E MB IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

1081

—o0——

Inference of Brain States Under Anesthesia With
Meta Learning Based Deep Learning Models

Qihang Wang, Feng Liu

Abstract— Monitoring the depth of unconsciousnessdur-
ing anesthesiais beneficial in both clinical settings and neu-
roscience investigations to understand brain mechanisms.
Electroencephalogram (EEG) has been used as an objective
means of characterizing brain altered arousal and/or cog-
nition states induced by anesthetics in real-time. Different
general anesthetics affect cerebral electrical activities in
different ways. However, the performance of conventional
machine learning models on EEG data is unsatisfactory due
to the low Signal to Noise Ratio (SNR) in the EEG signals,
especially in the office-based anesthesia EEG setting. Deep
learning models have been used widely in the field of
Brain Computer Interface (BCI) to perform classificationand
pattern recognition tasks due to their capability of good
generalization and handling noises. Compared to other
BCI applications, where deep learning has demonstrated
encouraging results, the deep learning approach for classi-
fying different brain consciousness states under anesthesia
has been much less investigated. In this paper, we propose
a new framework based on meta-learning using deep neural
networks, named Anes-MetaNet, to classify brain states
under anesthetics. The Anes-MetaNet is composed of Con-
volutional Neural Networks (CNN) to extract power spectrum
features, and a time consequence model based on Long
Short-Term Memory (LSTM) networks to capture the tempo-
ral dependencies, and a meta-learning framework to handle
large cross-subject variability. We use a multi-stage training
paradigm to improve the performance, which is justified by
visualizing the high-level feature mapping. Experiments on
the office-based anesthesia EEG dataset demonstrate the
effectiveness of our proposed Anes-MetaNet by comparison
of existing methods.

Index Terms—Brain state estimation, meta learning,
anesthesia EEG, deep learning.
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I. INTRODUCTION

ROVIDING the right dose of anesthetic drugs to a patient

is of paramount importance for safely and humanely
performing most surgical and many nonsurgical proce-
dures [1]. Underdoses of anesthetic drugs will make patients
wake up during surgery, while an overdose of drugs increases
the risk of post-operative delirium [2], [3]. The inference
of brain states provides a unique opportunity for precise
administration of drugs on different subjects based on real-time
closed-loop anesthesia delivery system [4]. According to the
Richmond Agitation-Sedation Scale (RASS), anesthesiologists
mostly estimate the depth of anesthesia (DoA) manually at
intervals; however, this would require considerable attention
with a complicated stimuli-response procedure during the
surgery [5]. Measurements through the observation of heart
rate, breathing pattern, blood pressure and other factors, have
been used to measure DoA [6]; however, these physiological
signals are the secondary measurements of DoA, showing
large cross-subject variability that requires significant expe-
rience from anesthesiologists to decode the DoA. In recent
years, EEG as an invaluable modality of recording brain
activity has attracted more and more attention among anes-
thesiologists [7]. Compared to the secondary measurements,
EEG signal is a direct measurement for brain states as the
brain cognitive process relies on communications between
neuronal populations through electrical signal [8]. Importantly,
it has been found that DoA is associated with EEG signatures
given different drugs [3], [9]. Currently, the Bispectral Index
(BIS, Aspect Medical Systems, USA) is the most widely used
DoA monitor index in clinical practice; however, previous
researchers have reported a poor connection between the DoA
and the BIS [10], which requires more accurate means to
estimate the DoA in clinical setting.

Existing work: Numerous EEG-based monitoring frame-
works for the DoA have been developed using statistical or
machine learning models [11]-[13]. Specifically, Shalbaf et al.
monitored the DoA by extracting entropy features from
EEG and using artificial neural networks for classification
of DoA [14]. Peker et al. estimated the DoA by combining
ReliefF feature selection and random forest algorithm [15].
Jahanseir ef al. estimated the DoA with a multi-output least-
square support vector regression method [16]; Saadeh et al.
assessed the DoA with a machine learning fine decision tree
classifier for DoA classification of 4 states (deep, moder-
ate, and light DoA versus awake state) [17]. In addition to
the above classical machine learning models, recently, many
researchers employed deep learning as classification models
for monitoring the DoA. Compared to the traditional machine
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learning models, deep learning has demonstrated outstanding
performance on many computer vision and natural language
processing tasks, among other interesting applications [18]—
[22]. As for the DoA task, only a few researches based on
deep learning have been conducted. For instance, Park ef al.
proposed a real-time DoA monitoring system based on a con-
volutional neural network framework [23]; Li et al. introduced
a novel method based on hybrid features including sample
entropy, permutation entropy, spectra, and alpha-ratio and
performed classification using recurrent neural network [24];
Afshar et al. developed a combinatorial deep learning structure
involving convolutional neural networks, bidirectional long
short-term memory, and an attention layer to estimate the DoA
precisely from EEG signals [25].

Knowledge gap and our contribution: Although deep learn-
ing frameworks proposed in the previous literature typically
outperform the existing classical machine learning algorithms,
these studies are designed to analyze the anesthetic EEG
data collected from the hospital-based environment. Com-
pared to hospital-based anesthesia (HBA), office-based anes-
thesia (OBA) is conducted in an outpatient setting. The
advantages of OBA include easy scheduling, lower cost, and
improved patient privacy, etc. However, it also has some
disadvantages, which include slow recognition or response
to emergent situations and lack of experience intensively
monitoring of drug administration. It can result in a high level
of motion artifacts and low signal to noise ratio (SNR) in
the collected EEG data, which makes the EEG data from
OBA more challenging to analyze. However, to the best of
our knowledge, there have been no previous studies that build
classification models for OBA with deep learning frameworks.
To bridge the research gap, in this study, we propose a
deep-learning classification framework for monitoring brain
states under anesthetics in the OBA context. However, two
issues should be taken into account for OBA data analysis.
The first issue we try to address is the cross-subject variability
within the EEG data. The EEG signal across subjects can have
high intra-class variability. Applying some signal processing
methods, such as wavelet transformation [26], [27], Fourier
transformation [28], [29], multitaper analysis [30] and artifacts
removal algorithms [31], can reduce the impact of noise.
However, there is no principled way to address the intra-
subject variability. As demonstrated in the Ref. [32]-[34],
convolutional neural networks (CNN) can extract features
of EEG data and achieve outstanding performance in the
hospital-based DoA classification. However, the CNN model
alone faces the challenges of achieving a good classification
result in cross-subject testing. In other words, the direct
application of CNN on the EEG data from anesthetic patients
might result in unsatisfactory performance on the testing data,
though the training performance can be good. Therefore, how
to address the inter-subject variability under OBA becomes
the main focus of this study. Secondly, given the different
contexts of OBA and HBA, classifying the DoA based on
OBA can be challenging due to the high level of noise in OBA.
Moreover, the OBA dataset to analysis was under the condition
of a mixed infusion of propofol, ketamine, dexmedetomi-
dine and lidocaine, contributing significantly to the intra-class

variability. We propose to exploit the temporal dependency
of spectrum features using long short-term memory (LSTM)
networks to mitigate the high level of artifact EEG noise.
Our assumption is the brain only maintains one state given
a short period of time. As for subject variability, inspired by
the great success of meta-learning in dealing with cross-subject
variability [35], we propose to incorporate the deep learning
framework into the meta-learning paradigm. The essence of
using meta-learning is to increase the generalization ability
of the learner in multiple tasks [36]. Hence, addressing these
two issues motivates us to develop a robust DoA estimation
framework based on meta-learning with deep learning models.
Given the unbalanced samples from different classes, we intro-
duce a sequential classification method by first classifying
the classes with better separability and then classifying the
remaining classes. The experiments are conducted on the
subjects with quality EEG data, and eight methods or models
are used as benchmarks including two latest models (one is
from [24] and the other is from [25]), to demonstrate the
advantages of the proposed model.

We name the proposed network employing CNN, LSTM
with sequential classification framework under the framework
of meta-learning as Anes-MetaNet. To summarize, our contri-
butions can be listed as:

« We propose to use deep learning to build the classification
framework to infer DoA using EEG data from OBA
setting.

o« We incorporate a meta-learning framework to address
cross-subject variability from the OBA.

« We introduce a sequential classification method to reduce
the impact of the imbalanced classes.

o Our proposed Anes-MetaNet achieves the best perfor-
mance against the other baseline methods.

The remainder of this paper is organized as follows:
Section II introduces the proposed method and baseline meth-
ods; Section III presents the experimental results and discus-
sion, followed by conclusion in Section IV.

Il. METHODOLOGY

In this section, we first introduce the OBA EEG dataset, and
the corresponding preprocessing procedure. Then, we discuss
the detailed implementation of different models for classifi-
cation, including CNN, meta-learning CNN (MCNN), LSTM
network, as well as our proposed Anes-MetaNet.

A. Data Description

We use a public office-based anesthesia EEG dataset [37]
for this study. The dataset provides EEG recordings of patients
during general anesthesia. The induction and maintenance of
sedation is done by administering low-dose propofol ramp,
intermitted by boluses of propofol, ketamine, dexmedetomi-
dine and lidocaine. Table I lists the provided attributes of
the dataset. The RASS score is from a manual assessment
of the degree of sedation for patients, ranging from 0 to -5,
representing the degree of sedation from consciousness (CON,
score 0) to complete loss of consciousness (LOC, score -
5). EEG data contains recordings from five channels. In our
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TABLE |
VARIABLE DESCRIPTION OF THE ANESTHESIA DATA SET USED IN THE
EXPERIMENT
Variables Description
EEG Raw five channel EEG (bandpass filtered
between 0.1-55 Hz). Each row corresponds
to channel names in Channelname variable
Channelname | EEG channel labels
EEG time Continuous EEG time stamps

Fs Sampling frequency

Patient char Patient characteristics: Procedure type, sex
(m/f), age, height (cm), weight (kg)

RASS annotations: 0,-1,-2,-3,-4, and -5
Time of RASS assessment

RASS
RASS time

paper, we test the data of FPZ, FP1 and FP2 channels for
the experiment. Due to high motion artifacts during EEG
recordings, there are significant noises in the data for a large
number of patients.

1) Brain State Labels: After visualizing the spectrogram
of the EEG data, the SNR of some subjects is quite low,
apparently worse than the HBA data used in [25] and [24].
Hence, it is difficult to classify the OBA data into multiple
states as conducted in the previous works. Despite this, the
transitioned state between CON and LOC states is critically
important for the anesthetists to control the doses of drugs.
We then determine to classify the DoA into LOC, CON and
the transitioning states in this study. Specifically, we use the
EEG epochs with RASS = 0 and -1 as the CON state, the EEG
epochs with RASS = —2 and -3 as the semi-consciousness
(semi-CON) state, and the EEG epochs with RASS = —4 and
-5 as LOC state, denoted as class 0 (CON), class 1 (semi-
CON), and class 2 (LOC).

2) Power Spectrum Analysis: The spectrogram of each sub-
ject can be obtained by using multitaper analysis implemented
in Chronux Toolbox [38]. The horizontal axis x, of the
spectrogram image represents time in seconds; the vertical
axis y;, of the spectrogram represents the frequency in Hz.
The value of the ordinate is the signal power in decibel (DB)
of x; time and at y; frequency. The spectrogram images of
4 subjects are shown in Fig. 1. From the spectrogram images,
we visually picked relative high-quality EEG recordings. For
example, from Fig. |, we can find that subjects a and b have
good quality EEG data, while the EEG recordings of subjects
¢ and d contain a lot of noises or artifacts.

a) Subjects a and b: The middle part of the recording
is usually the LOC stage, and the beginning and end parts
are usually the CON and semi-CON stages. We name the
combination of CON and semi-CON stages as the pre-LOC
stage. From subjects a and b, we can observe that the EEG
data of LOC state has higher energy in the range of 10-20 Hz.
And the EEG data of the pre-LOC state has higher energy
within 10 Hz, and lower energy in other frequency ranges. The
spectrograms of LOC period and pre-LOC period are signif-
icantly different, and satisfactory results can be achieved by
classifying LOC and pre-LOC states. However, in the pre-LOC
state, there is no obvious difference between the CON and
semi-CON states in the spectrogram. As a result, the classifi-
cation of the CON and semi-CON states is challenging, which
motivates us to design a two-stage classification framework.

I M‘ L ‘\“\‘\“”&\‘ |
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Fig. 1. Spectrogram images of 4 subjects: a-d. Compared to subjects a
and b, subjects ¢ and d contain significant motion artifacts and noises.

b) Subject c: From the spectrogram image, we can clearly
see that the beginning part of the data of subject c is close
to 0. This is caused by technical problems in the recording
process of EEG data, and then we exclude this subject.

¢) Subject d: The spectrogram image of subject d shows
low SNR of EEG data due to very strong artifacts, hence,
we exclude this subject as well.

By observing the multitaper spectrogram of raw EEG data,
we select 13 patients with relatively good data for the follow-
ing classification experiment.

B. Data Preprocessing

We use a bandpass filter to filter the EEG data with a
frequency band of 0.1 to 40 Hz. The RASS scores are
aggregated into classification labels for patients’ anesthesia
states. The time intervals between two RASS assessments are
not constant, ranging from a few seconds to a few minutes.
We add labels for each timestamp of EEG data using the
following steps: 1) Find the intermediate time points between
all adjacent assessment time periods. 2) If two labels at the
beginning time point and ending time point share the same
label, then label all the time stamps between two RASS scores
as the same label. 3) If the two labels are distinct, label the left
half of EEG data within the current interval using the same
label as the assessment on the left; label the right half of EEG
data with the same label as the assessment on the right. It is
worth noting that the labels in 3) are not perfectly accurate.
However, we only use them in the training process, and use
the labels determined by 2), as the testing data.

C. Sequential Classification Framework

We use a multi-stage sequential classification framework to
address the imbalanced data distribution. Taking a three-way
classification as an example, in the first step, we observe
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Fig. 2. Structure diagram of CNN model.

the data distribution to identify which labeled stage has the
largest amount of data and allocate all the rest data to the
other class. By using a classification model, such as MCNN,
we can obtain a binary classification. In the second step,
following the first-step implementation of classification models
on the remaining classes, we can obtain the remaining binary
classification result. Given the characteristics of the OBA
EEG data, we determine to classify the DoA into three states
(CON, semi-CON, and LOC) as discussed above. Hence,
this classification framework consists of two stages: stage 1:
classify pre-LOC vs LOC, and stage 2: classify CON vs semi-
CON.

D. Convolutional Neural Networks

Since the power spectrum features at one time point are
a one-dimensional vector, the one-dimensional convolutional
neural network (1D-CNN) is adopted to extract the features.
Unlike the traditional neural networks, convolutional layers in
CNN are not fully connected, which allows CNNs to have
fewer parameters to adjust, and to be more computationally
efficient. As seen in Fig. 2, 1D-CNN includes a convolutional
layer, rectified linear unit (ReLU) and a one-dimensional
maximum pooling operation. For the classification of DoA
states, our CNN model is illustrated in Fig. 2, which includes
two 1D-CNN blocks and one fully connected block. For the
classification task, we use cross-entropy as the loss function,
and Adam as the optimization algorithm to search the optimal
parameters in CNN model. Such a loss function and optimiza-
tion algorithm are also exploited in all the other deep learning
models of this study.

E. Meta-Learning CNN

EEG signals vary significantly from subject to subject. The
classification function f obtained using CNN training from
EEG data of some subjects may not be applicable to other
subjects. Meta-learning is used in this paper to address this
problem. As the meta-learning model is capable of adapting
and generalizing to new tasks and new environments that have
never been encountered during training time. The difference
between meta-learning and supervised learning is that the
function of supervised learning directly finds the mapping
between features and labels, but the meta-learning function

F(-) is to find a new f, so that the new f is suitable for the
new machine learning task [35]. The algorithm flow of MCNN
is shown as follows:

Step 1: Prepare N training tasks. Prepare a test task to
evaluate the effects of the parameters learned by MCNN.
Prepare a support set and a query set for each task.

Step 2: Define the network structure of CNN and initialize
a meta-network parameter ¢°. The meta-learning network is
the network that is eventually applied to the new test task.

Step 3: Start performing iterative pretraining:

a) For task i, assign parameter ¢° of the meta-learning

network to the CNN to get '

b) The support set of task i is used to optimize and update

' based on the learning rate o of task i.

¢) Calculate loss I’ (§') for task i using the query set, and

compute the gradient of /! (6") with respect to '

d) The gradient is multiplied by the learning rate a¢¢ of

the meta-learning network and update ¢° to ¢'.

e) Repeat a)-d) on training tasks.

Step 4: Parameters of the meta-learning network are
obtained by step 3 and used for testing. Fine-tune the network
with the support set of the test task.

Step 5: Evaluate the effectiveness of the MCNN using the
query set of the test task.

The structure of the MCNN model is shown in Fig. 3.
As noted, the CNN block shown in Fig. 3 is the CNN model
presented in Fig. 2. After training, the MCNN model finds
a function F(-). Whenever a new test task is entered, F(-)
can always find a set of appropriate parameters to achieve an
improved classification performance of CNN model.

F. Long Short-Term Memory

Recurrent neural networks (RNN) is good at processing
sequential data. LSTM network is a special instance of RNN
which mitigates the problems of gradient vanishing and gra-
dient explosion in long sequence training of RNN. LSTM can
effectively extract the time characteristics of EEG data, and
combine them with the frequency domain features extracted
by CNN to achieve high-accuracy classification. Each LSTM
model is comprised of three gates, namely input gate, forget
gate and output gate. In addition, it also includes a cell state
that has long-short term memory. The operation among these
four components are as follows. First, the input gate updates
the cell state with a specific mechanism after receiving the
input information. And then, the forget gate determines what
input information will be discarded. Last, the output gate will
generate the results based on the input information and the cell
state. Let x; denote the input vector at time ¢, h; indicate the
output of hidden layer, ¢, connote the preliminary information
that will transmit to cell layer, ¢; stand for the cell memory,
i;, f; and o; represent the output of input gate, forget gate
and output gate, respectively. The relationships among these
variables are shown below (W and b are the weight and bias
in the operation of model training, separately):

ir = s(Wyix; + Whihy—1 + b;) (1)
fr = s(Wypxy + Whphi—1 + by) 2
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Fig. 3. Structure diagram of MCNN model.
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Fig. 4. presents the LSTM model used in this study, which
consists of two LSTM layers and two fully connected layers.
Particularly, in order to prevent over-fitting during neural
network training, dropout operations are added to the fully
connected block. The parameter of dropout is set to 0.5, which
means that neurons at this layer have a random 50% chance
of being dropped and not participating in the training during
each iteration.

G. Proposed Anes-MetaNet

Anes-MetaNet uses CNN and LSTM to capture power
spectrum density (PSD) features with the consideration of
temporal dependency under the meta-learning training scheme.
In Anes-MetaNet, CNN based meta-learning can be trained
with multiple stages, depending on the number of classifica-
tions. The detailed structure of Anes-MetaNet is shown in
Fig. 5. In this study, we classify the EEG anesthetic data
into three classes so that two stages are enough. In order to
classify CON, semi-CON and LOC states, in the first stage of
training, labels of EEG data are divided into two categories:
Pre-LOC and LOC. We perform the second-stage classification
on the correctly classified Pre-LOC data. For Pre-LOC data
that is misclassified in the first stage, we eliminate them
before the second-stage classification. In the second stage of
training for Anes-MetaNet, CON and semi-CON states are
further classified. We save the features extracted by MCNN

as the input of LSTM. The features corresponding to the
LOC state are the features extracted from the first trained
MCNN model. The features of CON and semi-CON states
are the features extracted from the second trained MCNN
model. We use the features of 20 time windows extracted by
CNN as the input of LSTM. One time window is 3 seconds
in size and moves in a stride of 1 second. The output is
the predicted state of the 20th time window. We believe the
length of 20 time windows is good since the anesthesia data
has a slow change pattern within a short time, and LSTM is
likely to capture the good features for such an input according
to its internal mechanism. As noted, the meta-learning CNN
and LSTM blocks in Fig. 5, are from Fig. 3 and from Fig. 4,
respectively.

[1l. EXPERIMENTS AND DISCUSSION

We conduct nine experiments to demonstrate the effec-
tiveness of our proposed method. Among the 13 subjects,
we implement a cross-subject validation by using the data of
10 subjects as the training set, the EEG data of 3 remaining
subjects is used as the test data. We take each subject in turn as
the training set and the test set for cross validation. The dataset
is split into training dataset and testing dataset, each with 50%
of the total samples, and we use the training dataset to train the
MCNN model. For each type of label, we randomly extract
the same amount of data for training, which can effectively
prevent the overfitting problem caused by the problem of class
imbalances.

A. Experiments Results

We conduct experiments on three channels of the EEG data.
We compare our proposed network with other baseline models,
including support vector machines (SVM), random forest
(RF), CNN, LSTM, CNN with LSTM (CLSTM), and MCNN.
In addition, we select two latest deep learning models from
literature as benchmarks, CLA [25] and ALSTM [24]. Table II
shows the experimental results of classification accuracy and
standard deviation based on FPZ channel.

1) Experiments on SVM and RF: Table II shows that the
average classification accuracy of SVM and RF is lower than
the deep learning method, which demonstrates the superiority
of handling large noise under deep learning paradigm. The
average classification accuracy of SVM is 72.8%, and the
average classification accuracy of RF is 69.3%. SVM uses
“gridsearch” algorithm to optimize its hyperparameters, and
its classification accuracy is slightly higher than RF’s. The
confusion matrices of the classification results of SVM and
RF are shown in Fig. 6. As seen in Fig. 6(a), an obvious
disadvantage of SVM is its bad performance in classifying
the semi-CON state. Fig. 6(b) illustrates that although the RF
model can classify the semi-CON state, the accuracy of the
classification is less than 30%. Moreover, the classification
accuracy of the RF model for the CON state is only about
50%. The above results showcase the difficulty of classifying
DoA using traditional machine learning models.
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TABLE Il
CLASSIFICATION RESULTS OF EEG DATA FROM FPZ CHANNEL

subject SVM RF CNN LSTM CLSTM MCNN CLA ALSTM Anes-MetaNet
1 75.9(0.3) | 73.1(x1.1) | 76.3(x0.2) | 77.0(+0.2) 77.9(+0.5) 79.8(x0.6) | 82.1(%0.2) | 78.6(x0.2) 83.6(%+4.0)
2 65.7(x0.3) | 62.6(x0.4) | 76.8(x0.1) | 76.2(+0.2) 75.3(£2.0) 75.9(20.3) | 77.3(20.3) | 64.7(x4.1) 79.2(+0.2)
3 75.8(£0.4) | 72.5(£0.3) | 69.5(20.1) | 72.3(x5.4) 70.0(£6.2) 75.3(£0.1) | 74.6(20.5) | 74.8(x4.7) 82.5(£1.8)
4 81.6(£0.2) | 80.5(x0.5) | 84.0(+0.2) | 86.5(x1.5) 83.8(x0.2) 84.6(£0.2) | 88.9(x0.3) | 84.2(+0.3) 90.5(%£5.4)
5 73.8(£0.2) | 73.2(%0.2) | 73.6(%0.3) | 74.4(x1.0) 69.4(+0.8) 78.5(x0.5) | 76.1(20.3) | 72.0(x5.9) 83.3(%3.6)
6 80.0(£0.2) | 57.1(x2.8) | 81.5(+0.5) | 84.0(x0.5) 80.2(x0.6) 80.6(+0.2) | 81.4(x0.2) | 82.7(%x1.5) 91.5(%0.5)
7 73.1(x0.4) | 71.5(x0.5) | 71.2(x0.2) | 70.1(+0.1) 64.2(+9.8) 70.3(x0.1) | 71.4(x0.1) | 73.9(x0.7) 82.3(%1.5)
8 84.1(x0.8) | 82.7(¢0.3) | 83.9(+0.5) | 80.1(x1.2) | 38.1(x12.0) | 83.8(x0.1) | 85.9(x0.4) | 76.0(x0.5) 64.1(£6.1)
9 53.8(+0.2) | 54.1(x0.4) | 53.1(x0.3) | 53.1(x1.0) 57.1(+0.9) 63.3(x2.3) | 53.1(%0.1) | 61.3(x0.5) 73.9(%1.6)
10 62.7(x1,1) | 56.8(x0.4) | 61.6(x0.4) | 66.3(+0.6) 57.4(+0.4) 63.6(%2.7) | 58.6(x1.3) | 52.6(x7.2) 82.3(£3.7)
11 72.2(£0.2) | 72.0(£0.5) | 75.2(x1.2) | 70.5(x1.4) 68.0(x£0.5) 78.5(x0.5) | 68.7(x0.3) | 78.6(x0.2) 78.7(x0.8)
12 72.4(%0.1) | 72.7(20.3) | 71.8(x0.5) | 69.6(+0.4) 47.5(x4.9) 70.1(x1.0) | 72.0(£0.6) | 70.3(x2.4) 83.9(+0.7)
13 75.7(£0.2) | 72.5(£0.5) | 76.6(x0.1) | 79.6(£0.7) | 44.6(£19.0) | 75.1(x0.4) | 80.1(%0.2) | 77.0(%x1.3) 87.9(£3.9)
AVG 72.8 69.3 73.4 73.8 64.1 75.3 74.6 72.8 81.8
Confusion Matrix Confusion Matrix
Features of 1 class 1o e
Classificatio 0
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Fig. 6. Confusion matrix of the classification results of SVM and RF,
where (a) is the confusion matrix of the classification results of SVM,
Features of 1 class

Spectrogram

Fig. 5. Structure diagram of Anes-MetaNet.

2) Experiment on CNN Model: In Table 11, the average clas-
sification accuracy of CNN model has reached 73.4%, which
is slightly higher than traditional machine learning methods
(SVM and RF), without significant improvement. Fig. 7(a)
shows the confusion matrix of the classification results of
the CNN model. It can be seen that CNN model also has

and (b) is the confusion matrix of the classification results of RF. The
experimental data is the EEG data of the FP2 channel of subject 1.

poor classification performance on semi-CON state. In this
experiment, we use the exponential decay method to adjust
the learning rate of the CNN model. Fig. 7(b) shows the
convergence of loss function of CNN.

3) Experiments on LSTM Model: In Table II, the results of
LSTM model are superior a little to CNN model, with an
average classification accuracy of 73.8%. Fig. 8(a) shows that
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Fig. 7. Classification result of CNN model, (a) Confusion matrix diagram
of the classification, (b) training loss of CNN.
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Fig. 8. Classification result of LSTM model, (a) Confusion matrix diagram
of the classification, (b) training loss of LSTM.

although the accuracy of LSTM model is improved compared
with those of SVM and RF models, an obvious shortcoming
of LSTM model is that it also cannot classify semi-CON states
well. Moreover, Table II illustrates that compared with SVM,
RF and CNN models, LSTM model has lower classification
stability. Fig. 8(b) shows the loss time series of the LSTM
model. It can be seen that the loss curve is gradually stable,
which indicates that the model has converged.

4) Experiments on CLSTM Model: In this paper, we use
CLSTM to represent the model combining CNN and LSTM
models. Note that the CLSTM model consists of two con-
volutional layers and two LSTM layers as well as two fully
connected layers. Table II shows that the classification accu-
racy of CLSTM is only 64.1%, which is far lower than
traditional machine learning models and deep learning models.
After analysis, we believe that the poor classification effect of
CLSTM is caused by the poor classification results of CNN
model. Even though CLSTM model can achieve a higher accu-
racy on semi-CON state than SVM, CNN and LSTM models;
however, the accuracy is only 20.7%. Nevertheless, we still
believe CLSTM has a potential to reach a higher classification
accuracy once adding some other mechanisms into it. This is
confirmed by the following comparative experiments.

5) Experiments on MCNN Model: Table II shows that the
classification accuracy of the MCNN model has reached
75.3%, which is higher than all traditional machine learning
and deep learning models. For poor-quality data such as
subject 9, the classification accuracy of MCNN is significantly
improved compared to SVM and CNN models. MCNN is
trained in two stages, and each stage conducts a binary
classification, following the sequential classification method.

Fig. 9. Classification result of CLSTM model, (a) Confusion matrix of
the classification by CLSTM, (b) training loss of CLSTM.
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Fig. 10. Classification result of MCNN model, (a) confusion matrix of
MCNN in the first stage, (b) confusion matrix of MCNN in the second
stage, (c) final confusion matrix.
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Fig. 10(a) shows the confusion matrix of the classification
results of the first stage. The classification accuracy of the LOC
state is about 87.3%, and the classification accuracy of the
pre-LOC state is about 78.0%. Fig. 10(b) shows the confusion
matrix of the classification results of the second stage. The
classification accuracy of the CON state is about 77.8%, and
the classification accuracy of the semi-CON state is about
63.2%. Fig. 10(c) shows the confusion matrix of the final
classification results of MCNN. The classification accuracy
of the CON state is about 58.4%, the classification accuracy
of the semi-CON state is about 63.2%, and the classification
accuracy of the LOC state is about 87.3%. Fig. 10(c) illustrates
that MCNN not only has a high overall classification accuracy,
but also can improve the classification accuracy of the CON
and semi-CON states.

6) Experiments on CLA Model: In [25], Afshar et al. pro-
posed a combinatorial deep learning model, which uses incep-
tion, Bi-LSTM and attention mechanism. We name this model
as CLA in this study. For the specific OBA data used in
this study, besides using the attention mechanism, we set this
model includes two inception layers and two Bi-LSTM layers.
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Fig. 11. Classification result of CLA model, (a) confusion matrix diagram
of the classification, (b) training loss of CLA.
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Fig. 12.  Classification result of ALSTM model, (a) confusion matrix
diagram of the classification, (b) training loss of ALSTM.

Even though this model is targeted to classify the DoA under
the HBA condition, we exploit it as another benchmark to
demonstrate the effectiveness of the proposed model. Table II
shows that the average accuracy is 74.6%, which is slightly
lower than that using MCNN model. Compared to MCNN,
this model also has a quite poor performance in the Subject 9.
Fig. 11(a) presents the confusion matrix of the classification
accuracy using this model. As seen, this model cannot classify
the semi-CON state completely, which is the same as that in
above SVM and CNN models. Even though the CLA model
performs much better than the other existing models in [25]
when applying it to an HBA dataset, such results indicate this
model is not suitable for the OBA condition.

7) Experiments on ALSTM Model: In [24], Li et al. intro-
duced a novel method based on LSTM and a sparse denoising
autoencoder (SDAE) to monitor the DoA for the HBA condi-
tion. We name this model as ALSTM in our study. Consistent
with above experiments, the input data for ALSTM is also
the spectrogram. We follow Li et al. to train the SDAEs
one by one, two times in total. The output of the second
SDAE’s encoder is used as the input of the two-layer LSTM
for the DoA prediction training. As seen in Table II, the
classification accuracy is only 72.8%, which is the same as
that of SVM. Even though the training loss is converged in
Fig. 12(b) and the LOC state has a high classification accuracy,
i.e., 82.6%, the classification on the first two states has a quite
low accuracy. Such a result denotes that this ALSTM model
is also not appropriate to be employed for estimating the DoA
under the OBA condition.

8) Experiments on Anes-MetaNet: Anes-MetaNet achieves
an average classification accuracy of 8§1.8% in the experiments
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Fig. 13.  Classification result of Anes-MetaNet model, (a) confusion
matrix diagram of the classification, (b) training loss of Anes-MetaNet.

shown in Table II, which is the only model with an average
accuracy higher than 80%. For poor quality data such as
subjects 9 and 10, the accuracy of Anes-MetaNet is more
than 10% higher than other models. Fig. 13(a) shows the
confusion matrix of the classification result of Anes-MetaNet.
The classification accuracy of CON state is about 64.4%,
the classification accuracy of semi-CON state is about 68.9%
and LOC state is about 95.1%. Compared to the traditional
machine learning models and deep learning models, the pro-
posed Anes-MetaNet can obtain a much higher accuracy on
semi-CON state. Furthermore, compared to MCNN model,
Anes-MetaNet can have a better classification accuracy on
each class. Fig. 13(b) shows the loss curve of Anes-MetaNet
during the training process. The curve fluctuates slightly
during the training process. This is because we use the dropout
layer to prevent the network from overfitting. The loss curve
eventually stabilizes, indicating that the network converges.
The experimental results of Anes-MetaNet prove that the clas-
sification accuracy of the CNN model is an important factor
affecting the classification accuracy of the CLSTM model.
If the accuracy of the CNN model is low, combining LSTM
would not further improve the classification accuracy (see the
results using CLSTM). Anes-MetaNet uses meta-learning to
improve CNN’s classification ability, which greatly improved
LSTM’s classification accuracy.

We use t-SNE map to visualize high-level features before
the final fully connected layer of CNN, and the result is
illustrated in Fig. 14. As seen, class 2 (LOC) has a more
pronounced difference from other classes (0: CON and 1:
semi-CON), which justifies our previous choice of using a
two-stage training scheme to first distinguish LOC from pre-
LOC (combining CON and semi-CON). Besides this, we can
see that class 0 and class 1 are mixed together closely, which
explains why the traditional machine learning models and deep
learning models cannot classify the semi-CON state well.

Table III and Table IV respectively show the experimental
results of the EEG data recorded by the FP1 and FP2 channels
of 13 subjects. By comparing the results in Tables II-IV,
we can draw the following conclusions:

1) As the OBA EEG data contains a high level of noises, tra-
ditional machine learning and deep learning models including
two latest models from the literature, usually cannot perform
well; however, meta-learning is a good method to reduce the
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TABLE IlI
EXPERIMENTAL RESULTS OF EEG DATA FROM FP1 CHANNEL

Subject SVM RF CNN LSTM CLSTM MCNN CLA ALSTM Anes-MetaNet

1 80.0(20.1) | 80.5(x0.1) | 81.2(x0.2) | 87.5(0.5) 86.4(x1.3) 86.2(x0.9) | 88.2(x0.2) | 79.1(%0.3) 86.4(x1.0)

2 75.5(x0.1) | 69.9(x0.1) | 76.3(x0.1) | 66.2(x2.9) 70.5(x2.7) 77.6(x0.2) | 78.7(x0.1) | 74.2(x0.2) 81.3(x0.2)

3 71.6(£0.2) | 69.4(x0.1) | 68.9(x1.5) | 79.8(x0.1) | 70.4(x2.2) | 78.5(x0.9) | 77.2(x0.1) | 83.5(20.5) 78.5(2.8)
4 88.9(20.1) | 91.1(x0.1) | 86.4(%2.7) | 90.5(+0.5) 87.9(x1.4) 89.8(20.8) | 92.8(x0.3) | 92.4(%0.2) 92.8(+3.3)
5 72.0(x0.4) | 72.4(x0.1) | 73.6(x1.9) | 75.3(x0.1) 72.4(x0.4) 78.7(x0.2) | 74.0(x0.5) | 76.9(x3.0) 79.3(x1.9)
6 82.2(20.2) 80.6(x0.1) 81.8(0.1) 84.9(+0.3) 83.4(%2.1) 84.0(20.3) 82.4(20.2) 78.0(+4.6) 90.5(x0.1)

7 73.0(x0.1) | 72.5(x0.1) | 74.0(x0.1) | 76.5(x0.1) 76.6(x0.2) 74.8(x0.3) | 77.6(x0.1) | 74.5(x0.9) 89.5(x0.8)

8 85.4(20.6) | 83.5(x0.1) | 84.0(x1.2) | 82.9(x2.4) | 55.1(%x15.9) | 84.0(x0.4) | 88.9(x0.8) | 83.3(x2.1) 86.8(+0.9)
9 52.1(x0.3) 54.7(x0.3) 54.0(x0.7) 64.5(x£1.3) 62.7(£2.1) 63.6(x0.6) 61,0(+0.4) 59.3(x0.4) 71.9(x0.8)
10 58.5(x0.3) | 59.0(x0.5) | 58.8(x0.8) | 49.7(x2.7) 54.3(x0.2) 57.1(x0.4) | 55.1(x1.4) | 61.3(x2.3) 74.1(x0.8)
11 76.3(£0.2) | 77.1(20.1) | 75.3(20.2) | 64.4(x0.2) 66.2(x1.7) 81.7(x1.1) | 66.1(x0.2) | 67.4(%2.8) 84.7(£2.1)
12 76.4(£0.2) | 76.1(x0.1) | 75.3(x1.0) | 79.1(x1.3) 75.5(x0.5) 74.7(£0.3) | 62.4(x0.4) | 79.0(x0.2) 83.9(0.5)
13 76.2(x0.1) | 76.2(x0.2) | 75.6(x0.1) | 75.6(x1.7) 77.2(x0.4) 75.8(x0.3) | 79.5(x0.3) | 70.8(x£7.0) 81.6(x2.9)

AVG 74.4 74.0 742 75.1 722 77.4 75.6 75.3 83.1
TABLE IV
EXPERIMENTAL RESULTS BASE ON EEG DATA FROM FP2 CHANNEL
Subject SVM RF CNN LSTM CLSTM MCNN CLA ALSTM Anes-MetaNet
1 79.2(x0.4) | 76.9(x0.3) | 83.5(x0.8) 80.6(0.6) 84.9(x1.1) 87.5(20.1) | 86.3(x0.1) | 79.3(x0.1) 93.3(£3.4)
2 77.1(x0.2) | 73.7(x0.2) | 76.2(x0.5) 78.4(x1.1) 63.6(x14.6) | 72.4(x0.4) | 78.4(x0.1) | 78.1(x0.5) 81.0(%2.3)
3 74.4(x0.3) | 69.0(£0.1) | 72.1(x0.1) | 76.7(x0.6) | 72.6(x3.5) | 79.7(x0.5) | 76.1(x0.4) | 76.5(x0.4) 86.5(+2.6)
4 91.3(x0.2) | 92.1(x0.1) | 90.9(x0.7) 91.6(x2.4) 93.2(+0.6) 91.2(x0.5) | 92.7(x0.4) | 87.4(x5.9) 93.5(x1.9)
5 74.9(x0.1) | 74.8(x0.1) | 74.1(x0.1) 78.3(x0.1) 75.3(x0.3) 78.0(x1.0) | 79.7(x0.3) | 79.6(x0.3) 80.8(x3.0)
6 81.5(x0.2) | 81.7(x0.1) | 81.9(x0.2) | 82.6(x0.1) | 83.2(x0.1) | 83.9(20.3) | 82.9(x0.1) | 80.7(x1.1) 80.5(2.8)
7 74.5(x0.3) | 74.2(x0.3) | 74.0(x0.1) 75.1(x0.1) 73.7(x0.5) 76.1(x0.3) | 74.5(x0.5) | 74.6(x0.6) 83.1(%5.9)
8 80.7(x1.0) | 83.2(x0.4) | 79.3(x0.8) 87.3(20.3) 59.7(x10.1) | 84.2(x0.2) | 86.7(x0.3) | 88.5(x0.4) 64.8(£3.7)
9 49.2(£0.1) 51.0(x0.4) 50.5(x0.2) 65.0(x£13.3) 46.7(£3.4) 56.6(x0.4) 52.7(x0.1) 53.8(x0.4) 77.7(+0.6)
10 56.5(x1.6) | 52.8(x0.6) | 60.6(x0.4) 49.7(+0.2) 47.4(£1.6) 61.8(x2.3) | 51.2(x1.8) | 50.5(x1.7) 79.2(£2.2)
11 75.2(20.2) | 76.5(20.2) | 75.3(20.3) | 68.1(x1.7) | 66.0x0.3) | 76.7(x0.1) | 66.5(x0.4) | 73.7(x4.3) 67.1(20.8)
12 76.7(£0.2) 76.0(£0.4) 77.7(x0.1) 78.2(x1.7) 76.7(x1.5) 74.7(x0.6) 79.0(x0.1) 75.5(x1.1) 83.7(20.6)
13 77.9(x0.1) | 78.4(x0.3) | 78.0(x0.5) 80.3(%0.3) 79.1(x0.6) 76.5(x1.3) | 79.9(x0.4) | 72.7(x5.4) 86.3(+0.8)
AVG 74.5 73.8 74.9 76.3 70.9 76.8 75.8 74.6 81.3
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Fig. 14. Visualization of t-SNE maps.

cross-subject noises and improve the classification accuracy
by combining with deep learning methods.

2) When using single-channel EEG data, the data of FP1
and FP2 channels are better for the classification usage of brain
states than the data of FPZ channel (see the average results
of all methods in Tables II-IV). As noted, Anes-MetaNet
achieves the highest accuracy for classifying the DoA using
FP1 channel of the EEG data.

Anes-MetaNet). Nevertheless, LSTM improve the classifica-
tion accuracy by comparing the results between using MCNN
and Anes-MetaNet.

From the above experimental results, it can be seen that
the classification results of CNN and LSTM are better than
SVM and RF. However, the result of CLSTM is not as good
as CNN or LSTM. The reason is that the classification results
using CNN are not good enough (no better or just slightly
better than a random guess); thus, adding LSTM makes the
prediction further away from the true label given too many
wrongly classified samples by CNN. The training of LSTM
needs better represented features and predicted labels rendered
by CNN. The wrong features and labels lead to the inability
of LSTM to train an accurate model. The classification results
of MCNN are not only better than CNN in the final accuracy,
but also much better than CNN in the classification of the
more difficult task (CON vs semi-CON). From the confusion
matrix, we can see that MCNN achieves a high accuracy in the
classification results of each class, while CNN only has high
accuracy in the classification of LOC state and CON state, and
the accuracy in the classification of semi-CON state is about
0. Such a phenomenon can be explained that meta-learning
and two-stage classification mechanism in MCNN are much
helpful to improve the classification capability of CNN,
so that the features extracted by the CNN model can more
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TABLE V
EXPERIMENTAL RESULTS BASED ON AN HBA EEG DATASET

Subject SVM RF CNN LSTM CLSTM MCNN CLA ALSTM Anes-MetaNet
1 84.8(x0.3) | 85.1(x0.4) | 84.0(x0.2) | 86.1(x1.4) | 84.4(x0.2) | 84.0(x0.4) | 83.3(x0.3) | 82.0(x2.8) 88.9(+3.7)
2 90.7(£1.2) | 92.5(x0.1) | 90.5(£0.5) | 93.7(x1.4) | 93.7(x0.2) | 93.3(20.1) | 94.5(x0.2) | 94.1(=0.4) 94.5(+0.2)
3 82.4(+0.5) | 80.3(x0.5) | 81.2(x0.4) | 82.1(x1.5) | 80.0(x0.5) | 83.8(x0.2) | 80.5(x2.7) | 80.0(x0.5) 80.5(x2.7)
4 83.3(20.7) | 75.0(x0.2) | 82.8(x0.6) | 67.9(£3.2) | 72.3(x0.2) | 82.2(x3.0) | 81.3(x4.9) | 75.8(x1.2) 81.3(24.9)
5 94.1(x0.5) | 93.5(x0.2) | 94.3(x0.2) | 90.7(x1.9) | 91.0(x1.6) | 91.7(x2.2) | 93.8(x1.7) | 93.7(x2.9) 93.0(x0.6)
6 84.6(x0.1) | 84.1(x0.1) | 84.7(x0.1) | 82.1(x4.1) | 87.3(x2.5) | 79.6(x1.8) | 74.7(x0.3) | 87.8(x1.4) 88.5(+0.5)
7 83.8(20.4) | 83.9(x0.1) | 81.9(x0.4) | 84.7(x1.6) | 89.6(x0.6) | 84.9(x0.4) | 83.4(x1.0) | 82.8(x0.2) 87.1(20.5)
8 90.7(£0.3) | 89.8(x0.1) | 87.5(x0.2) | 92.0(x1.9) | 92.7(x1.7) | 86.3(x0.1) | 92.5(x1.4) | 90.1(=0.9) 93.1(x0.2)
9 91.3(x0.4) | 91.5(x0.1) | 91.8(x1.0) | 95.4(x0.4) | 95.5(x0.7) | 92.0(x1.5) | 94.9(x1.5) | 93.2(x0.1) 96.3(+0.8)
10 90.8(x0.5) | 86.3(x0.1) | 87.3(£0.7) | 84.6(x0.8) | 84.4(x0.9) | 85.7(x0.2) | 89.3(x1.9) | 86.8(0.1) 89.3(x1.8)
AVG 87.6 86.2 86.6 85.9 87.0 85.1 86.8 86.6 89.5
TABLE VI
BI-CLASSIFICATION EXPERIMENTAL RESULTS BASED ON THE OBA EEG DATASET FROM FP1 CHANNEL
Subject SVM RF CNN LSTM CLSTM MCNN CLA ALSTM Anes-MetaNet
1 84.5(x0.7) | 90.6(x0.2) | 91.7(x0.8) | 92.0(x2.2) | 92.3(x1.7) | 92.0(x0.1) | 95.4(x0.1) | 94.5(x0.5) 95.4(x0.3)
2 78.0(x1.4) | 73.2(x0.4) | 75.5(x2.2) | 70.4(¢5.3) | 68.0(x4.8) | 79.3(20.3) | 81.5(x0.1) | 67.6(x1.5) 81.8(x2.1)
3 72.5(x0.5) | 80.6(£0.4) | 81.5(x0.6) | 83.3(x1.6) | 84.1(x0.5) | 80.1(x0.2) | 82.0(x0.4) | 84.9(0.5) 84.4(+0.9)
4 88.5(x0.5) | 89.7(x0.4) | 88.4(x1.0) | 86.8(x1.4) | 87.8(x1.6) | 88.0(x1.0) | 90.8(x1.0) | 85.9(x0.1) 88.2(x0.2)
5 73.0(x0.1) | 83.1(x0.3) | 82.3(x0.4) | 81.4(x1.6) | 83.9(x0.6) | 80.8(x1.3) | 85.8(x1.2) | 84.3(%1.5) 83.5(x1.3)
6 84.7(x0.3) | 84.9(x0.2) | 87.4(x0.6) | 86.1(x1.9) | 80.5(x2.4) | 89.1(x0.1) | 86.4(x1.4) | 82.5(x0.1) 93.5(x1.4)
7 76.9(£0.1) 75.3(£0.3) 78.5(x0.5) 76.2(x£1.3) 78.1(x0.1) 78.0(x0.4) 77.2(x0.5) 75.7(x£1.7) 79.2(+0.6)
8 87.4(x0.4) | 77.7(x0.5) | 82.5(+3.4) | 83.0(x5.6) | 79.3(29.2) | 85.8(x1.5) | 89.8(x0.4) | 90.8(x1.0) 87.2(x0.5)
9 54.9(x0.1) | 64.8(x0.1) | 65.6(x0.5) | 63.6(x0.2) | 65.2(x1.2) | 66.5(x0.1) | 62.6(x0.6) | 62.6(x1.1) 65.6(x1.3)
10 59.1(20.2) | 58.6(x0.1) | 60.2(x0.5) | 62.9(x0.5) | 62.3(x2.5) | 58.8(x1.4) | 59.8(x0.8) | 61.4(x1.9) 67.8(%0.5)
11 80.2(x0.1) | 75.0(x0.2) | 74.3(x0.4) | 75.2(x0.1) | 73.7(x0.1) | 72.5(x0.6) | 71.2(x2.6) | 75.3(x0.7) 75.5(x£2.2)
12 78.2(x0.1) | 75.3(x0.2) | 76.8(x0.2) | 76.4(x1.1) | 76.0(x0.2) | 74.8(x1.5) | 81.0(x1.0) | 77.3(x0.1) 78.5(x1.6)
13 80.5(0.5) 76.9(+0.3) 78.3(x0.2) 82.8(%1.2) 78.8(x1.2) 78.3(x0.3) 81.9(x1.6) 77.8(20.2) 82.7(£1.6)
AVG 76.8 71.3 78.6 78.4 71.6 78.7 80.4 78.5 81.7

accurately represent the DoA. Compared CLSTM to Anes-
MetaNet, accurately representing the input features for LSTM
is important for the further feature learning in improving the
classification accuracy. Compared CLA and ALSTM models
to Anes-MetaNet, the well-performed models in the HBA
conditions are not appropriate to estimate the DoA in the OBA
conditions.

9) Experiments on an HBA Dataset: As stated above, OBA
data is more complex with lower SNR than HBA data.
In order to further demonstrate the effectiveness of the pro-
posed model, we apply the Anes-MetaNet to an HBA dataset
from Abel et al. [39]. This HBA dataset contains 10 subjects
with two states, pre-LOC and LOC. Following the above
experiments, we also implement a cross-subject validation by
using the data of seven subjects as the training dataset, and the
data from the remaining subjects as the test dataset. The other
settings are the same as those in the above OBA experiments.
As noted, this dataset is collected from FP1 channel. The
classification results are presented in Table V. As seen, for
such a bi-classification problem, SVM performs better than the
deep learning based baseline models including the two recent
developed models, CLA and ALSTM, from the literature.
Despite this, our proposed model still performs slightly better
than SVM. Note that since there are only two states in
this dataset, the two-stage process in the implementation of
Anes-MetaNet is omitted. In addition, for a fair comparison,
we conduct another bi-classification experiment with the OBA
data collecting from FP1 channel, and display the results in
Table VI. As we can observe, Anes-MetaNet still achieves the

best performance. An interesting finding is that in Table V, all
the classification accuracy is between 85.1% and 89.5% for the
HBA dataset, while in Table VI, all the classification accuracy
is just between 76.8% and 81.7%. Such a comparison clearly
indicates that the data obtained from OBA conditions have
much lower SNR than that acquired from HBA conditions,
which further demonstrates the meaning of introducing the
Anes-MetaNet to the literature.

IV. CONCLUSION

In this study, we propose an Anes-MetaNet to solve the DoA
classification problem in office-based environments, in which,
studies on the classification of anesthesia EEG data have
not been well investigated. The model we develop, provides
good performance for the classification of brain states using
anesthesia EEG data. The proposed Anes-MetaNet can miti-
gate the individual differences among subjects. We train the
model in a sequential way to reach a better classification
accuracy. The t-SNE visualization validates our two-stage
training mechanism. The comparison results using an HBA
dataset and an OBA dataset, showcase how complex the OBA
data is and the necessity of developing the Anes-MetaNet.
In the future, a systematic comparison of OBA EEG data
and HBA EEG data under different anesthetics need to be
conducted with regards to model accuracy and interpretability.
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