10. Offline test results according to electrode position shift and
compensation method. ‘Shift’ is the result after electrode shift without
compensation. Additionally, the group training (GT), position identifica-
tion (PI), and proposed method results are the results after electrode shift
and compensation.

TABLE IV
CHARACTERISTICS OF ELECTRODE SHIFT COMPENSATION MODELS

be performed to select or update the model according to
the electrode shift. However, there is a difference in the
characteristics of the compensation method(see table. IV).
PI requires as many models and training data as the number
of electrode positions for which compensation is desired.
In addition, since it is a discrete method that can compensate
only for the position of the electrode for which the model is
trained, a performance decrease is inevitable if it is out of that
position. In contrast, the proposed model compensates only
for the electrode position parameters so that model training is
possible only with data obtained from the electrode position
of the original site. In addition, the electrode position can be
continuously compensated for. That is, the proposed method
can compensate for the continuous electrode position shift with
high performance using only one model.

In the online test experiment(see fig. 11), other mod-
els showed significant performance degradation compared
to before electrode shift. The success rate decreased by
more than 1/3 and was less than 25%, and the success
time more than doubled. In addition, the overshoot increased
by more than a factor of 2, and the trajectory efficiency
decreased to 1/10 of the original value. However, for the pro-
posed model, the performance before and after the electrode
position change was similar for all performance indicators. The
NRMSE and IR differed by less than 0.5%, and the online test
results showed almost the same performance.

V. DISCUSSION

In this study, we proposed a method to estimate muscle
unit activation from sEMG based on neurophysiology. Unlike

Fig. 11. Online test results of models after an electrode position shift.
The averaged results of all participants are presented. In the case of the
other models, the performance decreased significantly in all indicators,
except for speed and throughput, but the proposed model maintained the
performance in all indicators.

previous studies using EMG amplitude and time series feature
extraction, the proposed method estimates fundamental muscle
unit activation and uses it to estimate high-performance force
intentions. In addition, the robustness of the model was
verified through compensation for the electrode position. The
robustness of the proposed model is due to the mathematical
modeling of muscle units based on parameters, and similar
approaches have previously been published [30], [31].

The proposed model was compared with previous models
in offline/online tests. The online test ensured the reliability
of the performance analysis by making the experimental con-
figuration and verification method similar to those of previous
studies [14], [27] related to intention estimation models. The
proposed model outperformed previous models in terms of
both the NRMSE and IR and achieved the best performance
on four of the six performance indicators of the online
test. Therefore, the proposed model has high competitiveness
compared to previous models.

The robustness of the proposed model after an electrode
position shift was also verified. We attempted to address the
degradation in performance due to electrode shift, an issue
solved in EMG-based prosthetic control through neurophysi-
ological modeling. A quantitative comparison was performed
with previous methods for compensating for electrode shift,
and in offline tests, the proposed model was shown to be supe-
rior in terms of performance and amount of data (number of
models) for compensation. In addition, the performance of the
intention estimation model before and after the electrode shift
was compared through an online test. When the compensation
method was not applied, the previous model showed significant
performance degradation in all performance indicators, but
the proposed model showed similar performance even when
using the intention estimation model trained at the original site
by compensating for only the electrode position parameter.
We performed an analysis of the extreme electrode shift
situation of 25 mm due to hardware limitations, but additional
analysis was also performed to indirectly show the perfor-
mance of the proposed compensation method for electrode
shifts of several millimeters that may occur in daily life.
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TABLE V
CHARACTERISTICS OF ELECTRODE SHIFT COMPENSATION MODELS

We analyzed the situation in which all electrodes were moved
sideways one channel at a time. This is an offline analysis of
the data, and the results are shown in Table V.

When the electrode was shifted from 25 mm (one channel
shift) to 150 mm (six channel shift), the proposed compensa-
tion method showed a high compensation performance with
a less than 2% error from the original site performance in
the estimation of muscle unit activation. Additionally, when
the electrode shift is closer to the medial side, that is, the
shift distance is small, the error after compensation tends to
decrease. In other words, we can predict that the compensation
performance will be higher in the electrode shift of a few
millimeters that can occur in daily life.

In the electrode shift experiment, the previous models
suffered significant performance decreases. So offline test was
conducted with 10 subjects, but, the online test was conducted
with only two subjects because the estimated force of the
finger was substantially different from the intended force,
which greatly increased the time for the online test experiment
and made proceeding with the experiment difficult due to
muscle fatigue and decreased concentration. We found a high
correlation between offline and online test results, especially
between IR and online test results. Therefore, we can suggest
criteria for judging whether to conduct an online experiment
based on the offline results. If the correlation coefficient
between the offline performance indices before and after the
electrode shift is below a certain level, then we can predict that
the performance of the model is significantly reduced even if
we do not proceed with the online experiment.

In this study, after acquiring EMG data of all channels,
the electrode movement compensation algorithm was verified
offline using the data shifted by one channel (the results
are shown in Figs. 8 and 9). The results of the online test
(Fig. 11) showed that it was actually a possible method for
electrode position compensation but did not suggest a method
to automatically detect the electrode position and update the
model. In the future, we would like to propose a calibration
method that provides compensation for the model by utilizing
some representative hand movements. We will conduct a
study to determine which representative motions provide good
results in terms of time and electrode position compensation.

We used the estimated muscle unit activation for estimating
finger force intention. We showed that the proposed model
has robust characteristics to electrode movement. However,
we expect the proposed model to be applicable to a wider
field. The proposed method can acquire additional information
called muscle unit activation. This allows us to monitor
which upper limb muscles are contracting. Based on this
muscle unit activation map, the degree of real-time muscle
activity can be identified and used for rehabilitation. The
proposed model can be used in the rehabilitation process to
help amputees adapt to prosthetic limbs. It can also be used

as information for rehabilitation guidance for patients with
neurological abnormalities or patients who have undergone
targeted muscle reinnervation surgery.

A. Limitations
The experimental and verification methods applied in this

study have the following limitations. High-performance finger
force intention estimation using the estimated muscle activity
was possible, but the accuracy of the muscle activity estimation
result was not verified. To overcome the limitations of the
previous black box-type models, we proposed a mathematical
model based on prior scientific reports. However, verification
of the muscle activity estimation model itself was not carried
out, and a neural network was used to estimate finger force
intention. The results of this study must be compared with the
results of previous studies [32] that estimated motor unit spike
trains based on HD-EMGs or with direct measurements using
internal EMGs. However, through this study, we proposed a
gray box-type model that revealed a part of the neurophys-
iological process that gives strength to the fingers, and as
a result, robustness characteristics were obtained according
to the shift of the electrodes. An online test was conducted
to verify its feasibility. In the future, we plan to conduct
research that provides compensation by reflecting muscle
fatigue, development and degeneration in the model.

One of the points to emphasize in the paper, the robustness
of the intention estimation model, was analyzed by limiting
the electrode position. Further research is needed to ensure
robustness against other factors, such as muscle fatigue [33],
development and degeneration and external stimulation [34].
In addition, all subjects are able-bodied: the results must be
verified for amputees. The amplitude and frequency char-
acteristics of the EMG change after amputation as muscle
degenerates over time. Therefore, the results must be verified
for amputees in various conditions. The experiment conducted
in this study was analyzed in a situation where the arm move-
ment was small and the object was not lifted. Performance
verification is required in dynamic situations in which objects
are moved or carried. We plan to evaluate and improve the
model while performing real-life tasks by applying a robot
prosthesis [35] that is currently under development.

VI. CONCLUSION

This study aimed to develop an intention estimation model
based on the regression method using EMG signals in the
clinical research stage. Most of the issues noted by previous
research groups are related to the robustness of the model.
Therefore, we obtained high accuracy and robustness of
the model by performing mathematical modeling rather than
implementing the conventional black box-type intention esti-
mation model. The performance of the model was compared
with four representative models. In the offline test, the pro-
posed model showed high performance in intention estimation
accuracy and independence between fingers. In the online test,
the proposed model achieved the highest performance in 4 of
6 performance indicators.

The robustness of the proposed model was compared with
that of previous models. After each electrode was shifted by
25 mm, the other models suffered significant performance
degradation in offline/online test. But, the proposed model
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maintained high performance. In conclusion, the proposed
model has high performance and is robust to electrode position
shifts. In future studies, we intend to develop a more robust
model by applying the compensation technique to muscle
fatigue and state changes. Finally, we intend to make the
proposed intention estimation model practical for prosthetic
arms of amputees and real-life applications.
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