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Weak Foot Features of Wearable
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Abstract— The high fall rate of the elderly brings
enormous challenges to families and the medical system;
therefore, early risk assessment and intervention are quite
necessary. Compared to other sensor-based technologies,
in-shoe plantar pressure sensors, effectiveness and low
obtrusiveness are widely used for long-term fall risk assess-
ments because of their portability. While frequently-used
bipedal center-of-pressure (COP) features are derived from
a pressure sensing platform, they are not suitable for the
shoe system or pressure insole owing to the lack of relative
position information. Therefore, in this study, a definition
of “weak foot” was proposed to solve the sensitivity prob-
lem of single foot features and facilitate the extraction
of temporal consistency related features. Forty-four multi-
dimensional weak foot features based on single foot COP
were correspondingly extracted; notably, the relationship
between the fall risk and temporal inconsistency in the
weak foot were discussed in this study, and probability
distribution method was used to analyze the symmetry and
temporal consistency of gait lines. Though experiments,
foot pressure data were collected from 48 subjects with
24 high risk (HR) and 24 low risk (LR) ones obtained by
the smart footwear system. The final models with 87.5%
accuracy and 100% sensitivity on test data outperformed
the base line models using bipedal COP. The results and
feature space shown the novel features of wearable plantar
pressure could comprehensively evaluate the difference
between HR and LR groups. Our fall risk assessmentmodels
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based on these features had good generalization perfor-
mance, and showed practicability and reliability in real-life
monitoring situations.

Index Terms— Single foot COP, fall risk assessment,weak
foot, gait symmetry, gait temporal consistency, wearable
plantar pressure, machine learning.

I. INTRODUCTION

THE aging population is increasing globally, bringing
along with it many challenges to the economy, health

care and social relationship [1]. Older adults exhibit higher fall
rates compared to middle aged individuals, which is attributed
to reduced mobility and impaired balance function [1], [2].
Older adults, over the age of 65, exhibit fall rates of 30% to
40% [3]. The falls bring high medical costs to families and
exact a huge burden on medical systems [4]. It is therefore
necessary to preemptively track and intervene on behalf of
people with high fall risks.

As commented by Sun and Sosnoff et al. [5], several
traditional methods have been commonly used to assess elderly
fall risk, including clinical observations and proven clinical
tools, such as Berg Balance Scale (BBS), Timed Up and Go
Test, etc [5]. However, there are some disadvantages of tradi-
tional clinical assessment methods, such as lack of objective
measures, low cost-efficient, and restriction of poor mobility
among elderly group; therefore, an objective, effective, low-
cost, and user-friendly fall risk assessment method is of
immense significance to medical institutions. Several sensor-
based fall risk testing (SFRT) [6] technologies have showed
potential for analyzing the movement and fall risk of elderly
people, such as inertial sensors, and pressure sensing platform
(static: pressure pad, locomotive: instrumented treadmill or
low-cost pressure insole). These technologies could provide
a wide range of gait and posture information [6], and exhibit
adequate performance in predicting prospective fall occurrence
in elderly people[7], [8], which would be a better alternative
to clinical methods in fall risk assessments. Compared to
other technologies, the shoe system with plantar pressure
sensors have been more suitable for long-term monitoring
because of its low obtrusiveness [9] and portability. This study
implemented the shoe system with plantar pressure sensors
for the elderly fall risk assessment as the shoes represented
ordinary shoes without any impediment to daily life [10].
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Furthermore, the battery supported 20 hours of continuous
real-time monitoring and the shoes were equipped with low-
cost and high durability pressure sensors.

The center-of-pressure (COP) is the point represent-
ing a weighted average of all vertical ground reaction
forces (VGRF) over the surface. COP methods have been used
in studies on balance-related problems and posture control,
such as the well-known inverted pendulum model [11], extrap-
olated center of mass [12], and COP threshold boundary [13].
Several investigations concluded that the bipedal COP during
quiet stance was sensitive to postural performance [14], [15].
Bipedal COP features from data recorded by a force platform
were applied to study the risk of falling and static postural
balance [16]–[18]. In motion analysis, a unique dynamic COP
trajectory evaluated by instrumented treadmill, the “Pedotti”
diagram, also known as “butterfly” diagram, reflected the
specific variability of COP in some patients with neuro-
logical diseases, such as Parkinson’s disease and Multiple
sclerosis [19], [20].

In the above bipedal COP methods, being static and loco-
motive were inconvenient for migration to a shoe system or
other devices with pressure insole due to the lack of relative
position information; hence, it was impossible to strictly
apply them in daily life for long-term monitoring. There have
also been studies attempting to fix both feet in a virtual
plane to calculate the “butterfly” diagram [21], [22], although
this might introduce more errors and lack of interpretability
compared with the real plane. As a part of the “butterfly”
diagram single foot COP trajectory, the gait line (GL) also
reflected the stability and regularity of the foot’s heel-to-toe
movement [22] and was easy to migrate owing to the unuse
of relative positions.

This study aimed at assessing the fall risk among elderly
people based on multi-dimensional features extracted from
GLs. A definition of “weak foot”, i.e., one weaker side foot
that has partially lost the integrity and regularity of gait,
and its discriminant method are proposed to eliminate the
misleading effect on classification due to the sensitivity of
single foot features, leading to a poor performance in fall risk
assessments. Analysis of movement symmetry had already
been a pervasive and practical way to evaluate the balance and
postural regulation of people [23]–[25]; however, gait variety
in time sequence were seldom adopted, which may reflect
gait fatigue [26] and other factors in high risk population.
We, therefore, extract some gait symmetry related and
sequential consistency-related features based on “weak foot” to
assist fall risk assessments. Seven traditional machine learning
classifiers are employed as candidates in our study, namely
logistic regression (LogiR), k-Nearest neighbor (KNN),
support vector machine (SVM), decision tree (DT), random
forest (RF), gradient boosting decision tree (GBDT) and
AdaBoost.

II. METHODS

A. Data Collection

48 adults aged 65 and older who could walk for two minutes
independently were recruited for this study. All subjects were

TABLE I
SUBJECT CHARACTERISTICS

Fig. 1. Sensor position. (a) Pressure insole and sensors in shoe
system. (b) Distribution of 8 pressure sensors on the insole. x- and y-axes
represent medial-lateral and anterior-posterior direction respectively.

recruited from inpatients in the Rehabilitation Department of
the First Affiliated Hospital of Jinan University. Before the
data collection, all subjects were required to perform BBS test
and fill out a questionnaire, including basic characteristics,
exercise habit, fall and rehabilitation history, shoe wearing
habits, and medication. All experimental procedures were
approved by IRB of the First Affiliated Hospital of Jinan
University (KY-2020-087) on December 24, 2020.

Subjects were identified as high risk (HR) of fall if their
BBS score was less than 40 [27] or low risk (LR) of fall if
otherwise. The characteristics of the subjects such as gender,
age, and BMI, are shown in Table I. There are no significant
differences in age (p = 0.068) and BMI (p = 0.984) between
the HR and LR groups as evaluated by the t-test.

A prepared intelligent footwear system [10] was used to
collect plantar pressure data. As can be seen in Fig. 1 (a),
in the sensing insole of shoe system, eight pressure sensors
are distributed in different positions of the insole beneath
each foot. As shown in Fig. 1 (b), the sensor coordinates of
different shoe sizes are scaled to a unified coordinate system
in the subsequent data processing.

Walking experiment was divided into preparation and formal
stages. In preparation stage, the subjects wore the shoe system
for simple activities to ensure that the shoes were of proper
size and their feet would not slip during walking. The main
purpose of this stage is to make the subjects familiar with this
pair of shoes and be able to walk naturally without affecting
the natural gait. As shown in In Fig. 2, in formal walking
stage, the subjects were asked to walk the 20-meter-long
corridor for over two minutes. They were followed by medical
staff at a distance to ensure safety of elderly subjects and
supervise them to walk at a normal speed and gait with arm
swing. Arm swing could influence gait parameters [28], [29]



1062 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 2. Walking experiment. (a) Data collection. (b) Walking under the
supervision of medical staff. The red box on the left shows the plantar
pressure collection software on the mobile phone.

and needs to be controlled in balance-related work. Plantar
pressure data were collected at 20 Hz and uploaded to a mobile
phone in real time.

B. Feature Extraction
The features extracted in this section focus on multi-

dimensional analysis on single foot COP obtained by the
wearable plantar pressure measurement shoe system. Before
the feature selection, the pressure time series of each subject
was divided into single gait cycle by identifying minimum total
VGRF value from all eight sensors. To reduce the impact of
gait start-up, the first two steps of each subject were discarded,
and the first 90 gait cycles in remaining data were used.

Some bipedal features were applied in our analysis of single
foot to evaluate the shape and size of GLs. The probability
distribution methods were used to reflect spatial symmetry
of GLs. Temporal changes of GLs were also considered, and
three types of features were extracted. Three common bipedal
COP features from “butterfly” diagram were also extracted and
used as baseline for comparison, including lateral variability,
ant-post variability, and lateral symmetry [20]. Here, COP is a
kinetic parameter, which represents a weighted average of all
the plantar pressures, and is used to track transfer of weight.
For each foot, COP can be calculated as:

X =
∑n

i Fi Xi∑n
i Fi

, Y =
∑n

i Fi Yi∑n
i Fi

(1)

where n is number of pressure sensor, Fi refers to VGRF, and
(Xi , Yi ) represents relative coordinates of each sensor.

Forty-four features were extracted from COP in time series,
including GL, symmetry, and temporal consistency related
features.

1) Raise and Definition of the “Weak Foot”: RadViz [30], [31]
is a visualization method that maps multi-dimensional feature
space to two-dimensional space. The sample projection in
two-dimensional space is obtained by opposite pulling of
springs with different spring constants, which represent the
features with different values. It can help us more intuitively
understand the relationship between feet. As can be seen in
Fig. 3, we plotted RadViz with four COP statistic parameters,
including Stdy-L (Std in anterior-posterior (AP) COP trajec-
tory of left foot), Stdy-R (Std in AP COP trajectory of right
foot), Stdx-L (Std in medial-lateral (ML) COP trajectory of

Fig. 3. RadViz for four features.

left foot) and Stdx-R (Std in ML COP trajectory of right
foot). For people with HR in the RadViz, majorities of their
distributions were in non-center position and surrounding area
of LR people, meaning the asymmetry gait of HR people might
be caused by one weaker side. For instance, as shown in Fig. 3,
the two HR subjects in the lower left corner of the figure imply
that they were closer to the side of Stdy-L because their right
feet exhibit smaller COP variability in AP direction; moreover,
there was a lack of stability and regularity of the foot-to-toe
movement [22]. However, the weaker side was not just the
same side for all HR people. There were also some HR people
with weak left feet, who were closer to the side of Stdy-R
in the figure. If only the single foot features were used, the
special cases of these HR people were ignored. For instance,
the misleading effect on classification of left foot features
would lead to poor results in some cases who do not meet the
condition of weaker left. The above phenomenon was defined
as the “sensitivity of single foot features.” According to the
analysis of RadViz, the following definition and discrimination
of “weak foot” was made to eliminate the misleading effect
and sensitivity of single foot features.

Weak foot, i.e., one weaker side foot that has partially
lost the integrity and regularity of gait, can be determined
by standard deviation in AP-COP trajectory. Through the
discriminant (2), the weak foot has a small variability in the
AP direction.{

(X W , Y W ) = (X L , Y L), Std L
y < Std R

y

(X W , Y W ) = (X R, Y R), Std L
y > Std R

y
(2)

where (X L , Y L), (X R , Y R), and (X W , Y W ) are COP trajectory
of left foot, right foot, and weak foot respectively.

2) Weak Foot and Single Foot GL Features: GL is the COP
path calculated in one foot, which is a bivariate distribution
defined by AP and ML directions. Therefore, we can extract
one-dimensional (1D) features along AP and ML directions
and two-dimensional (2D) features from support plane, both
of which describe the size and shape of path over the support
plane. For the weak foot determined by discriminant (2) of
each subject, four 1D and four 2D features were calculated.

The 1D features can effectively indicate different swing and
deviation along one direction between HR and LR subject.
The mean value and standard deviation in both AP and ML
directions can be calculated by equations (3−6), where x and y
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Fig. 4. Temporal consistency related features. The process in the black dotted box represents the transformation from COP paths to probability
distribution. n is 90/5. M and m represent the number of blocks in probability matrix and the number of intervals respectively.

represent the ML and AP direction, respectively, W represents
the weak foot, and N is the total sample number in 90 gait
cycles.

MeanW
x =

∑N
i=0 X W

i

N
(3)

StdW
x =

√∑N
i=0 (X W

i − X W )2

N
(4)

MeanW
y =

∑N
i=0 Y W

i

N
(5)

StdW
y =

√∑N
i=0 (Y W

i − Y W )2

N
(6)

Similarly, the 2D features can indicate gathering and
dispersing degree of GL points in HR and LR subject. For
2D feature, mean value of resultant distance (MRD), stan-
dard deviation of resultant distance (SRD), total excursions
(TOTEX) and 95% confidence circle area (CCA) can be
calculated by equations (7−10), where RD represents resul-
tant distance and z0.5, the 95% confidence level z statistic,
is 1.645 here [32].

M RDW =
∑N

i=0

√
(X W

i −MeanW
x )2+(Y W

i −MeanW
y )2

N
(7)

S RDW =
√∑N

i=0 (RDW − M RDW )2

N
(8)

T OT E X W =
N−1∑
i=0

√
(X W

i+1 − X W
i )2 + (Y W

i+1 − Y W
i )2 (9)

CC AW = π(M RDW

+z0.5

√∑N
i=1 (RDW )2

N
− (M RDW )2)2 (10)

Notably, a total of eight features are also calculated on the
left and right feet respectively.

3) Symmetry Related Features: As evident from previous
studies [25], [33], movement symmetry, i.e., the similarity of
left and right body movements, is a vital motion feature in
balance analysis, and it has become a pervasive and prac-
tical way to evaluate some diseases and postural regulation
in people. Usually, a marked difference has been observed
between the affected and unaffected limbs among HR people
with pathological gait [33].

There have been many symmetry measures purposed in
previous studies. Once we had obtained the movement data
via sensors, depth sensing, video camera and others, these data
could be used to evaluate the symmetry performance in certain
way. However, there is no accepted standard in symmetry mea-
surement; for example, in continuous signal, many symmetry
indices have been used to measure gait symmetry, such as
symmetry index, symmetry angle, gait symmetry (GA) and
trend symmetry, and in “butterfly” diagram, lateral symmetry,
left or right deviation of the intersection point from “zero
position” is commonly used.

In order to measure gait symmetry well with single foot
COP paths, traditional index GA was not only extracted,
but the similarity (SIM) and JS-divergence (JSD) were also
calculated from probability distribution of both sides. SIM was
used to measure the similarity of the GL distribution between
two feet, ranging from 0 to 1. JSD, also ranging from 0 to 1,
was a variant based on Kullback-Leibler divergence, and
a symmetric measure of the difference between probability
distribution.

GA can be calculated by equation (11), where FL and FR

represent corresponding GL features on left and right feet.

G A(FL , FR) =
∣∣∣∣ln min(FL , FR)

max(FL , FR)

∣∣∣∣ (11)

Before the extraction of SIM and JSD, transformation from
COP paths to probability distribution is needed. As can be
seen in black dotted box of Fig. 4, according to the position
of sensors, x and y coordinates of both sides are divided into
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Fig. 5. Pipeline of statistical analysis and model selection.

350 intervals to obtain a 350 × 350 probability matrix. The
value of the matrix elements is the number of GL points in
each block divided by total number. After that, the probability
matrix obtained is a 2D form of probability distribution.

Then, SIM and JSD can be calculated by equation (12)
and (13), where SL and SR represent probability distribution
of left and right foot respectively.

SI M =
∑

min(SL , SR) (12)

J SD = 1

2

∑
SL log2

SL
SL+SR

2

+ 1

2

∑
SR log2

SR
SL+SR

2

(13)

A total of 10 features were extracted in this section.
4) Temporal Consistency Related Features: Temporal

changes of gait in the weak foot were considered in this part.
As shown in Fig. 4, three novel temporal consistency related
features were extracted from the weak foot. The COP time
series of 90 steps for the weak foot were divided into several
five steps before the feature extraction.

Gait inconsistency (GIC), which reflects changes in the
weak foot features over time, could be calculated by equa-
tion (14), using n = 90/5 and F as the weak foot features
extracted from each divided time series.

G IC =
√√√√ 1

n − 1

n−1∑
j=1

∣∣Fj+1 − Fj
∣∣2 (14)

Sequential similarity (SSIM) and Sequential JS-divergence
(SJSD) were proposed following the same idea as above, and
could be calculated by equation (15) and (16), as shown at
the bottom of the page, where M was number of blocks in
probability matrix transferred from divided COP time series.
Specifically, the number of intervals in the transformation

process was no longer 350 because of the change in steps.
To ensure that the average number of COP points in blocks
remained approximately unchanged, the number of intervals
should be set to 80 in the case of five steps.

A total of ten features were extracted in this section.

C. Statistical Analysis and Model Development

As reviewed by Shany et al. [6], many researchers were
optimistic about their results on SFRT. In many cases, infla-
tions of the accuracy occurred easily because of data leakage
that were often due to an unclear and nonstandard model selec-
tion process. Specifically, pre-selecting and feature selection
procedures are sometimes misused as an external process to
model selection.

To avoid the above mistakes, as can be seen in Fig. 5,
we clearly presented the details of statistical analysis and
model selection. As suggested by Tal et al. [6], we used the
overall method of embedding cross-validation into holdout
validation. Outside of the model selection, holdout method
was firstly used to divide data from 48 subjects into a test
set (16 test subjects: eight HR, eight LR) and a training set
(32 train subject: 16 HR, 16 LR) randomly. The test set had
never been used until the best model were determined, and
the data analysis and model development were performed on
training set.

1) Statistical Analysis and Pre-Selecting: In statistical analy-
sis, the Student’s t test was performed on the features extracted
from training data to evaluate the difference between HR and
LR groups. A p-value < 0.05 was considered statistically
significant, and used as a criterion of pre-selecting.

2) Feature Selection: As shown in Fig. 5, we used three
types of feature selection methods to ensure that the opti-
mal feature set not missed, including filter, wrapper, and

SSI M =
√√√√ 1

n − 1

n−1∑
j=1

(

M∑
i=1

min(S j
i S j+1

i ))2 (15)

S J SD =
√√√√ 1

n − 1

n−1∑
j=1

(
1

2

M∑
i=1

log2
S j

i
1
2 (S j

i + S j+1
i )

+ 1

2

M∑
i=1

log2
S j+1

i
1
2 (S j

i + S j+1
i )

)2 (16)
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embedded methods. Five filter methods were used: mutual
information maximization (MIM) [34], minimal-redundancy
and maximal-relevance (mRMR) [35], representative feature
method [16], t-test based ranking, and model based ranking.
Two wrapper methods, sequential forward selection (SFS) and
sequential backward selection (SBS) were both adopted. For
the embedded method, in the training of RF and DT model,
the model structures were determined by observing the effect
of manipulating different features on tree nodes in training,
so important features were more likely to be near the root
node. The feature importance could be estimated by finding
the feature depth or average depth on the tree.

3) Classifier Selection and Hyperparameter Tuning: In the
classifier selection, LogiR, KNN, SVM, DT, RF and AdaBoost
were employed as candidates. Optuna [36], a new design-
criteria optimization framework, was used to efficiently find
the best hyperparameter in a large search space. We mainly
explored two hyperparameters for each classifier, as follows:
misclassification cost C and maximum iteration in LogiR,
number of neighbors and leaf size in KNN, C and gamma in
SVM, maximum depth and minimum samples of leaf in DT
and RF, and number of estimator and learning rate in GBDT
and AdaBoost.

D. Model Evaluation

The optimal model was chosen after feature selection,
classifier selection, and hyperparameter tuning according to the
accuracies of leave-one-subject-out (LOSO) validation inside
the training data. It was finally tested on a test set, where
evaluation parameters include accuracy, sensitivity, specificity,
positive predictive value (PPV) and negative predictive value
(NPV). Confidence interval for accuracy was also calculated
by Wilson interval in Equation (17), which was vital for
accuracy from small test set [7].

C I =
P + z2

2N ± z
√

P
N − P2

N + z2

4N2

1 + z2

N

(17)

where P is accuracy, N is size of test set, and z is 1.96 for a
95% confidence interval [7].

III. RESULTS AND DISCUSSIONS

A. Statistical and Pre-Selecting Results

As shown in Table II, the p-values of 44 features from the
Student’s t test were listed. Twenty-six features in total had
significant differences in mean between HR and LR groups
(p < 0.05). The results of each type of features were discussed
separately as follow.

1) Statistical Results of Single and Weak Foot GL Features:
a) Effectiveness of “weak foot”: To verify whether the pro-

posed definition of “weak foot” can effectively eliminate the
sensitivity of single foot features, the weak foot and single foot
features were compared firstly. As can be seen in Fig. 6, two
typical features in different dimensions were taken as examples
here (Std in y-coordinate COP trajectory and Total excursion).
Weak foot features always had higher statistical significance
both in 1D (p < 0.001) and 2D (p < 0.001). However, single

TABLE II
LIST OF FEATURES

Fig. 6. Comparison between statistical results of single and weak foot
features. All features were standardized. Significant difference between
the two groups is denoted by ∗.

foot features were sensitive to side, and had lower or even
no significance (StdR

y ) in one side. The statistical significance
of left foot features was sometimes slightly lower than weak
foot, and their values between two groups of subjects also
had significant difference, from which it could be inferred that
most people’s weak foot was on the left, presumably because
the effect of dominant limb or differences between leg roles
during locomotion. Left foot features could also classify the
subjects well, and played same role as the weak foot in most
cases; but the simple reasons above were not all the causes
of weak foot. Physical injury, such as fall and surgery, and
diseases may also link with factors leading to weak foot. The
randomness of these factors led to the uncertainty of the weak
foot, as well as the inequivalence between weak foot and left
foot. In a sense, according to the statistical results that weak
foot features did perform better than single foot feature both
in 1D and 2D, the proposed definition of “weak foot” and its
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Fig. 7. Comparison between statistical results of low risk and high risk.
The features extracted from non-weak side were not added to feature set.

Fig. 8. COPy of weak foot in HR and LR subject. y represents AP
direction respectively.

related features corrected the uncertainty of these factors, and
the effect of sensitivity in single foot feature was eliminated.

b) Different effects of “weak foot” on HR and LR: As shown
in Fig. 7, the same 1D and 2D features were extracted on
both weak and non-weak sides to perform t test between
two sides. In the HR group, the difference between weak
foot and non-weak foot was more significant, while in the
LR group, even some features were not significant, implying
that weak foot phenomenon and impaired regularity of gait
are more obvious among the HR group. For the LR group,
because of the better symmetry between the weak and non-
weak side, whichever side were determined as weak side has
less effect. The misleading effect on classification that we
want to eliminate by “weak foot” mainly comes from HR
individuals, which can also be seen from RadViz where most
of the individuals distributed around were HR.

c) Weak foot feature analysis: The loss of gait integrity and
regularity was reflected by decreased variability and deviation
of GL in weak foot. The abnormal phenomenon could be
found in the gait of weak foot in the HR groups. As shown in
Fig. 6, the values of weak foot features are generally smaller
in the HR groups both in 1D and 2D. The 1D features could
effectively indicate different swing and deviation along one
direction between HR and LR subjects. For instance, as can
be seen in Fig. 8, HR subject apparently show a smaller
swing and larger deviation from the center of the y-coordinate,
indicating the gait cycle from heel landing to toe off was
not completed. In a normal case, like LR, the upper and
lower half curves should be symmetrical; however, in the HR
group, the lower half curve amplitude was smaller. This case

Fig. 9. COP path of weak foot in HR and LR subject. x- and y-axes
represent ML and AP direction respectively. The black and red cross
stand for the relative position of each sensor and (MeanW x, MeanW y)
respectively. The red solid line and dotted line stand for MRDW and
SRDW. The different colors of COPs represent gait cycles.

Fig. 10. Probability matrix of high risk and low risk subjects. For
convenience of display, the resolution of probability matrix in the figure
was 20∗20, but SIM and JSD were still calculated on 350∗350 probability
distribution.

show that HR subjects prefer to land with the entire weak
foot rather than the heel. Similarly, the 2D features indicated
gathering and dispersing degree of GL point. As can be seen
in Fig. 9 the GLs of HR subjects were more concentrated in
a certain area. The smaller red solid and dotted circles in this
figure, indicating smaller MRDW and SRDW , also reflected
the aggregation in HR subjects. The phenomenon was also
common in some subjects whose weak foot was on the right
side, as seen in HR case 2.

2) Statistical Results of Symmetry Related Features: For
symmetry related features, GA applied in some certain features
had good results; both SIM (p =0.043) and JSD (p = 0.038)
based on probability distribution also had significant difference
in mean value between two groups, which meant probability
distribution could be effectively used to generalize the shape
of COP paths. For instance, as shown in Fig. 10, there was an
obvious difference between distribution shape and highlight
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Fig. 11. Comparison between statistical results of GICs. GICs were also
calculated in single foot for comparison, but not added to feature set.

area of two sides among HR subjects, which resulted in lower
SIM and higher JSD than LR.

3) Statistical Results of Temporal Consistency Related
Features:

a) Feature resolution analysis: For temporal consistency
features, no significance of SSIM (p = 0.350) and SJSM
(p = 0.200) denoted that probability distribution might lose
its effectiveness in time sequence. When 350∗350 probability
matrix was used to extract features, SIM and JSD had signif-
icant difference between two groups, but when the resolution
was changed to 80∗80 according to the number of steps, SSIM
and SJSD lost their effectiveness to describe the similarity and
difference. The compromise of resolution was vital for features
based on probability distribution. High resolution with few
samples was easy to cause a decrease in comparability. Low
resolution with lots of samples led to loss of GL information.
Therefore, 80∗80 deduced by linear relationship between the
number of blocks in probability matrix and the number of
samples was not optimal resolution. The phenomenon could
be explained by two possible reasons. The number of samples
from 5 steps were relatively small for calculating probability
distribution, on the other hand, there was no linear relationship
mentioned above.

b) Necessity of extracting GICs on weak foot: Although prob-
ability distribution was more suitable for large sample analysis,
and SSIM and SJSD failed to reflect temporal consistency, GIC,
as a more direct method, well reflected the temporal variety
of gait in weak side. GIC were extracted from weak foot
COP time series, and we also extracted it from single foot for
comparison. Two features in different dimensions were taken
as example in Fig. 11 (GIC of mean in y-coordinate COP
trajectory and GIC of the total excursion of COP trajectory).
It was easy to find out temporal change of gait was more
significant in the weak foot, and GIC was more reasonable to
be applied to the weak foot for higher statistical significance
in most cases (p = 0.015 and p = 0.003), which reflects that
weak foot is more prone to time-related effect, and GICs are
indeed necessary for extraction from the weak side. During
the experimental process of walking, we did find that the gait
of ill or injured side changed measurably over time. Notably,
GIC-Stdy was a special case, which had the lower p-value
when it was applied in right foot rather than weak foot.

c) GIC feature analysis: No matter which side or weak side
the features were extracted from, the values of GIC were
all higher in HR groups, which reflected that under some

Fig. 12. TOTEX changes over time in low and high risk groups.
(a) TOTEX calculated every five steps. (b) TOTEX calculated every
30 steps.

time-related effect, gaits of HR were easily affected to varying
degrees, making greater changes in gait than LR at same
time interval. According to equation (14), GIC reflects the
inconsistency in time by accumulating the difference between
local gait feature Fj . Therefore, to analyze the time-related
effect reflected by GIC, as can be seen in Fig. 12 (a), the
TOTEX was analyzed as Fj and calculated every five steps to
simulate the extraction of GIC-TOTEX. The median changes
of the two groups are shown in different colors. Compared
with LR group, the difference between local adjacent features
(|F j+1-F j |) was greater in HR group, resulting the fluctuating
line and larger GIC-TOTEX. This local time-related effect
shows that the gait of HR subjects has higher inconsistency in
a short time, and is consistent with the statistical result of GIC.

As can be seen in Fig. 12 (b), TOTEX was also extracted
every 30 steps to eliminate the impact of local time-related
effect by expanding the extraction interval. The continuous
downward trend of TOTEX indicated that the gait integrity
of subject gradually declines over time, which might be
associated with physical fatigue, because fatigue is also a
gradual process and occurs in repeated or continuous muscle
activation [37], such as walking test [38] and action repetition
[39]. In addition, some characteristics of gait have been proved
to change owing to fatigue [38]–[40], and the elderly are
more prone to fatigue [41]. However, other factors may also
cause this time-related effect. Further studies are needed in the
future.

Features with high significance were more likely to con-
tribute more to classification. Therefore, after statistical analy-
sis, 26 features with significance (p < 0.05) were selected from
raw feature set for the next step.

B. Model Selection Results

During the process of model selection, test data set was
strictly guaranteed not to be used. Therefore, the final accuracy
could truly evaluate the generalization performance of the
model and effectiveness of model for new subject.

1) Feature Selection Result: The accuracy derived from
DT with default hyperparameters was used as the evaluation
parameter. From all feature selection method, a subset of five
features was selected out of a total of 26 features. As shown
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Fig. 13. Results of feature selection.

Fig. 14. Feature Space. (a) t-SNE of selected single foot features.
(b) t-SNE of base line features. The red crosses in (a) represents the
case who were misclassified in final test, and the rest of the test cases
were classified correctly. Abbreviations: HR, high risk; LR, low risk.

in Fig. 13, filter methods had a poor performance in our
feature set. Especially, the t-test, MIM, and model-based
ranking method were more likely to choose top features owing
to the lack of consideration for redundancy and correlation
between features; wrapper methods tended to choose more
comprehensive feature sets covering different types of features
and had better selection results. It could be seen that sequential
backward selection with DT performed best, so the features
selected with this approach were used in next processes,
including single foot feature (MRDR and Std R

x ), weak foot
feature (SRDW ), symmetry related feature (SIM) and temporal
consistency related feature (GIC-MRD).

t-SNE [42] were utilized to decompose five features above
to three or two dimensions so that each subject can be plotted
in the feature space. As shown in Fig. 14 (a), under the rules
of the selected features, most of the subjects with same label
tended to concentrate in certain area, and were easy to be
classified. However, there were still very few cases in the
junction of the two area or deep into wrong area, which
indicates that these cases couldn’t be distinguished well in the
existing feature space. For the three baseline features, as shown
in Fig. 14 (b), the aggregation of high risk and low risk cases

Fig. 15. Results of classifier selection and hyperparameter tuning. SVM
employed both linear and rbf kernels.

Fig. 16. Confusion matrix on test set. (a) Three optimal model
(DT, GBDT, AdaBoost) with selected five features. (b) Two optimal model
(KNN, DT) with base line features. 1Accuracy [95% Confidence Interval].
Different optimal models with same features had the same results.

and boundary between them were not obvious, and they tended
to intermingle with each other in central area. It was difficult
for classifiers to perform well in such a disorder feature space.

2) Classifier Selection Result: The performances of the dif-
ferent classifiers applied on training data, after hyperparame-
ter tuning, are listed in Fig. 15. For the selected features,
three optimal models with 93.75% accuracy were selected—
including DT, GBDT and AdaBoost—all of which were
DT-based classifiers partly because of the effect of using a
wrapper method based on DT. For the baseline features, two
optimal models with 75% accuracy were selected, including
KNN and DT.

C. Performance of Classification

As shown in Fig. 16, the determined optimal models were
finally tested on test set. Compared with a 68.75% accuracy for
baseline model, three models with our single foot features had
a large improvement in our dataset with an 87.5% accuracy.

The worse results of the baseline model might come from
the unknown actual relative position of the feet and lower
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feature dimension, which led to the omission of useful infor-
mation. Our method using a single foot COP was more suitable
for the shoe system and had better expansibility in multi-
dimensions. Limited by the systematic error of BBS in fall
risk identified [5], a 87.5% accuracy with confidence interval
[63.98%:96.50%] was enough to indicate that the extracted
multi-dimensional feature could comprehensively evaluate the
difference between HR and LR groups, and the models based
on these features have good generalization performance for HR
and LR classification. Furthermore, high sensitivity (100%)
meant the low misdiagnosis rate of our model and availability
and practicality in real medical situation.

The results of the holdout validation had certain degrees of
randomness and lacked repeatability, which partly depended
on the size and partition of test set. To solve this problem,
a feature space was used to assist in the result analysis. As can
be seen from Fig. 14 (a), the triangle marks represent subjects
in the test set, who were evenly distributed in each region of
the feature space. Especially, those near the boundary of two
groups who were easily confused were classified correctly;
however, there were three bad cases in the feature space that
went deeper into the wrong area and could not be correctly
classified, including two LR and one HR. As can be seen from
the red crosses in Fig. 14 (a), the only two false cases in the
test result were from these three bad subjects. Therefore, if all
of them had been excluded from test set, the accuracy was
likely to improve further, which meant that no matter how the
test set was divided, our assessment method could achieve an
accuracy of approximately 87.5% or even better, and the result
of holdout this time would be repeatable.

Existing models still had room for improvement for those
cases who went deep into the wrong area in the feature space.
Even though BBS were widely used as the standard method to
identify fallers, it still suffered from the lack of reliability with-
out 100% diagnostic accuracy [5]; therefore, a more systematic
labeling method combining multiple evaluation criteria should
be adopted to eliminate wrong label. Although the 90 gait
cycles adopted in the study showed adequate performance
to generalize long-term gait pattern among the elderly for
daily monitoring, a more optimized step number could be
further explored. Finally, some new features are required to
distinguish these special individuals to further improve the
accuracy and specificity.

IV. CONCLUSION

The aim of this study was to develop a fall risk assessment
model for the elderly based on weak foot features, which
was suitable for wearable plantar pressure acquisition sys-
tem. To solve the sensitivity problem of single foot features
and increase the significance of temporal consistency related
features, a definition of “weak foot” was proposed and its
effectiveness and necessity were verified in the statistical
results. Based on the definition, 44 multi-dimensional GL
features were extracted to comprehensively evaluate the dif-
ference between HR and LR groups; notably, the relationship
between the fall risk and temporal inconsistency in the weak
foot was discussed in our study, and a probability distribution

TABLE III
LIST OF ABBREVIATIONS

method was also used to analyze the symmetry and tempo-
ral consistency of GLs. After the rigorous model selection
procedure, an 87.5% accuracy on the test data and feature
space demonstrated the effectiveness and reliability of our
assessment model. In general, we believe that the method
based on weak foot features with low misdiagnosis rate has
the potential for long-term fall risk assessment in daily life.

ABBREVIATIONS

See Table III.
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