
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022 1113

Distraction Classification During Target Tracking
Tasks Involving Target and Cursor

Flickering Using EEGNet
Hyunmi Lim , Sungmin Kim, and Jeonghun Ku

Abstract— Keeping patients from being distracted while
performing motor rehabilitation is important. An EEG-based
biofeedback strategy has been introduced to help encour-
age participants to focus their attention on rehabilitation
tasks. Here, we suggest a BCI-based monitoring method
using a flickering cursor and target that can evoke a
steady-state visually evoked potential (SSVEP) using the
fact that the SSVEP is modulated by a patient’s attention.
Fifteen healthy individuals performed a tracking task where
the target and cursor flickered. There were two tracking ses-
sions, one with and one without flickering stimuli, and each
session had four conditions in which each had no distractor
(non-D), a visual (vis-D) or cognitive distractor (cog-D),
and both distractors (both-D). An EEGNet was trained as a
classifierusing only non-D and both-D conditions to classify
whether it was distracted and validated with a leave-one-
subject-out scheme. The results reveal that the proposed
classifier demonstrates superior performance when using
data from the task with the flickering stimuli compared to
the case without the flickering stimuli. Furthermore, the
observed classification likelihood was between those cor-
responding to the non-D and both-D when using the trained
EEGNet. This suggests that the classifier trained for the
two conditions could also be used to measure the level
of distraction by windowing and averaging the outcomes.
Therefore, the proposed method is advantageous because
it can reveal a robust and continuous level of patient dis-
traction. This facilitates its successful application to the
rehabilitation systems that use computerized technology,
such as virtual reality to encourage patient engagement.

Index Terms— Attention, neurofeedback,brain–computer
interface,flickeringcursor and target, deep learning, steady-
state visually evoked potential.
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I. INTRODUCTION

PATIENTS with impaired motor function resulting from
neuronal injuries require proper rehabilitation. Successful

rehabilitation is mostly accompanied by neuronal reorganiza-
tion, called brain plasticity, which is defined as the intrinsic
ability of the brain to reorganize its function and structure
in response to stimuli and injuries. Effective brain plasticity
can be accomplished by a proper rehabilitation paradigm [1],
including training environments and contents that can provide
enriched stimuli [2]. In addition, the importance of patients’
attentive participation in rehabilitation programs has been
emphasized [3].

Several neuroscientific studies have suggested that attention
is a critical modulator of plasticity [4], [5] and insisted that
maintaining attention while performing motor exercises pro-
motes neuronal plasticity and motor learning, which directly
influences the outcome of patient rehabilitation [6].

However, during rehabilitation, patients are frequently dis-
tracted by distractors in their surroundings. These reduce
attention on rehabilitation, which may reduce the effectiveness
of brain plasticity [7]. In addition, the patient and their
clinicians do not notice the loss of attention in the middle of
training, which hinders intervention and mediation that return
the patient’s attention to the rehabilitation task.

Currently, the development of a method for monitoring
a patient’s level of being distracted is considered critical.
To measure the level of attention of a patient to a task, brain
signals, such as those of electroencephalography (EEG) sig-
nals, which respond to the activation of different brain areas,
could be the first choice because they can trace variations in
a patient’s cognitive states. Attentional variation could cause
changes in brain signal patterns in both the time and frequency
domains.

The power of each EEG frequency band, such as alpha, beta,
theta, and gamma, represents different cognitive states [8].
Therefore, there are several indices extracted for measuring
attentional levels by deriving a formula using the spectrum
pattern [9]. This method is very simple to implement and can
calculate the engagement related indices continuously, but it
is not relatively robust across individuals.

The EEG pattern regarding attention in the time domain can
be represented as components of the event-related potential
(ERP), such as P300, which is usually evoked by the oddball
paradigm [10]. In the oddball paradigm, where standard and
target (deviant) stimuli are represented by different frequencies
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and patients are asked to respond or attend to target stimuli
exclusively, distinct EEG components (e.g., P300) that respond
to the target stimuli can be observed in a specific time window
(approximately 300 ms after stimuli onset) and compared to
those corresponding to the standard stimuli. These components
are more prominent when the patient pays more attention to
the task than when they do not.

Many methods have been proposed using this paradigm
for detecting a patient’s distraction from rehabilitation tasks,
such as motor tasks, where the patient should be engaged
[11], [12]. In these studies, subjects were asked to perform
a motor task and an oddball task simultaneously. Then, the
EEG responses to the oddball paradigm would be weak when
they pay attention to the motor task, while the responses
would be strong when they get distracted and sidetracked to
the oddball task. This can be interpreted as a classification
problem, a robust and accurate solution to which can be
obtained using machine learning and deep learning classifiers
that comprise fewer individual differences in the detection
state.

However, this ERP-based paradigm has some shortcom-
ings. First, the task should be completed within a specific
time-locked window for ERP components to be observed
(e.g. approximately 1.5 s period from 1 s before stimulus
onset to 0.5 s after onset). Second, the classification should
wait for more time after this window for the target stimuli
to appear, which makes the classification process trial-wise
and the classification interval longer because target stimuli in
the oddball task are seldom observed. In addition, the oddball
paradigm requires the user to count the number of target
stimuli or respond to the target; thus, it would necessarily
become a type of distraction by taking the patient’s attention
from the task that should be performed.

The steady-state visual evoked potential (SSVEP) paradigm
can be expected to ensure robust classifier performance and
a seamless classification process [13]. The SSVEP is an
EEG oscillation pattern with a frequency of the flickering
visual stimuli (e.g., a light source) that a patient is looking
at. This is mostly observed in electrodes over the occipital
and parietal lobes of the human brain. Therefore, whether a
patient is looking at the stimuli or not can be detectable by
observing the frequency spectrum of EEG because SSVEP
appears as an oscillation pattern with the same frequency as
the flickering visual stimuli when the patient is looking at
the stimulus. Several brain–computer interface (BCI) studies
have used the SSVEP paradigm to select one command from
several flickering visual stimuli, each representing different
operations under different situations, such as spelling [14], vir-
tual telephony [15], and robot control [16]. This is because the
SSVEP response to the target stimulus is enhanced when the
subject attentively stares at the target stimulus among several
stimuli. This shows that the SSVEP response is perturbed by
whether an individual is looking at a stimulus attentively or
is distracted [17]–[19]. Therefore, we hypothesized that the
EEG responses would be modulated by one’s attention while
performing motor tasks if the SSVEP paradigm is adopted,
and it could help classify one’s state of being distracted while
ensuring robust and seamless monitoring of the patient’s state
of being distracted from the task; this can be accomplished

by adopting the SSVEP paradigm into the motor exercise
system. Here, we introduce a simple motor task that can
detect whether a user is distracted using an SSVEP-based
classification system. This was accomplished using a flickering
target and cursor in the motor task, which evokes SSVEP.
The motor task introduced here can be potentially used for
computerized motor rehabilitation for ensuring that patients
are paying attention.

II. METHODS

A. Subjects

We recruited 15 healthy right-handed adults (8 men and
7 women) in this study. This study was approved by the Insti-
tutional Review Board (IRB) of Keimyung University, Daegu,
South Korea (IRB number: 40525-202106-HR-024-03), and
informed consent was obtained from all the participants. The
mean age of the participants was 25.67 years (± 3.48 years).

B. Task Description

The subjects were asked to perform a motor task in which
they were asked to track a semicircular target and make a circle
with another semicircular cursor using a mouse. The target was
moving around on an arc of a virtual circle generated randomly
on the screen to prevent rapid changes in the target’s direction,
ensuring that the subjects’ movements were smooth. Because
the direction of the target was always toward the cursor, the
subject had to move the cursor toward the target and did not
need much effort to make the circle.

To evoke the SSVEP pattern in the brain signal, the target
and cursor were flickering at 15 Hz and 12 Hz, respectively.

There were two types of distractors: visual and cognitive.
With visual distractors, the target comprised 20 half circles of
the same radius, and their color was set as close as possible
to that of the flickering target; hence, they were gray because
the target flickered between black and white. The distractors
were moved on the screen in the same manner as the target
but with different trajectories.

In the cognitive distractor case, the participants were given
a subtraction problem every second. The problems were gener-
ated and provided through a PC speaker using a text-to-speech
module. These problems required participants to subtract
one-digit numbers from two-digit numbers and carrying was
required in each problem. Then, the participants were asked to
call the solution to the math problem aloud while performing
the tracking task.

The subjects performed the tasks with all combinations
of distractors: 1) no distractor (non-D), in which they per-
formed only the tracking task, 2) visual distractor (vis-D),
or 3) cognitive distractor (cog-D), in which they performed the
tracking task with visual distractors or subtraction calculation,
respectively, and 4) both distractors (both-D), in which they
performed the tracking task with both distractors.

Each session was composed of two trials, and one trial
had all four conditions given in random order, and each
condition was 60 seconds long. In addition, identical sessions
were performed without SSVEP stimuli, the so-called non-
flickering paradigm, wherein the target and cursor did not
flicker. Therefore, a total time of 32 min was required to
complete all tasks.
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C. EEG Data Acquisition and Analysis

EEG data were collected from 19 dry electrodes at a
sampling rate of 300 Hz using a DSI-24 (wearable sensing,
San Diego, USA). The electrodes were placed with a standard
10-20 scheme over Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Fpz was used
as the ground channel, and the average of A1 and A2 was
used as the reference. A signal-quality check was performed
before conducting the experiment to ensure that the impedance
values of all the channels were below 1 M�, which meets the
manufacturer’s recommendation, and that the stability of the
EEG signal was under 70 μV amplitude.

The collected EEG was band-pass filtered to extract a
spectrum component in the 4–30 Hz frequency range. Fur-
thermore, the artifact subspace reconstruction (ASR) [20] and
independent component analysis methods [21] were applied
to the signal to eliminate unwanted noise signals, such as the
physiological noise components.

Given the preprocessed EEG signal, only the EEG data
of the most distracted condition, which has both visual and
cognitive distractor types (both-D), and the non-distracted
condition (non-D) that comprised no distractors were used for
training a deep learning model. The model training was on
non-D and both-D only because the generality of the model
was going to be tested. After training the model, the EEG data
of the condition with one distractor was also going to be used
to show whether the level of distraction could be estimated.

D. EEGNet Training and Validation

For training, the signals were segmented every 1 s, and they
went through the training process. An EEGNet model [22] was
used to classify whether a signal epoch would be distracted or
not. The model was fitted using the Adam optimizer to mini-
mize the categorical cross-entropy loss function. Two hundred
training iterations (epochs) were performed, and validation
was stopped, and the model weights were saved when the
lowest validation-set loss (patience =50) was produced. The
batch size and learning rate for this model were 16 and 0.01,
respectively. The validation was conducted using the leave-
one-subject-out cross-validation method to test the possibility
of the general use of the model. The following is a detailed
description of the EEGNet model architecture used in this
study:

In block 1, there were Conv2D and DepthwiseConv2D steps
in sequence. The block begins with an input layer in which
there are two convolution steps. The first step is composed of
a two-dimensional convolution filter, followed by a second
filter with a depth-wise convolution. Both steps had batch
normalization at the end. Depth-wise convolution reduces the
number of trainable parameters to fit a deep predictive model.
Notably, depth-wise convolution is not fully connected to all
previous feature maps, which fit fewer parameters.

Block 2 includes separable convolution, which performs
depth-wise convolution, followed by point-wise convolution
after receiving inputs from block 1. The separable convolution
has two main advantages: giving the number of parameters to
be fitted and principally separating the relationship with and

across the feature map by learning a kernel and summarizing
each feature map individually through optimally merging the
output. In other words, this method separates learning how to
summarize individual feature maps in time using depth-wise
convolution and learns how to optimally combine feature maps
using point-wise convolution. This method represents different
feature maps at different timescales and then combines the
outputs.

Block 3 represents a classification step where the retrieved
features make one decision and then pass it to the cross-
entropy loss function for error calculation.

E. Classification Result Analysis

Several steps were used to examine the efficacy and usability
of the proposed model.

First, the amplitude of the SSVEP response was analyzed
to determine if the SSVEP responses are affected by the
conditions, and the response amplitudes were compared using
Analysis of variance (ANOVA). Second, the classification
accuracy of the two-class classifiers from each paradigm with
and without flickering stimuli was compared using a t-test to
determine whether the flickering paradigm is beneficial. Third,
the classification patterns were examined when the two-class
classifier was applied to the trials with only one distractor,
which could show us how the two-class classifier classified the
trails placed between not distracted and extremely distracted.
Finally, the windowing and averaging methods were applied
to the time-point classification results, which revealed several
levels of classification results for each window. The levels
could represent the level of distraction. A value close to 0
would represent not distracted, and those close to 1 would be
fully distracted. In this study, the window size, which refers
to the number of points required for averaging, was set to 5;
hence, the averaged value could be 0, 0.2, 0.4, 0.6, 0.8, or 1.
With the windowing and averaging method, the classification
result for the three-class case, when two successive values
were assigned for non-distracted, moderately, and extremely
distracted, respectively, could be obtained, and compared
between the paradigm with and without flickering stimuli.
The windowing method also showed a change in the level of
distraction over time. The significance level of the statistical
analysis was set to p < 0.05.

F. Performance Analysis

The error distances between the cursor and target while
tracking the target using the cursor were averaged across a
single session and were compared for various conditions using
ANOVA.

III. RESULTS

SSVEP responses were observed in the paradigm with the
flickering target and cursor. The amplitude of the responses
tended to show systematic variation according to the number of
distractors. The ANOVA test revealed a significant main effect
(p = 0.013), and post-hoc analysis showed a strong tendency
for a higher SSVEP response in the non-D condition than in
the both-D condition (p = 0.050).
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Fig. 1. Experimental configuration. A participant sits in front of a screen
that shows the moving flickering target (15 Hz) and uses a mouse to
make a circle by placing the flickering cursor (12 Hz) on the target, while
EEG is recorded. A speaker that is giving the mental subtraction tasks is
placed in front of the participant.

Fig. 2. Experimental conditions. There were four conditions: a) non-D,
b) vis-D, c) cog-D, d) both-D.

The model trained with the data obtained from the condition
including the flickering cursor and target had an average
accuracy of 78%, while the non-flickering paradigm showed
a lower accuracy of 61.5%. The accuracy varies significantly
between the paradigm with and without flickering (p = 0.005)
(please refer to Figure 5 for a detailed confusion matrix).

The model trained with both the no- and two-distractors
conditions was applied to the condition with only one type of
distractor (visual or subtraction); for the visual and cognitive
distractor data, 58.5% and 49.8% of the data, respectively,
were classified as distracted in the paradigm with flickering
stimuli, while these were 65.2% and 58.7%, respectively, for
the paradigm without flickering stimuli. Hence, there was a
gradual change in the classification as the number of distrac-
tors was changed in the paradigm with flickering stimuli, while
for the paradigm without the flickering stimuli the change was
not observed (see Figure 6 for details).

Fig. 3. EEGNet architecture used in this study.

Fig. 4. Spectrum of average of all SSVEP responses of participants
under each condition. The bar graph shows SSVEP amplitudes of cursor
and target, respectively.

Fig. 5. Confusion matrix of a two-class classifier between non-D and
both-D for paradigms with and without flickering stimuli, respectively. The
flickering condition had superior classification results.

In detail, the graph of the classified results for all four
conditions showed that non-D was mostly classified as “non-
distracted,” while the classifier classified both-D as “fully
distracted.” In addition, the condition with one distractor
(e.g., vis-D and cog-D) was evenly categorized as either non-D
or both-D. This tendency was prominent in the flickering
paradigm but not in the non-flickering paradigm.

Furthermore, when the window-averaging scheme was
applied, the level of distraction could be assigned to one of
three levels for all the conditions, non-D, vis-D, cog-D, and
both-D, even though vis-D and cog-D were not used for the
training. This windowing method with 5 points demonstrated
an accuracy of 63.3% for the paradigm with flickering stim-
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Fig. 6. Percentage of the classified results. The classification percentage
showed a gradual change as the number of distractors changed in the
5 paradigm with the flickering cursor and target, but that in the paradigm
without flickering stimuli did not.

Fig. 7. Confusion matrix for three-class classification. The results were
obtained using a two-class model for a window size of 5; therefore, values
of 0 and 0.2 represent non-distraction, 0.4 and 0.6 represent moderate
distraction, and 0.8 and 1 represent extreme distraction.

uli and 45.9% for the paradigm without flickering stimuli
(p = 0.002) (Figure 7 depicts the confusion matrix).

In addition, the windowing method can also show the
variation in the level of distraction with time. Figure 8 shows
a representation of the level of distraction according to the
elapsed time for a representative individual for each condition.
The levels of distraction in the paradigm with flickering
remained lower in the non-D condition than that in vis-D
and cog-D. The latter two conditions have the same type of
distraction, and their results were consistently between non-
distracted and extremely distracted, and those of the both-D
condition, which represents an extreme distraction, remained
high. However, the trend of the paradigm without flickering
stimuli was not as prominent as that of the flickering paradigm,
although it also showed a slight tendency of increasing with
the increase in the number of distractors.

The windowing scheme reflects the level of distraction with
respect to the number of distractors, and a smoother graph
for the level of distraction can be obtained by increasing the
window size. The comparison between flickering and non-
flickering paradigms demonstrated that the values of the level
of distraction in the flickering paradigm were mostly fitted
between the thresholds of each class, while the non-flickering
paradigm could not accurately classify the levels for different
conditions because the prediction value for the both-D class
mostly overlaps with prediction values for vis-D and cog-D.
Lastly, there was no significant difference observed in the error

Fig. 8. Representative individual graph of continuous change in
distraction level under each condition when window size equals
(a) 5 and (b) 10. The dotted horizontal lines indicate thresholds for
three classes (0–1/3: non-distraction, 1/3–2/3: moderate distraction, and
2/3–1: severe distraction).

distance between the cursor and the target in all the conditions
(p = 0.971; 0.72 cm ± 0.26 for non-D, 0.702 cm ± 0.19 for
vis-D, 0.708 ±0.22 for cog-D, and 0.70 ±0.14 for both-D).

IV. DISCUSSION

In this study, we proposed a classification paradigm for
distraction during motor performance. For this, a tracking
task was designed in which a target should be tracked using
a mouse interface. In this task, the cursor and target were
flickered at different frequencies on the screen while the motor
task was performed.

The EEGNet training and validation were conducted using
the leave-one-out cross-validation paradigm to classify one of
two states (non-distracted and most distracted with two kinds
of distractors). The EEGNet successfully classified the state of
being distracted in cases that included flickering targets and
cursors, while the task without the flickering did not produce
an accurate classification. This indicates that our suggested
method is more suitable for measuring a user’s state of being
distracted, which also suggests that the EEG signature evoked
by flickering stimuli during motor execution played a more
important role in the classification of the state than the EEG
signature from the endogenous characteristics of an individ-
ual’s brain; this may not be sufficient for detecting the attention
level of a user, although the endogenous characteristics give
some detectable changes such as changes in its spectrum.

As expected, there was a significant difference in the ampli-
tude of the SSVEP response between the two extreme condi-
tions, and the conditions with one distractor were positioned
between the two. This shows that the SSVEP responses tended
to be modulated according to the number of distractions. This
agrees with the evidence that the SSVEP can be modulated by
the presence of distractors [17], [23], [24]. Our results showed
only the modulation effect in the cursor but not in the target.
This could indicate that the subject mostly paid attention to
the cursor rather than the target during their movements.
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The proposed method for detecting a user’s state of being
distracted during a motor task using the SSVEP has the fol-
lowing advantages: First, the classification system proposed in
this study can provide the state of being distracted seamlessly,
while ERP-based BCI systems utilize a time-locked scheme;
hence, they can only provide the state with some interval, such
as every second. Although some EEG spectrum-based systems
have been introduced that can provide continuous feedback,
they usually require a pre-data acquisition session for cali-
bration before main use because of individual variations. The
second advantage of the proposed method is that the SSVEP
is more robust across subjects; thus, many individuals consis-
tently show similar patterns under this paradigm compared to
other paradigms. Therefore, our system could be used more
robustly across subjects without any pre-calibration sessions.
The final advantage of our system is that it is less distracting
than ERP paradigms. The ERP paradigm requires the user to
count or attend to the target stimuli while ignoring the non-
target stimuli, which might interfere with engaging in the main
task. Conversely, the SSVEP paradigm has fewer disturbances
during the motor task execution since it only requires the user
to stare at the flickering stimuli. It would be the same as
the natural motor exercise because looking at the flickering
cursor or target is necessary for successful motor execution.
Therefore, our method would make it possible to not give the
user additional mental burden, reserving their attention for the
motor exercise.

Particularly, the method proposed in this study can be
effectively applied in motor rehabilitation. For effective motor
learning, the user’s attention is very important, and the external
focus of attention is considered an important factor in motor
learning [25], [26]. The external focus of attention refers
to the attention directed toward the effects of movement in
the environment or the end goal. Therefore, it is crucial for
rehabilitation systems to provide users with the outcomes of
movements and encourage users to pay attention to outcomes.
The outcomes are mostly represented as positional changes of
the target and cursor in a computerized rehabilitation system.
Our method could provide a great synergy to augment the
effectiveness of rehabilitation by encouraging users’ attention
to be directed to the flickering cursor and target, which
reflect their movements when using game-based rehabilitation
paradigms.

The performance of the proposed method was lower than
that of the methods that adopted the odd-ball paradigm for
distraction detection [11], [12]. However, these methods used
the within-subject approach for classifier validation. This
implies that all the subjects’ EEG data or an individual’s
EEG data were used for training and validating the classifier,
which makes it necessary to perform separate training-data
acquisition for new individuals before operating the BCI
system; In our method, the classifier can be readily used for
any independent subject without any pre-acquisition period.

However, it should be emphasized that our study was val-
idated with a leave-one-subject-out cross-validation scheme,
in which the model was trained with the data of all par-
ticipants except for one subject, and the model was vali-
dated with the data of the omitted subject, suggesting that

our training model could be more generalized to new par-
ticipants who were not involved in model training. This
also means that our proposed method can be used indepen-
dently for new participants without any pre-model training
session.

Furthermore, the results obtained using the model trained
with non-D and both-D only, which represent the extremes of
being distracted, that is, never distracted and fully distracted,
respectively, under conditions that consider only a single
distractor type were expected to be between the classification
of the two extremes of being distracted; indeed, the results
demonstrated that the likelihood of being classified as fully
distracted or never distracted lies between the two extreme
conditions. This may suggest that the model sometimes clas-
sifies the condition with one distractor as fully distracted or
sometimes as never distracted.

This suggests that any amount of distraction in a certain
period could be classifiable by applying a windowing scheme
with the binary classification model and then counting the
number of classifications of being distracted. The results of
applying the windowing and averaging scheme show that our
method can provide a continuous level of distraction according
to the number of distractors. This type of strategy, in which
a model is trained with data from the extreme ends and then
applied to other conditions, has a great advantage in that the
model could be used for any situation with various conditions
instead of re-training every time as the level of distraction is
changed.

The proposed paradigm, which uses the SSVEP response
to measure the user’s attention towards the task, requires the
patients to keep staring at the cursor and target. This may inter-
fere with their motor attention towards muscle movements,
which is known as the internal focus of attention. However,
the external focus of attention, which refers to focusing on
the outcomes or effects of movements made during exercise
is more beneficial for better motor learning than the internal
focus of attention [3], [27]. The effect of the VR rehabilita-
tion paradigm for motor learning demonstrates this concept
[28]. In the VR environment, movements are prescribed to
subjects in a natural manner, to achieve certain objectives
while focusing on the effects based on their movements.
Furthermore, in this study, the subjects were asked to simply
track the target and there was no instruction to stare at the
target and cursor. This suggests that the proposed paradigm
did not require the subjects to make an additional effort to
stare at the cursor and target while performing the motor
task. Some patients may have issues too severe to allow for
the use of the proposed paradigm, which requires external
focus of attention; such patients would be needed to focus
their attention on their muscle movements. In this case, other
paradigms, such as mirror therapy and FES, can be used
for interventions.

The individual’s behavioral performance can be utilized to
determine how the patients maintain their focus on the task.
However, there was no significant difference observed among
the various conditions. Furthermore, the classification perfor-
mances were accomplished based on the SSVEP responses
in the EEG, and not based on an individual’s behavioral
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performance. This implies that the proposed paradigm can be
applied even in the cases where there is no difference in the
behavioral performance of an individual.

The SSVEP paradigm can cause mental fatigue despite
its various advantages because the patients are required to
keep staring at uncomfortable flickering stimuli, which may
worsen the SSVEP signal quality and consequently, degrade
the classifier’s performance [29]. Therefore, the application
of high-frequency flickering stimuli in our paradigm could
be considered to reduce visual fatigue for convenience [30].
Furthermore, the frequency and time of use of flickering
stimuli must be carefully selected in practice.

In conclusion, we proposed a method to detect the level of
distraction while performing motor exercise. This method uses
a flickering target and cursor in the motor exercise paradigm.
This method could be used for monitoring a patient’s engage-
ment during rehabilitation. The proposed system provides
real-time feedback, which assistants could use for real-time
patient-state monitoring. Therefore, it could be applied in
any computerized rehabilitation system, such as rehabilitation
games and virtual reality systems, to encourage and maximize
patient engagement during rehabilitation.
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[17] Z. İşcan and V. V. Nikulin, “Steady state visual evoked potential
(SSVEP) based brain-computer interface (BCI) performance under
different perturbations,” PLoS ONE, vol. 13, no. 1, Jan. 2018,
Art. no. e0191673.

[18] M. Ordikhani-Seyedlar, H. B. Sorensen, T. W. Kjaer, H. R. Siebner, and
S. Puthusserypady, “SSVEP-modulation by covert and overt attention:
Novel features for BCI in attention neuro-rehabilitation,” in Proc. IEEE
Eng. Med. Biol. Soc. Annu. Int. Conf., Aug. 2014, pp. 5462–5465.

[19] H. Lim and J. Ku, “A brain–computer interface-based action observation
game that enhances mu suppression,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 26, no. 12, pp. 2290–2296, Dec. 2018.

[20] C. Chang, S. Hsu, L. Pion-Tonachini, and T. Jung, “Evaluation of artifact
subspace reconstruction for automatic artifact components removal in
multi-channel EEG recordings,” IEEE Trans. Biomed. Eng., vol. 67,
no. 4, pp. 1114–1121, Jul. 2020.

[21] A. Hyvarinen and E. Oja, “Independent component analysis: Algo-
rithms and applications,” Neural Netw., vol. 13, nos. 4–5, pp. 411–430,
May/Jun. 2000.

[22] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

[23] Y. Zhao et al., “Effects of distracting task with different mental
workload on steady-state visual evoked potential based brain com-
puter interfaces—An offline study,” Frontiers Neurosci., vol. 12, p. 79,
Feb. 2018.

[24] R. Zerafa, T. Camilleri, K. P. Camilleri, and O. Falzon, “The effect of
distractors on SSVEP-based brain-computer interfaces,” Biomed. Phys.
Eng. Exp., vol. 5, no. 3, Apr. 2019, Art. no. 035031.

[25] S. Chiviacowsky, G. Wulf, and L. T. Avila, “An external focus of atten-
tion enhances motor learning in children with intellectual disabilities,”
J. Intellectual Disab. Res., vol. 57, no. 7, pp. 627–634, Jul. 2013.

[26] E. C. Kal, J. van der Kamp, and H. Houdijk, “External attentional
focus enhances movement automatization: A comprehensive test of the
constrained action hypothesis,” Hum. Movement Sci., vol. 32, no. 4,
pp. 527–539, Aug. 2013.

[27] C. Hunt, A. Paez, and E. Folmar, “The impact of attentional focus on
the treatment of musculoskeletal and movement disorders,” Int. J. Sports
Phys. Therapy, vol. 12, no. 6, pp. 901–907, Nov. 2017.

[28] J. Ku, Y. J. Kim, S. Cho, T. Lim, H. S. Lee, and Y. J. Kang, “Three-
dimensional augmented reality system for balance and mobility reha-
bilitation in the elderly: A randomized controlled trial,” Cyberpsychol.,
Behav., Social Netw., vol. 22, no. 2, pp. 132–141, Feb. 2019.

[29] T. Cao, F. Wan, C. M. Wong, J. N. da Cruz, and Y. Hu, “Objective eval-
uation of fatigue by EEG spectral analysis in steady-state visual evoked
potential-based brain-computer interfaces,” Biomed. Eng., vol. 13, no. 1,
p. 28, Mar. 2014.

[30] T. Sakurada, T. Kawase, T. Komatsu, and K. Kansaku, “Use of high-
frequency visual stimuli above the critical flicker frequency in a SSVEP-
based BMI,” Clin. Neurophysiol., vol. 126, no. 10, pp. 1972–1978,
Oct. 2015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


