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Alterations in Patients With First-Episode
Depression in the Eyes-Open
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A Resting-State EEG Study

Shuang Liu , Xiaoya Liu , Danfeng Yan, Sitong Chen, Yanli Liu, Xinyu Hao, Wenwen Ou,
Zhenni Huang, Fangyue Su, Feng He , and Dong Ming , Senior Member, IEEE

Abstract— Altered resting-state EEG activity has been
repeatedly reported in major depressive disorder (MDD),
but no robust biomarkers have been identified until now.
The poor consistency of EEG alterations may be due to
inconsistent resting conditions; that is, the eyes-open (EO)
and eyes-closed (EC) conditions. Here, we explored the
effect of the EO and EC conditions on EEG biomarkers
for discriminating MDD subjects and healthy control (HC)
subjects. EEG data were recorded from 30 first-episode
MDD and 26 HC subjects during an 8-min resting-state
session. The features were extracted using spectral power,
Lempel–Ziv complexity, and detrended fluctuation analysis.
Significant features were further selected via the sequen-
tial backward feature selection algorithm. Support vector
machine (SVM), logistic regression, and linear discriminate
analysis were used to determine a better resting condition
to provide more reliable estimates for identifying MDD.
Compared with the HC group, we found that the MDD group
exhibited widespread increased β and γ powers (p < 0.01) in
both conditions. In the EO condition, the MDD group showed
increased complexity and scaling exponents in the α band
relative to HC subjects (p < 0.05). The best classification
performance of the combined feature sets was found in the
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EO condition, with the leave-one-outclassificationaccuracy
of 89.29%, sensitivity of 90.00%, and specificity of 88.46%
using SVM with the linear kernel classifier when the thresh-
old was set to 0.7, followed by the β and γ spectral features
with an average accuracy of 83.93%. Overall, EO and EC
conditions indeed affected the between-group variance,and
the EO condition is suggestedas the more separable resting
condition to identify depression. Specially, the β and γ
powers are suggested as potential biomarkers for first-
episode MDD.

Index Terms— Resting EEG, eyes-open, eyes-closed,
high-frequency oscillation, depression.

I. INTRODUCTION

MAJOR depressive disorder (MDD) is a highly preva-
lent mental disorder characterized by significant and

persistent low mood [1]. More than 340 million people suffer
from different degrees of depression worldwide [2]. However,
most MDD patients are not diagnosed correctly, which could
deprive them from appropriate treatment. Clinically, MDD
diagnosis is made using a combination of behavioral and
psychological assessments, such as clinical symptoms and var-
ious assessment scales. The limitations of these assessments,
as they are subjective and inconsistent, have given rise to a
keen interest in developing objective and reliable biomarkers
for MDD.

Electroencephalography (EEG), as a non-invasive technique
for obtaining objective information about brain activities and
mental state [3], has the potential to reveal specific fre-
quency oscillations with high temporal resolution [4]. The
oscillations of δ, θ , α, β, and γ have been reported to
provide information on MDD [5]–[10]. Due to the char-
acteristics of EEG—for example, it is nonlinear and non-
stationary—clinical researchers have noted many nonlinear
dynamics of MDD [11]–[15]. The Lempel–Ziv complexity
(LZC) has been extensively utilized to measure the complexity
of EEGs [16], and it is especially recommended because it is
nonparametric, model-independent, and easily calculable [17].
Bachmann et al. found that MDD patients exhibited increased
complexity in EEG oscillations of 0.5–40 Hz under the
eyes-closed condition compared to healthy control (HC)
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subjects [18]. Numerous studies have noted that MDD is
related to the changes in the imbalance E/I of networks
[19], [20], which are associated with long-range temporal
correlations (LRTCs). LRTCs provide a quantitative index
of statistical dependencies in oscillations on different time
scales. The essential feature of LRTCs is their power-law
behavior, which indicates that the mechanisms contributing
to their build-up are similar at different time scales [21].
Abnormal LRTCs of EEG oscillations in the range of
0.5–30 Hz have been observed in MDD [22]. Detrended
fluctuation analysis (DFA) is a well-established method for the
detection of LRTC in time series with non-stationarities. Based
on the advantage of DFA—namely that it can systematically
eliminate trends of different orders—we can gain insight into
the scaling behavior of natural variability, as well as into the
trends in the considered time series [21].

Resting-state EEG (Rs-EEG) has been widely used in
studies of MDD since no cognitive effort is required [23].
In addition, oscillatory activities observed at rest are more
likely to reflect intrinsic defects in underlying cortical neurons
in MDD [24]. However, there is no one agreed upon method to
acquire an Rs-EEG. Some researchers instruct their subjects
to keep their eyes open (EO), whereas others instruct them
to keep their eyes closed (EC). Importantly, numerous studies
have pointed out when alternating between the EO and EC
conditions, the neural spontaneous activities change accord-
ingly [25]–[27]. Specifically, the α activity is dominant in EC
condition compared with EO condition [28]. Besides, an LRTC
study has provided evidence that EO and EC conditions could
be distinguished by scaling exponents, not only in the α
band but also in the lower and higher frequency bands [29].
Apparently, it is important to consider EC and EO conditions
as variational factors in the analysis of Rs-EEG, which would
help reduce the variability of Rs-EEG findings across studies.

Despite many studies on Rs-EEG oscillations, which have
improved the diagnostics of MDD, the findings differ markedly
and are partly contradictory. For example, compared to HC
subjects, an EEG study reported increased γ in the frontal
and temporal regions in MDD patients under the EC con-
dition [30], whereas MDD patients showed no significant
difference in the γ band under the EC condition in another
work [31]. Previous studies have identified a frontal α asym-
metry in MDD. Initial reports provided evidence for higher
left-frontal α activity in MDD patients under the EC condition
compared with HC subjects [8], [33]. However, subsequent
reports demonstrated competing findings in MDD under both
the EO and EC conditions [34], [35]. Akar et al. found that
MDD patients showed significantly higher LZC values in the
range of 0.5–50Hz in frontal and central-parietal regions under
the EC condition compared to HC subjects [36]. Kalev et al.
found that MDD patients showed lower LZC/MLZC values
from the δ to β bands under the EO condition relative to HC
subjects [37].

However, few studies have conducted comparative analysis
of the differences between the two conditions in MDD, let
alone the patients with first-episode depression. It is unclear
which of the two conditions provide more reliable estimates of
alteration in brain activities in first-episode MDD. To address

this issue, we aimed to systematically investigate the effects
of the EO and EC conditions on EEG alterations to find
out the better resting condition that can provide more reli-
able estimates for first-episode MDD. Our work could also
help point to promising biomarkers that efficiently recog-
nize depression. Power spectrum (i.e., PSD) and nonlinear
dynamics (i.e., LZC and DFA) features were extracted to
provide a comprehensive view of the effects of the EO and
EC conditions. Sequential backward feature selection (SBFS)
was employed to select the best subset of features and enhance
classification performance. Various classifiers, such as support
vector machine (SVM), logistic regression (LR), and linear
discriminate analysis (LDA), were tested to explore the sepa-
rability of features in the spectral and nonlinear dimensions
and then to identify candidate EEG biomarkers with high
specificity and sensitivity, which would be critical for making a
more objective diagnosis, ultimately enabling better prognosis
with more effective treatment.

II. MATERIALS

A. Participants

Thirty MDD patients (age range: 18–38 years) were
recruited from the outpatient clinics of the Second Xiangya
Hospital of Central South University and the Tianjin Anding
Hospital. Twenty-six HC subjects (age range: 20–30 years)
were recruited from Tianjin University. Inclusion criteria for
all participants were: a) no history of major physical or
neurological impairment (e.g., epilepsy); b) no history of
electroconvulsive therapy; c) no history of alcohol or substance
abuse; d) no current substance use disorder (i.e., within the
last 6 months). A thorough history was taken to obtain
the demographics of the participants, who are right-handed
with normal-hearing and normal or corrected-to-normal visual
acuity. The study protocol was approved by the Ethics Com-
mittee of the Second Xiangya Hospital of Central South
University (Approval Number: 2018(076)) and the Ethics
Committee of the Tianjin Anding Hospital (Approval Number:
2020(2020-05)). All participants gave written informed con-
sent after being informed about the study.

B. Diagnostic Criteria

All patients were first-episode drug-naive with MDD. The
diagnoses of patients were assessed by two professional psy-
chiatrists based on the Diagnostic and Statistical Manual of
Mental Disorders, fifth edition (DSM-V, American Psychi-
atric Association, 2013) [38]. In addition, all patients were
assessed via the 17-item Hamilton Depression Rating Scale
(HAMD-17) and the Young Mania Rating Scale (YMRS). For
MDD patients, the Hamilton Depression Scale scores were
≥14 and the Young Mania Rating Scale scores were ≤6,
indicating that they were in depression [39], [40] and not at
risk of turning manic. Meanwhile, HC subjects received the
annual psychological test from the Psychological Center of
Tianjin University, and the test results showed that the HC
subjects did not have mental diseases.
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Fig. 1. The OCCOCOOC paradigm.

C. Experimental Conditions

All participants underwent an 8-min resting-state session.
The resting-state session was recorded for eight 1-min trials.
Each 1-min trial was either in the open eyes (O) or closed
eyes (C) condition, and the order of open or closed eyes alter-
nated across trials [41]. Specially, the OCCOCOOC paradigm
was selected in this study (see Figure 1); that is, there were
4-min EO and 4-min EC signals in the 8-min resting-state
session.

The experiment was performed in a sound-attenuated cham-
ber with standard ceiling lighting. Participants were seated in
front of the screen at a distance of 70–80 cm, separated from
the experimenter. When the session started, participants were
required to look at a white solid circle on a black background
on the stimulus interface and instructed to try to not think
of anything and relax for the duration of the scan. When
the participants pressed the space key to confirm the start,
a computerized audio stating “Please open your eyes” was
played, according to which participants adjusted to open their
eyes. After the audio cue, the EO trial was labeled. One minute
later, the audio cue “Please close your eyes” was played, then
the participants were required to close their eyes, and the EC
trial was labeled. The sequence of the audio cues is shown
in Figure 1.

D. Data Acquisition and Preprocessing

EEGs were recorded from 64-channel surface electrodes
positioned according to the international 10/20 system using
the SynAmps2 system (Neuroscan, USA). The system acquisi-
tion bandpass was 0.1–200 Hz. Data recording was referenced
to a linked left mastoid electrode (“M1”) with the ground elec-
trode located at “AFz”. The EEG was continuously recorded
at a 1,000 Hz sampling rate, and the interelectrode impedance
was kept below 10 k�.

EEGs were preprocessed using the EEGLAB toolbox
(version 2020.0) along with custom MATLAB scripts (version
R2020a; The MathWorks, Inc, USA) [42]. Offline signals
were re-referenced to the average bilateral mastoid electrodes
([“M1” + “M2”]/2) and down-sampled to 500 Hz. The
function pop_eegfiltnew.m was applied for the 0.5–120 Hz
bandpass filter (finite impulse response filter, cutoff frequency
(−6 dB): [0.25 Hz 120.25 Hz], zero-phase). Artifacts gen-
erated by eyeblinks, eye movements, and muscle activ-
ity were manually removed through independent component
analysis [43] using the EEGLAB plugin ADJUST toolbox.
In this study, the definition of EEG oscillation ranged
from 0.5 to 120 Hz, including δ (0.5–4 Hz), θ (4–8 Hz),
α (8–13 Hz), β (13–30 Hz), and γ (30–120 Hz). Specifically,
the γ band was subdivided by defining low γ as 30–50 Hz
(referred to as γ 1) and high γ as 50–120 Hz (referred
to as γ 2).

III. METHODS

A. Statistical Analyses

Demographic statistical analysis was carried out using SPSS
(version 20.0; IBM Corporation, USA). Normality was tested
using the Shapiro–Wilk test. Since the education level of both
groups did not meet parametric assumptions for the normal
distribution, the non-parametric (Kolmogorov–Smirnov) test
was conducted for education level between the MDD and HC
groups. The two-sample t-test (two-tailed) was employed to
compare the age between the two groups, and the chi-squared
test was employed for the sex comparison. To assess differ-
ences in Rs-EEG measures between MDD patients and HC
subjects, the two-sample t-test (two-tailed) was conducted with
α = 0.05 while controlling for 60 multiple comparisons across
channels using false-discovery rate (FDR) correction [24].

B. Feature Extraction

1) Welch FFT: Welch’s FFT method [44] was performed
to calculate the absolute power spectral density (PSD) of
the δ, θ , α, β, γ 1, and γ 2 bands [45]. MATLAB provides
a built-in command called the pwelch.m function to obtain
the PSD. In this study, 4-min EO/EC EEG signals were
split into 5 s segments with 50% overlap [46], resulting in
48 equal segments in each condition. The Hamming window
was applied to each segment, and the PSD estimate was found
by averaging the resulting periodograms.

2) Lempel-Ziv Complexity: LZC counts the number of new
occurring patterns for the sequences of finite length [16].
Previous studies have presented that LZC has been success-
fully used for detecting mental disorders due to it being more
sensitive to temporal amplitude distribution [18], [47]. In this
study, the EEG signals were band-pass filtered using a second-
order Butterworth filter to obtain the oscillations from δ to
γ 2 [48]; then, they were divided into 5 s segments. The LZC
was calculated for each segment x(n). Each segment x(n) was
converted into binary sequences s (n) by comparing with the
median value (M) of the segment x(n) as follows:

s (n) =
{

1 i f x(n) > M

0 i f x(n) ≤ M
(1)

This resulted in 48 binarized sequences for the EO condition
and 48 binarized sequences for the EC condition. After the
binarization, the resulting binary sequence s(n) is scanned
from left to right counting the number of different patterns
occurring. The complexity c(n) is increased every time a new
pattern is encountered [49], [50], and it has been previously
proven that the upper bound of c(n) is

lim
n→∞ c (n) = b (n) = n/

log2 n (2)

In order to obtain a metric independent of the length of the
time series, the complexity measure is often normalized with
respect to the rate of new patterns. Mostly, c(n) is normalized
using its upper limit b(n):

LZC = c(n)/
b(n) (3)
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Fig. 2. Some basic steps of the DFA analysis. (A) The 1-min band-pass
filtered (β band) EEG signals (channel 28 = Cz) in healthy subject no.
16 under the EC condition. (B) The amplitude envelope before (blue line)
and after (gray line) detrending (i.e., removal of the linear trend). (C) DFA
results of the 12th 5s epochs. The hurst value is the slope of the log–log
plot between fluctuation F and window size s. In this example case, the
hurst value for the β oscillations in Cz was 0.8945.

3) Detrended Fluctuation Analysis: DFA as an important
nonlinear analysis technique. It has been used for the detection
of LRTCs, and it is known for its robustness against non-
stationarity [51], [52]. In this study, the EEG signals were
band-pass filtered using a third-order Butterworth filter to
obtain the oscillations from δ to γ 2 [53]. To ensure the length
of the time series, we intercepted EEG signals in continuous
2-min EO and 2-min EC conditions. Then, the intercepted data
were segmented into 5 s epochs, resulting in 24 sequences
in each condition, which served as the database for DFA
analysis. The DFA involved four steps: (a) Constructing an
envelope. The Hilbert transformation was applied to extract
the amplitude envelope. The mean was subtracted from this
time series: (x(i), i = 1, . . . , N}, N is length of the epochs),
and the time series was integrated:

y (k) =
∑k

i=1
[x (i) − x̄] (4)

where x̄ indicates the mean of x(i). (b) Dividing the de-meaned
value, integrated time series y (k) into segments of length
s. Based on previous studies [54], the following segment
lengths were set: 15, 25, 35, 55, 80, 120, 185, 280, 420,
and 625 samples (from 0.03 to 1.25 s) in this study. The
number of points should be a positive number for the nature
of the analysis. Therefore, the numbers were rounded-off.
(c) For each segment, the local least-squares linear fit was
determined. The ensuing piecewise linear fit was designated
ys(k). (d) Finally, the DFA fluctuation function F(s) was
calculated:

F (s) =
√

1

N

∑N

k=1
[y(k)-ys(k)]2 (5)

Figure 2 depicts some basic steps of the DFA analysis. The
slope of the least-squares line is called the scaling exponent
(Hurst value), which quantifies how steeply the fluctuations
increase with the time scale of reference [55]. 0 < Hurst <
0.5 indicates negative correlations; 0.5 < Hurst < 1 indicates
positive correlations such that large fluctuations are likely to
be followed by large fluctuations; Hurst = 0.5 indicates a
completely uncorrelated (random process); Hurst = 1 indicates
a special one that corresponds to 1/f noise [56].

C. Feature Selection

Feature selection is one of the main ways to improve the
classification performance. It entails selecting a better subset
of features. In this study, the sequential backward feature
selection algorithm was utilized to reduce the dimensionality
of the feature matrix for improving the classification perfor-
mance. The algorithm first considers the whole feature set,
then sequentially removes features from the feature set until
the elimination of further features leads to an increase in the
misclassification rates [14]. The classifier in the SBFS step
was the same as the classifier in the classification step.

D. Classification

Classification is a fundamental approach for the automatic
identification of patterns. In this study, a support vector
machine with linear (LINSVM) and radial basis func-
tion (RBFSVM) kernels, logistic regression, and linear dis-
criminate analysis were used to ensure wider consistency
and then to select the best classifier for identifying MDD.
Data standardization based on the z-score transformation was
performed on the training and testing sets to modify the
unequal distributions of each feature. The hyperparameters of
LINSVM, RBFSVM, LR, and LDA were optimized using the
Bayesian optimizer.

E. Evaluation

In this study, the leave-one-subject-out method was
employed to assess the classification performance of the
proposed classifiers. In this procedure, we selected the char-
acteristic data of one subject as the test set and the data of
other subjects as the training set. Accuracy (ACC), sensitiv-
ity (SE), and specificity (SP) were used to investigate the
overall classification performance. The sequential thresholding
operation was conducted to optimize the proposed classifiers.
We computed the ACC, SE, and SP under different threshold
values (i.e., ACCT, SET, and SPT), which are defined as
follows:

ST [ f (x)] =
{

1 if f (x) ≥ T

0 else
(6)

ACCT =
∑

ST [ACC (x)]
H CN + M DDN

(7)

SET =
∑

ST [SE (x)]
M DDN

(8)

SPT =
∑

ST [S P (x)]
H CN

(9)

where f (x) is the percentage of correctly classified individ-
uals; T indicates threshold value; HCN is the total number
of HC individuals; and MDDN is the total number of MDD
patients.

IV. RESULTS

A. Demographic Characteristics

Table I summarizes the demographic information of the
MDD and HC groups, along with statistical comparisons.
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Fig. 3. The PSD difference values between the MDD and HC groups. (A) Topographic map of PSD difference values. Each subplot represents the
PSD value of the MDD group minus that of the HC group. Each row represents a resting condition, that is, EO for 4 min and EC for 4 min. Each
column represents a frequency band. The closer the color is to yellow, the higher are the brain activities of MDD patients compared to HC subjects,
whereas the closer it is to blue, the lower are the brain activities of MDD patients. The black plus represent the channels that exhibited statistically
significant differences (FDR, p < 0.05). (B) Bar plot of averaged PSD in the β, γ1, and γ2 bands in the channels with significant differences in
the HC (blue) and the MDD (orange) groups. The left Y-axis represents the averaged PSD in the EO condition and the right Y-axis represents the
averaged PSD in the EC condition.

TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE

PARTICIPANTS ALONG WITH STATISTICAL COMPARISONS

There was no significant difference between the two groups
in sex, as tested by chi-square analysis (χ2

(1) = 3.24, p =
0.099). Based on the results of the Kolmogorov–Smirnov
test, the education level of MDD patients did not differ
significantly from HC subjects (Z = 1.24, p = 0.091). There
was no significant difference between the two groups in age
(T = 29.81, p = 0.143). Overall, there were no statistical
differences in sex, age, and education level between the MDD
and the HC groups.

B. Spectrum Power

Figure 3(A) shows the topographic maps of the PSD dif-
ference values between the two groups in the δ, θ , α, β, γ 1,
and γ 2 bands derived under the EO and EC conditions. Each
subplot represents the PSD value of the MDD group minus
that of the HC group. Differences between the two groups
were clearly observed for all frequency bands, whereas the

degree of differences were diverse between the two conditions,
indicating that the EO and EC conditions indeed affected the
between-group variance, ultimately hindering the exploration
of abnormal activities for depression. Concretely, in low-
frequency bands, most notably in the θ band, the MDD group
showed a reduction in the central parietal–occipital regions
compared to the HC group. In contrast, in the high-frequency
bands (i.e., β and γ bands), the brain activities in both the
bilateral frontal and temporal lobes were more active for the
MDD group and displayed lateralization. By performing the
two-sample t-test, we found that the significant differences
between the two groups were mainly concentrated in the β
and γ bands. Specifically, the most prominent EEG activation
for the MDD group was a global increase in the β band,
along with a more regionally specific increase in the γ band
(frontal, temporal, and central regions) in the EO condition
relative to the HC subjects, demonstrating that MDD patients
displayed more abnormal high-frequency oscillation in the
anterior hemisphere when they remained eyes-open and awake.

C. LZC

LZC indicates the rate of occurrence of the new patterns in a
time series. The larger the LZC, the greater is the probability of
new sequence patterns, resulting in more complex dynamical
behavior. Figure 4(A) illustrates the topographic maps of LZC
difference values between the MDD and HC groups in each
band between the EO and EC conditions. In order to determine
the statistical differences in the complexity of EEG oscillations
between the two groups, the two-sample t-test was utilized.
We found that the significant differences of LZC between
the two groups were concentrated in the α band (α-LZC)
and concentrated mainly in the bilateral frontal and right
parietal–occipital regions in the EO condition. The α-LZC
values of the MDD group were larger than those of the
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Fig. 4. The LZC values between the MDD and HC groups. (A) Topographic maps of LZC difference values of the MDD group minus that of the HC
group. Each row represents a resting condition, that is, EO for 4 min and EC for 4 min. Each column represents a frequency band. The closer the
color is to yellow, the more complex dynamical behavior there is in the MDD patients compared to HC subjects, whereas the closer it is to blue, the
more complex dynamical behavior there is in the HC group compared to the MDD group. The small white stars represent the channels that exhibited
statistically significant differences (FDR, p < 0.05). (B) Violin plot of α-LZC in the channels with significant differences in the HC (blue) and the
MDD (orange) groups.

Fig. 5. The Hurst exponents between the MDD and HC groups. (A) Topographic maps of Hurst difference values of the MDD group minus that of
the HC group. Each row represents a resting condition, that is, EO for 2 min and EC for 2 min. Each column represents a frequency band. The closer
the color is to red, the larger is the scaling exponent of the MDD patients compared to the HC subjects, whereas the closer it is to blue, the lower
is the scaling exponent of the MDD group compared to the HC group. The small white hexagons represent the channels that exhibited statistically
significant differences (FDR, p < 0.05). (B) Bar plot of Hurst values in the α band in the channels with significant differences in the HC (blue) and
the MDD (orange) groups.

HC group, with a narrower distribution (see Figure 4(B)),
reflecting more complex and stable dynamical behavior of
depressive patients compared with healthy controls. However,
no significant differences were found in the EC condition.

D. Long-Range Time Correlations

By calculating the Hurst values in each band and channel for
the MDD and HC groups in the EO and EC conditions, it was
found that the Hurst values were greater than 0.5 and less

than 1 in each group, indicating that the two groups exhibited
persistent LRTC of EEG oscillation. The spatial distribution
of the Hurst values is presented in Figure 5(A). We found that
in the EO condition, the Hurst values of the MDD group were
much larger than those of the HC group and concentrated in
the frontal and central regions. In contrast, in the EC condition,
the Hurst values of the MDD group were smaller than those
of the HC group, which were concentrated in the posterior
parietal–occipital regions. Significantly different Hurst values
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TABLE II
RESULTS OF CLASSIFICATION THROUGH THE SBFS ALGORITHM IN THE EO AND EC CONDITIONS

were observed in the α band in the EO condition via the
two-sample t-test. Differences between the two groups in the
LRTC of α oscillation were observed in the frontal, central,
and parieto-occipital channels. In addition, the Hurst values of
the MDD patients in the α band with significant differences
were larger than those of the HC subjects (see Figure 5(B)),
suggesting that the EEG oscillations in the α band of depres-
sive individuals exhibited more persistent tendency of LRTC
in the EO condition. However, no significant differences were
found in the EC condition.

E. Classification Results

To explore the separability of the spectral and nonlinear
features extracted by the Welch, LZC, and DFA methods,
continuous 2 min EO and 2 min EC resting data were selected.
There were 24 samples (each sample from every 5 s) in each
condition for every subject in this study. The first and last trials
were removed to avoid the effects of the transition between
open and closed eyes; that is, 22 samples were retained for
each subject. Based on the statistical results, β, γ 1, and γ 2
bands were extracted as the characteristic frequency bands for
the Welch method and α bands for the LZC and DFA meth-
ods. Significant features were further selected via the SBFS
algorithm. Table II shows the numerical results of the average
ACC, SE, and SP using different classifiers in the EO and
EC conditions. As demonstrated in Table II, the EO condition
had better performance from using the LINSVM classifier,
with up to 86.85% and 89.04% for the spectral feature set
and the combined feature set, respectively. We found that the
classification performance of the spectral feature set was better
than that of the nonlinear feature set, indicating that the β and
γ powers would be more reliable than nonlinear features for

characterizing Rs-EEG activities. By comparing the results of
the LINSVM, RBFSVM, LR, and LDA, it can be interpreted
that the obtained results for the proposed classifiers were close
and indicated an acceptable and robust performance.

Furthermore, we calculated the average ACC under different
threshold values, as depicted in Figure 6(A). The threshold
was set to a range from 0.50 to 1 with a step size of
0.05. The detailed calculation process is in Section III D.
From figure 6(A), we noted that higher ACC was obtained
for the EO condition compared with the EC condition using
the proposed classifiers, irrespective of selecting the spectral
or combined feature set. Specially, when the threshold was
in the range of 0.50 to 0.70, relatively stable and high
classification accuracy could be obtained. Therefore, 0.70 was
selected as the threshold T to calculate the ACCT, SET, and
SPT. As demonstrated in Figure 6(B), higher ACCT, SET,
and SPT were obtained for the EO condition versus the EC
condition with each proposed classifier. In the EO condition,
the LINSVM classifier provided the best classification perfor-
mance, with an average ACCT of 89.29%, SET of 90.00%,
and SPT of 88.46% for the combined feature set. The second-
best feature set for the classification of MDD and HC subjects
based on EEG signals was the spectral feature set, with an
average ACCT of 83.93%, SET of 86.67%, and SPT of 80.77%.
These results demonstrate that the EO condition is the pre-
ferred one between the two resting conditions for identifying
depression, and high-frequency spectral characteristics were
more separable than low-frequency nonlinear characteristics.

V. DISCUSSION

MDD will be the greatest health burden on society—both
economically and socially—by 2030. Therefore, there is an
urgent need for objective and reliable biomarkers for early
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Fig. 6. Classification results of the LINSVM, RBFSVM, LR, and LDA classifiers. (A) The average ACC under different threshold values for different
classifiers. In each subgraph, the solid line represents the classification results in the EO condition; the dotted line represents the classification
results in the EC condition; the red indicates that the selected feature set is the combined feature set, the black indicates the selected feature set is
the spectral feature set. (B) Bar plot of the ACCT, SET, and SPT achieved by the spectral feature set and combined feature sets using the LINSVM,
RBFSVM, LR, and LDA classifiers when T = 0.7.

auxiliary diagnosis of MDD. Evidence supporting EEG abnor-
malities in depression has been well established in numerous
studies. However, the consistency of these conclusions is poor,
partly because they rarely consider the effects of the EO and
EC states on the brain activation patterns. These conflicting
results have therefore obfuscated our understanding of the
pathologic mechanisms of MDD. There are only a few studies
that comprehensively investigate data on the effects of different
resting conditions in MDD. In this study, we presented the first
systematic analysis of the effects of the EO and EC conditions
by using traditional spectral and nonlinear dynamics methods.
We found that the activities of high-frequency bands could be
used as reliable indices for characterizing resting-state brain
activities of MDD, and we recommend the EO condition for
resting EEG studies, at least for patients with first-episode
depression.

A. Studies of High-Frequency EEG Oscillations

Altered β and γ oscillations in MDD were found in our
study, which is similar to the findings of Strelets et al.
They compared the γ oscillations between HC subjects and
MDD patients and found that the γ power was greater in the
MDD group than in the HC group at rest, especially in the
frontal and temporal regions [30]. Subsequent studies indi-
cated γ oscillations in the prefrontal cortex may be a reliable
marker for MDD, as the prefrontal cortex is heavily impli-
cated in mood and emotional regulation [57]. Furthermore,
Strelets et al. also found increased γ spectral power in the
frontal regions during performance of the spatial imagination

test, further confirming the previous findings that task-induced
activation patterns were incorporated in brain activation
patterns at resting state [58], [59]. Moreover, γ oscillations
are short-lived and emerge from the coordinated interactions
of excitation and inhibition [60]. Some animal studies have
suggested that MDD may be associated with an imbalanced
excitation to inhibition ratio (E/I) of networks [19], [20].
Based on previous literature, our findings suggest that first-
episode MDD patients also exhibit abnormal γ activation
patterns in the frontal lobe, which may be associated with
changes in the E/I. Jaworska et al. found that there is greater
right frontal activation (less α power) and/or less left frontal
activation in MDD in the EC condition [61], [62]. In other
studies, MDD patients showed the opposite result when EO
data were added into the analysis [63], [64]. Based on these
inconsistent results in different resting conditions, we hypoth-
esized that the poor consistency of the frontal α asymmetry of
MDD might be caused by the EO and EC conditions [33], [34].
Indeed, by comparing the frontal asymmetry of the two groups,
we found that there was a difference in the frontal α asymme-
try of MDD in EO (0.032 ± 0.227, that is, higher right frontal
α power) and EC conditions (−0.007 ± 0.157, that is, higher
left frontal α power), but the difference was not significant.

In addition to the findings for high-frequency bands, the
differences in the θ activities between the two groups were
also found in the central parietal regions between the EO and
EC conditions. Due to the fact θ oscillations are related to
attention, we speculate that MDD patients may have atten-
tion defects at resting state, thereby associating with smaller
activities in the θ band than healthy controls. Furthermore,
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the amplitude of γ oscillation is modulated by slower oscil-
lations, especially modulation by θ oscillation [65], [66].
It is also of great significance for future work to explore
θ–γ coupling in the two resting conditions in first-episode
MDD patients.

B. Long-Range Time Correlations of Depression

In line with previous research [21], we found significant
increased LRTC in the α band in MDD patients relative to
HC subjects, located at frontal, central, and parieto-occipital
regions in this study. Differences in LRTC between the two
groups suggested more persistent LRTC in MDD patients,
indicating that MDD is characterized by changes in the tempo-
ral dynamics of resting-state neuronal oscillations [15]. It has
been proved that α activities are related to top-down process-
ing [67]. The activities of α oscillations have previously been
implicated in MDD. Matti et al. supposed that altered θ
and α LRTC during rest might relate to processes affecting
mechanisms of cognitive control and emotion regulation in
MDD patients [68], [69]. Furthermore, many studies have
shown that γ oscillations are closely related to the change
in E/I [20] and pointed out that θ and α oscillations help to
maintain γ networks [66], [67]. Considering that LRTC can
effectively respond to changes in the imbalance of the E/I
of networks, coupled with the MDD-related findings in this
study, we conjecture that increased α LRTC could play a role
in this instability for first-episode MDD patients. Future work
could test the connection between α LRTC and γ powers.
In addition, a study on insomniacs found that individuals
experiencing worse sleep quality tend to have stronger LRTC
during eyes-open wakefulness [55]. Based on the literature,
we speculate that the LRTC enhancement in MDD patients in
our study may be associated with poor sleep quality. Further
exploration of the relationship between sleep quality and
LRTC is of great significance for the detection of specific
symptoms of MDD.

The limitations of this study include the lack of correction
for multiple comparisons across frequency bands and the sam-
ple size. Future studies in larger groups of depressive patients
are needed to confirm and extend our findings. In addition,
although there was no significant difference in the sex between
the two groups, more male MDD patients should be recruited
into subsequent studies to exclude the influence of sex on
our results. Furthermore, longitudinal Rs-EEG assessment and
correlation analysis between Rs-EEG and the clinical symptom
scale in patients with MDD are helpful to better understand
the disease progression of depressive patients and shed light
on the physiological and pathological mechanisms of EEG
oscillations in depression. It would also be important to
investigate whether some of these resting EEG alterations
could be used as prognostic and/or predictive indicators of
treatment response.

VI. CONCLUSION

Exploring the effects of the EO and EC conditions on
the separability of EEG biomarkers and understanding brain

activities under different resting conditions is of great sig-
nificance and necessity for depression diagnosis. This study
was undertaken for the purpose of determining the better
resting condition to provide more reliable estimates of altered
brain activities in patients with first-episode depression and
to identify sensitive and reliable EEG biomarkers for identi-
fying depression. Traditional spectral and nonlinear methods
were used to analyze EEG alterations in the EO and EC
conditions. The LINSVM, RBFSVM, LR, and LDA classifiers
were applied to verify the separability of EEG biomarkers.
We found that the significant differences between the two
groups in the EO condition were more prominent and represen-
tative in terms of spectrum, complexity, and scaling behavior.
The EO condition had the best performance with LINSVM
for the combined feature set, up to 89.29%, 90.00%, and
88.46% of accuracy, sensitivity, and specificity, respectively,
when the threshold was set to 0.7. In addition, for the spectral
feature set, the EO condition had the second-best performance
with an average accuracy of 83.93%, sensitivity of 86.67%,
and specificity of 80.77%. This suggests that there is more
information about the altered EEG in depression in the EO
resting condition compared to the EC condition. β and γ
oscillations are candidates to serve as EEG biomarkers of
first-episode depression recognition, which would provide a
direction for follow-up research to continue the exploration of
the electrophysiological mechanisms of depression.
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