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An Attention-Based Wavelet Convolution Neural
Network for Epilepsy EEG Classification

Qi Xin, Shaohai Hu, Shuaiqi Liu

Abstract— As a kind of non-invasive, low-cost, and read-
ily available brain examination, EEG has attached signifi-
cance to the means of clinical diagnosis of epilepsy. How-
ever, the reading of long-term EEG records has brought
a heavy burden to neurologists and experts. Therefore,
automatic EEG classification for epileptic patients plays
an essential role in epilepsy diagnosis and treatment. This
paper proposes an Attention Mechanism-based Wavelet
Convolution Neural Network for epilepsy EEG classifi-
cation. Attention Mechanism-based Wavelet Convolution
Neural Network firstly uses multi-scale wavelet analysis to
decompose the input EEGs to obtain their components
in different frequency bands. Then, these decomposed
multi-scale EEGs are input into the Convolution Neural Net-
work with an attention mechanism for further feature extrac-
tion and classification. The proposed algorithm achieves
98.89% triple classification accuracy on the Bonn EEG
database and 99.70% binary classification accuracy on the
Bern-Barcelona EEG database. Our experiments prove that
the proposed algorithm achieves a state-of-the-art classifi-
cation effect on epilepsy EEG.

Index Terms— Attention, convolution neural network,
epilepsy EEG classification, wavelet.

I. INTRODUCTION

S A chronic neurological syndrome, epilepsy may occur
for all ages. It has the characteristics of repeatability
and sudden onset. Seizures are characterized by the sudden
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loss of consciousness, convulsions and varying degrees of
consciousness, and obvious thinking, perception, emotion, and
psychomotor disorders. Epilepsy has a serious impact on
brain function. It is the second-largest nervous system disease
after cerebrovascular disease [1]-[3]. About 50,000,000 people
worldwide suffer from the disease, of which nearly 80%
are from low- and middle-income countries and regions [4],
[5]. Therefore, the diagnosis and treatment of epilepsy have
paramount significance.

Clinical detect and diagnose epilepsy with FElectroen-
cephalography (EEG), Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Magnetoencephalography (MEG),
and other imaging modalities [6]. MRI, CT, and MEG are pri-
marily used to detect secondary epilepsy caused by intracranial
lesions or injuries and have no auxiliary effect on primary
epilepsy without solid lesions in the intracranial. As a non-
invasive, readily available, and low-cost brain examination,
EEG stands out among many clinical examinations and has
become the main tool of clinical diagnosis of epilepsy. How-
ever, mass data of EEG brings a heavy burden to the diagnosis
of neurologists and experts. Relevant experts need to read
many EEG data to diagnose patients with epilepsy, and the
diagnosis is very subjective. The necessity of EEG classifica-
tion and detection on epilepsy and the shortage of artificial
detection make the adaptive automatic EEG classification
algorithm a new research hotspot.

The research on EEG analysis algorithms and automatic
detection for epilepsy began in the 1970s [7]. With the
development of signal processing and pattern recognition,
more and more automatic detection algorithms of epileptic
EEG have been proposed. The existing EEG classification
algorithms mainly include the following categories: algorithms
based on time-domain analysis, frequency domain analysis,
time-frequency analysis, nonlinear dynamics analysis, and
deep learning. Template matching is a typical time-domain
analysis algorithm. Vijayalakshmi and Appaji [8] proposed an
algorithm based on template matching for EEG peak detection
in epilepsy patients in 2011. However, the integrity and uni-
versality of the template set are required due to the complexity
of EEG and the diversity of epileptic discharges. The complex
EEG, which is difficult to analyze in the time domain, can
be transformed into the frequency domain for analysis. The
frequency-domain analysis based on the Fourier transform is
an efficient algorithm for analyzing and classifying epileptic
EEG signals. The commonly used methods include power
spectrum analysis, autoregression (AR), correlation analysis,
For more information, see https://creativecommons.org/licenses/by/4.0/
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and EEG topography. Kim et al. [9] proposed a multi-variable
EEG time series prediction algorithm for epilepsy based on
a coercively adjusted autoregression model (CA-AR). In [10],
Waulandari et al. proposed an EEG visualization method based
on Fourier spectrum analysis by using the genetic algorithm,
which can analyze the brain state of epilepsy patients through
visualization. Although frequency domain analysis can extract
the relevant features of epileptic EEGs, the advantage of
Fourier transform is to process the stationary linear sig-
nal. EEG is nonlinear, non-normal, and non-periodic, whose
features are difficult to extract completely only by Fourier
transform.

With the help of the advantages of analysis in time
and frequency domains, the time-frequency analysis can
extract the time-domain features of EEG effectively and
extract its frequency-domain features well. Therefore, the
time-frequency analysis of EEG can describe the relation-
ship of EEG frequency with time more clearly. The com-
monly used time-frequency domain analysis tools mainly
are several transforms, which are short-time Fourier trans-
form (STFT), Wavelet transform (WT) and Hilbert-Huang
transform, etc. Since epileptic discharges are various and
EEGs are quite complicated, its time series is nonnormality,
nonlinearity, and aperiodicity. Consequently, it attaches great
significance to extract these special features appropriately.
As a multi-scale and multi-resolution time-frequency domain
analysis algorithm, the wavelet can decompose the signal
into multi-scale subspace, which can extract features of EEG
in either time-domain or frequency-domain, making it more
convenient to analyze the time-frequency features of signals.
Omidvar et al. [11] proposed a seizure detection algorithm
combining biorthogonal wavelet, genetic algorithm, and sup-
port vector machine. Tang et al. [12] proposed an epilepsy
EEG classification algorithm by combining wavelet transform
and detrended fluctuation analysis in the local area. Firstly, the
original EEG is decomposed by wavelet. Then, the dynamic
fractal structure of wavelet packet sub-bands is described
by detrended fluctuation analysis. Finally, EEG is classified
by combing fractal spectrum features and support vector
machines.

Although the above time-frequency algorithms can classify
epileptic EEG well, the nonlinear features of EEG greatly
influence the time-frequency domain epilepsy detection algo-
rithms. To better classify epileptic seizures, many scholars
proposed classification algorithms of EEG for epilepsy based
on nonlinear dynamics. For example, Kamath [13] used the
nonlinear dynamics method and Hilbert scatter diagram to
extract features of EEG, which achieves good result for the
classification of epileptic seizure states. Craley et al. [14]
proposed an EEG classification algorithm for epilepsy based
on the hidden Markov model, and the algorithm achieved
good result on public data sets. A classification algorithm
based on fractal dimension for epileptic EEG is proposed
by Banerjee [15], which can effectively classify epileptic
EEG. Although fractal dimension is a mature theory in the
analysis of nonlinear time series, it is difficult to estimate the
chaotic features of EEG shape and has high computational
complexity.

As a machine learning algorithm, deep learning has been
applied in various fields in recent years, such as image denois-
ing, image fusion, target detection, etc. [16]-[18]. Since it uses
a multi-layer nonlinear processing unit to process different
data, which can better extract the relevant features of EEG, it is
more and more used in EEG processing. For example, a CNN-
based EEG classification algorithm for epilepsy is proposed
by Zhou et al. [19], which directly inputs the untreated
epilepsy EEG into CNN for classification. Zhao et al. [20]
proposed a classification algorithm of epilepsy EEG based on
one-dimension CNN and data enhancement, which improved
the classification accuracy by 3%. Xin et al. [21] proposed
an EEG classification algorithm for epilepsy by combining
convolutional support vector machine (CSVM) with principal
component analysis (PCA) and achieved good classification
results. Although the classification algorithm of epilepsy EEG
based on the convolutional neural network can effectively
improve the effect of classification, on the one hand, the
feature extracted by the existing algorithm is single, which
results in insufficient information extraction; On the other
hand, since input signals are time series, their multi-scale
information are not made full use by existing algorithm.

In recent years, there have been many improved algorithms
in deep learning. Among them, the attention mechanism
enables the network to focus on the most closely related
information to the task. EEG is complex nonlinear, non-
periodic, and non-stationary data with a large amount of infor-
mation, which makes feature extraction difficult. However,
assigning more weights to important features allows attention
mechanisms to ignore the noise and other redundant infor-
mation while focusing on important features. Accordingly,
we propose an attention-based wavelet convolution neural
network for epilepsy EEG classification to make full use of
the multi-scale features of EEG. In experiments, the proposed
novel AMWCNN yielded an impressive classification effect
on epilepsy EEG.

To sum up, specific contributions of this work are to:

(1) Combining wavelet transform, AMWCNN is constructed
for EEG classification.

(2) The constructed AMWCNN can fully maintain the
multi-scale information in the EEG signal and make a pre-
liminary estimate of the important information.

(3) The proposed end-to-end EEG classification algorithm
achieves accurate and robust epilepsy detection on Bonn EEG
Database [22] and the Bern-Barcelona Database [23] for EEG
classification.

Il. THE CONSTRUCTION OF AMWCNN

Aiming to facilitate the multi-scale features of EEG and
focus on the critical features of EEG, an attention-based
wavelet convolution neural network is constructed in this
paper and applied to the classification of epilepsy EEG. The
proposed flowchart can be seen in Fig. 1.

As can be seen from Fig. 1, after EEG is input into the net-
work, multi-scale decomposition is firstly carried out through
Wavelet transform. Then, feature extraction of the signal is
carried out through the attention-based wavelet convolution



XIN et al.: ATTENTION-BASED WAVELET CONVOLUTION NEURAL NETWORK FOR EPILEPSY EEG CLASSIFICATION 959

Wavelet
Coeffs 1

Input EEG

lenth=4097

/ i
o B |, ﬁﬂm

Convolution BN+ReLu Attention GAP

)01

Wavelet
Coeffs n

Fig. 1. AMWCNN flowchart.

neural network constructed in this paper. Finally, classification
results are output through the Softmax function. In III-C
Ablation experiments, the effect of Wavelet decomposition
level on AWCNN based EEG classification for epilepsy is
analyzed. The number of wavelet coefficients depends on the
number of wavelet layers, so it is denoted as “Wavelet Coeffs
n” in Fig. 1. Next, this section will describe the proposed
algorithm in detail.

Firstly, the original input EEGs are turned into Wavelet
coefficients by Wavelet transform, in which the features
of signals are extracted. Wavelet transform has good local
time-frequency characteristics and can describe the signal
features well in both time and frequency domains. It is suitable
for non-stationary, nonlinear and non-periodic EEGs. The
basic principle of wavelet transform is as follows [24].

12/(50) is the Fourier transform of w(f) € L*(R) (where
L?(R) represents the square-integrable real number space),
which satisfies the admissible condition:

o0 ‘;,&2(@)’
c, :/ do < 00 (1)

—00 o]

Then w(¢) is called as the mother wavelet. w(t) generates
wavelet functions through scaling and translation, that is

t—>b
a
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where a denotes the scaling factor and b denotes the translation
factor. Suppose EEG e(t) € L*>(R) and its continuous Wavelet
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Fig. 2. Attention mechanism-based CNN.

transform can be defined as:

Wye(a,b) = /

—00

+oo _
Wa,p(1)e(t)dt (3)

So, we can get the discrete Wavelet decomposition of
EEG. At this time, discrete sampling of scaling factor a and
translation factor b is required as follows:

a:aé’,b:qboa(’)’(ao> 0,bpeR,peZ,qeZ) (4

Then the wavelet function y, (¢) can be discretized into:

_pr
2

Wp.qa(t) =ay 2 w(ay "t — qbo) 6))

Therefore, the discrete Wavelet transform (DWT) of e(?)
can be defined as:

DWp q(e) = /R e()yp,q()dt = (e, vp.q) (6)

That is, the wavelet coefficient of each layer is

WC, =DWM(e)=Ae(t)¢p,q(t)dr=(e, vpa) (D

Next, the wavelet coefficients of epilepsy EEG are used as
the input of the CNN. The wavelet coefficient of each layer is
input into the proposed attention mechanism-based CNN. The
structure of the proposed network is shown in Fig. 2.

As one of the most potent tools in deep learning, CNN
has been widely used in signal processing. CNN consisted of
convolution, pooling, and fully connected layer (FC), where
the rectified linear unit (ReLU) is often used as the activation
function. It has the characteristics of the local receptive
field, weight sharing and down-sampling [25]. The proposed
attention-based convolutional neural network is mainly com-
posed of three modules: the convolutional block, which is
composed of convolution, batch normalization, and rectified
linear unit (BN+ReLU), the attention block, and the global
averaging pooling (GAP) block.

The formula of convolution in the convolution block can be
defined as:

l -1 ! !
wch = > wei =kl + b} (8)
ieEM;
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Fig. 3. Attention mechanism network.

where M; are feature graphs of input signals; kfj represents
the convolution kernel connected by the i-th feature graph for
upper layer; * stands for convolution; b, stands for bias; f (-)
represents the activation function, which is ReLU in this paper.

The neural network normalized the data to a unified interval
through batch normalization to reduce the data divergence and
the difficulty of learning the network. The activation function
of the proposed network is the nonlinear function ReLU,
whose formula is:

fx)

ReLU has sparsity, enabling the sparse model to better
mine relevant features and fit training data. It avoids gradi-
ent disappearance and accelerates training speed. After three
convolution blocks, the features of the Wavelet coefficients
converted from epilepsy EEG are further extracted. The output
of the third layer activation function is input into the attention
block, whose structure is shown in Fig.3.

Attention model (AM) has become a vital research field in
neural network research since it was proposed to solve the
problem of machine translation. The attention model has been
widely used in artificial intelligence-related fields. Attention
mechanism allows a neural network to focus only on a portion
of its input and select specific inputs.

From Fig. 3, in the attention block, Wavelet coefficients
WC, € REXHXW output by convolution block are converted
into channel attention maps M € RC¢*C. Firstly, WC,. is
reshaped to RE*V. Next, matrix multiplication is performed
between WC. and its transpose matrices. Finally, channel
attention maps M € RE*C is obtained by Softmax, which
is

= max(0, x) )

exp(WC.i-WCq)
C
Z eXp(WCci'WCCj)
i=1

mji = (10)

where m j; is the impact of the channel i on the channel j.

Next, we perform matrix multiplication between M and
the transposed matrices of WC.. The product is reshaped to
M e REXW>H The reshaped product is multiplied by a scale
parameter f3. The final output A € RE*#*W can be obtained
by summing the elements of WC,, that is

C
Aj = ﬁ Z (mjiWCci) + Wch
i=1

(1)

where £ is the learning weight starting from 0.

We use global averaging pooling instead of a fully con-
nected layer at the end of each attention-based convolutional
neural network. Fig. 4 gives the parallels of FC and GAP. If the
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Fig. 4. Attention mechanism network.

Algorithm 1 AMWCNN
input : EEG time series = e(?)
output: Prediction

averaging

The detailed procedure of the proposed algorithm is
discussed stepwise as follows:
Step 1: Calculate Wavelet coefficients of input EEG time
series. WC, = DW,, 4(e) = [re()yp.q()dt = (e, yp q)
Step 2: Calculate every Wavelet coefficient after
convolution network.
I _ -1 I !
WC, =f Z WC; *kij—f-bj)
ieM;
Step 3: Calculate channel attention maps M € R€*C of
Wavelet coefficients.
exp ci'Wch)

mji = ¢

> exp(WCi-WCy;)

i=1

Step 4: Output reshaped product A € REXH*W,
j = ﬁ Z (m]lWCCl) + WCC]

Step 5: Apply GAP to reshaped product

Step 6: Concatenate all of the output of attention
mechanism-based CNN.

Step 7: Apply Softmax to the concatenated series.
Step 8: Output prediction.

fully connected layer is replaced by global average pooling,
the number of parameters can be reduced since the GAP has
no parameters. On the one hand, this block can avoid over-
fitting; On the other hand, it is more consistent with the work
structure of CNN, associating each feature map with category
output.

Finally, an attention-based convolutional neural network
concatenated all the Wavelet coefficients. The classification
results are output after classifying by the Softmax function.

The AMWCNN proposed in this paper firstly uses Wavelet
multi-scale analysis to decompose the input EEGs to obtain
their components in different frequency bands. Then these
multi-scale EEG coefficients are then fed into the attention
mechanism based on CNN for feature extraction and classifi-
cation. Feature extraction of epilepsy EEG from time domain
and frequency domain is made full use of different feature
extraction methods and achieves good classification effect.
Algorithm 1 shows the detailed algorithm for the proposed
AMWCNN.

[1l. RESULTS AND ANALYSIS
A. Objective Evaluation Index

Experiments in this paper are implemented in a Python envi-
ronment. The operating system is Windows 10. The memory
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size is 64GB, the CPU is Intel(R) Xeon(R) Silver 4110, and
the GPU is GeForce RTX 2080Ti. Accuracy, specificity, and
sensitivity are used to evaluate the EEG classification effect
for epilepsy.

(1) Accuracy evaluates the performance of classification
network, which is defined as

TP+TN
TP+TN+FP+FN
(2) Specificity measures EEG features differences, which
extracted from epileptic focal and non-focal areas or seizure

and seizure-free, namely the ability to avoid misdiagnosis,
which can be expressed as

(12)

Accuracy =

TN
TN+ FP
(3) Sensitivity refers to the sensitivity of the network to

EEG of focal area and seizure period, which is defined as

TP
TP+ FN

where T P represents true positive events, while TN represents
true negative events, that is, correctly classify epilepsy EEG;
F P represents false positive events, while F N represents false
negative events, respectively.

Specificity = (13)

Sensitivity = (14)

B. Database Description

Utilizing Bonn EEG Database [22] and the Bern-
Barcelona Database [23], the classification effect of the
proposed AMWCNN is verified. Bonn EEG Database is
a multi-category database consisting of five subsets, i.e.,
Datasets A, B, C, D, and E. Taking Dataset A as an example,
firstly, electromyogram (EMG) and electrocardiogram (ECG)
artifacts in EEG are deleted. And then, 100 single-channel
EEG fragments of 23.6 seconds are extracted from continuous
multichannel EEG. A 128-channel amplifier system performs
12-bit analog-to-digital conversion on the 100 EEG fragments
at a sampling frequency of 173.61Hz. The EEG frequency is
controlled between 0.53Hz and 40Hz (12Db/OCT) by using
a bandpass filter. Similar methods generate other datasets.
Datasets A and B are EEG data from five healthy volunteers.
In Dataset A, subjects are awake with open eyes, while in
Dataset B, subjects are awake with closed eyes. EEG samples
from healthy volunteers are placed according to the standard
EEG electrode placement scheme, shown in Fig. 5, and sample
electroencephalogram in Fig. 6.

Datasets C, D, and E are preoperative EEG data of 5 epilep-
tic patients. The seizures in all five patients are controlled after
removing the hippocampus structure, and the removed brain
area is considered the focal area. Fragments of Dataset D are
from the focal areas, and fragments of Dataset C are from the
hippocampus. The two datasets only include interictal EEG,
and Datasets E only contained the EEG activity during the ictal
phase. Table I gives the details of the mentioned database.

Bern-Barcelona Database is a binary-category database con-
taining two sub-datasets, Dataset F and Dataset N, representing
EEGs in focal areas and non-focal areas. Bern-Barcelona
Database contains long-term EEG recordings from 5 patients
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Fig. 6. Examples of Bonn EEG database.

with temporal lobe epilepsy. All electroencephalograms are
intracranial EEG recordings. Due to long-term drug resistance,
five epileptic patients undergo epileptic focal lesion excision,
and all the database records are preoperative EEG records.
Electrodes are depth electrodes and intracranial strip electrodes
produced by AD-TECH (Racine, WI, USA). All EEG record-
ings are multichannel sampled at 512Hz, except at 1024Hz
when EEG is less than 64 channels. The Kanton of Bonn ethics
committee approved the EEG database for research purposes,
and all patients have signed informed consent forms.

During the generation of the two datasets, 3750 pairs of
EEG fragments (F for focal areas and N for non-focal areas)
are randomly selected from the EEG of corresponding areas,
except for the EEG signals during the seizure and 3 hours
after the last seizure. Two signals x and y in the same
signal pair (x, y) are recorded simultaneously. Each signal is
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TABLE |
BONN EEG DATABASE

Dataset Label State Subject Electrpde type Electrpde placement

A Healthy ~ Awake and eyes open  Healthy subjects Extra-cranial  International 10-20 system
B Healthy  Awake and eyes closed Healthy subjects Extra-cranial  International 10-20 system
C Inter-ictal Seizure-free epileptic patients Intra-cranial ~ Opposite to focal area

D Inter-ictal Seizure-free epileptic patients Intra-cranial ~ Focal area

E Ictal Seizure activity epileptic patients Intra-cranial ~ Focal area
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Fig. 7. Sample signal pairs for Datasets F and N.

10240 samples with a time window of 20 seconds. In random
signal pair, the first five patients are randomly selected from
a patient of EEG data, a random sample from the EEG data
in patients with a focal area of brain electric signal, which is
the signal x, then the signal selection within the neighborhood
of a focal area of the brain electrical signal, that is the signal
v, finally divided each signal for the length of the sample of
20 seconds. The uniform random number generator is used for
segmentation without repetition.

In addition, each signal pair should be visually exam-
ined before Dataset F is generated. If the signal pair con-
tains obvious artifacts, it cannot be included in the dataset.
Finally, EEG pairs in focal areas were saved according to
the sequence of extraction and segmentation. In contrast, the
original information such as patient name, signal name, and
window were not saved simultaneously. Similarly, the above
process when generating Dataset N. Sample signal pairs for
Datasets F and N are shown in Fig. 7.

C. Ablation Experiments

In this section, Datasets A and B in Bonn EEG Database
are labeled as normal EEG signals, and the Datasets C and D
are labeled as interictal EEG signals that came from epileptic
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Fig. 8. The effect of wavelet decomposition level on classification.

TABLE Il
CLASSIFICATION RESULTS OF DIFFERENT WAVELET
DECOMPOSITION LEVELS

Number of wavelet decomposition levels Accuracy Specificity Sensitivity

3-level 9520%  95.31% 95.31%
4-level 95.20%  95.31% 95.31%
5-level 98.80%  98.82% 98.82%
6-level 95.60%  95.70% 95.70%

patients. Based on the hyper-parameters of the constructed
network, the ablation experiments are conducted with the
classification of the mentioned two kinds of EEG signals
as an example. Firstly, the effect of Wavelet decomposition
level on AWCNN based EEG classification for epilepsy is
analyzed. In Fig. 8, we give the effect of epileptic signal
classification obtained by signal decomposition with different
Wavelet transform levels. What’s more, the specific details
are concluded in Table II. According to Fig. 8 and Table II,
we find that the classification effect of the proposed algorithm
is the best when the wavelet decomposition level is 5.

Next, the effect of epoch number on epilepsy EEG signal
classification is analyzed. Fig. 9 and Table III show the accu-
racy and loss of epilepsy classification when epoch numbers
are 100, 500, 1000, and 2000. Fig. 9 and Table III reveal that
the classification accuracy, specificity, and sensitivity increased
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TABLE IlI
CLASSIFICATION RESULTS OF DIFFERENT WAVELET
DECOMPOSITION LEVELS

Epoch Accuracy Specificity Sensitivity Running time(s)
100 97.20% 97.27% 97.27% 920.71
500 98.40% 98.43% 98.43% 4543.58
1000 98.80 % 98.82% 98.82% 12090.48
2000 98.40% 98.43% 98.43% 18270.12
- A

[ 20 o 60 100 [ 20 o 0 50 100

(a) Accuracy of epoch=100 (b) Loss of epoch=100

Traing and Validation accuracy Traing and Validation loss

s — Training loss
— Vaidation val_loss

[ 100 200 20 0 00

(c) Accuracy of epoch=500 (d) Loss of epoch=500

Traing and Validation accuracy Traing and Validation loss

] 200 %0 00 800 1000 ] 200 w0 500 800 1000

(e) Accuracy of epoch=1000 (f) Loss of epoch=1000

Traing and Validation accuracy Traing and Validation loss

— i
— val

o 200 %0 00 800 1000 ] 200 w0 500 800 1000

(g) Accuracy of epoch=2000 (h) Loss of epoch=2000

Fig. 9. Classification accuracy and loss of different epoch numbers.

when the number of epochs gradually increased. However, the
proposed algorithm was overfitted, and the algorithm’s running
time significantly increased along with the increase of the
epoch number. In Table III, the number of epochs is one of the
influencing factors of algorithm performance and running time.
The more epochs are, the more running time is. However, the
algorithm performance reaches the best at 1000 epochs. For
the purpose of algorithm performance, we choose 1000 epochs
and the running time is relatively longer. Therefore, from
two aspects of the algorithm running time and classification
performance, the epoch number of the algorithm in this paper
is set as 1000.

Finally, the effect of filter number in each convolutional
layer on EEG classification of epilepsy is analyzed. Fig. 10
shows the accuracy and loss of classification under different

Traing and Validation accuracy Traing and Validation loss

0 200 %0 500 800 1000

(b) Loss of 16 filters

(a) Accuracy of 16 filters

Traing and Validation accuracy Traing and Validation loss

[ 200 0 600 800 1000

(c) Accuracy of 32 filters (d) Loss of 32 filters

Traing and Validation accuracy Traing and Validation loss

— Training loss
— Validation val loss

[ 200 00 500 800 1000 ] 200 %0 00 00 1000

(e) Accuracy of 64 filters (f) Loss of 64 filters
Fig. 10. Classification accuracy and loss of different filter numbers.

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT FILTER NUMBERS

Filter numbers Accuracy Specificity —Sensitivity ~Running time(s)
16 97.60% 97.65% 97.65% 5425.60
32 98.80% 98.82% 98.82% 12090.48
64 95.60% 95.70% 95.70% 20501.63
TABLE V
EEG TYPES
Type Subject Database Dataset
Healthy Healthy Bonn EEG Database Dataset A and
volunteers Dataset B
Seizure-free
(Inter-ictal) Epileptic patients Bonn EEG Database Dataset C and
Dataset D
Seizure-activity
(Ictal) Epileptic patients Bonn EEG Database Dataset E
Focal Epileptic patients Bern-Barcelona Dataset F
Database
Non-focal Epileptic patients Bern-Barcelona Dataset N
Database

filter numbers. Table IV gives further specific data in detail.
From Fig. 10 and Table IV, we can conclude that the best
classification effect can be achieved when the filter number
is 32. Similarly, in Table IV, the number of filters is one of
the influencing factors of algorithm performance and running
time. The more filters are, the more running time is. However,
the algorithm performance reaches the best at 32 filters. For
the purpose of algorithm performance, we choose 32 filters
and the running time is relatively longer.

D. Comparison Results

To illustrate the superiority of our algorithm and making
classification results more meaningful, epilepsy EEG data
of two databases, Bonn EEG Dataset and Bernn-Barcelona
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TABLE VI
EXPERIMENT DESCRIPTION OF HEALTHY VS. EPILEPTIC

Database  Classification task ~ Experiment Dataset Lable
Number
Bonn EEG Healthy vs. Epileptic No. 1-1

Database

AB vs. CDE Datasets A and
B are labeled as
0 and Datasets
C, D, and E are
labeled as 1.

Datasets A and
B are labeled as
0 and Datasets
C, D, and E are
labeled as 1.

Bonn EEG Healthy vs. Epileptic No. 1-2  AB vs. CD

Database

TABLE VI
CLASSIFICATION COMPARISON EXPERIMENTS BETWEEN
HEALTHY AND EPILEPTIC EEGS

Experiment Dataset Method Accuracy Specificity Sensitivity
Number
TFFWT-FD 92.55%  92.08% 91.53%
No. 1-1 AB vs. CDE WTPRNet 98.75%  98.48% 95.33%
AMWCNN 98.79%  98.82% 98.82%
TFFWT-FD 93.75 93.77% 91.08%
No. 1-1 AB vs. CDE  WTPRNet 99.4% 99.21% 96.37%
AMWCNN 99.50%  99.50% 96.50%

Dataset, are labeled as the following five labels: (1) Healthy,
including Dataset A and Dataset B in Bonn EEG Dataset;
(2) Seizure-free (also known as Inter-ictal), including Bonn
EEG Dataset C and D; (3) Seizure activity (also known as
Ictal), including Bonn EEG Dataset E; (4) Focal, includ-
ing Bern-Barcelona Dataset F; and (5) Non-focal, includ-
ing Bern-Barcelona Dataset N. The specific EEG types are
described in Table V.

Common epileptic EEG classification has the following
three types:(1) Healthy vs. Epileptic; (2) Healthy vs. Seizure-
free (Inter-ictal) vs. Seizure activity (Ictal); (3) Focal vs.
Non-focal. According to the three common epileptic EEG
classification types above, the following three experiments are
designed in this paper.

1) Healthy vs. Epileptic: In this section, two experiments are
designed based on EEG of healthy volunteers and epileptic
seizure signals classification. Healthy signals include Dataset
A and Dataset B, and epileptic EEGs include Dataset C and
Dataset D. The specific description of experiments is shown
in Table V.

In this paper, the above classification tasks are tested. Our
AMWCNN algorithm is proceeded and compared with some
commonly used methods. These algorithms include: (1) An
epileptic seizures classification algorithm combined fractal
dimension (FD) with time-frequency flexible WT (abbreviated
to be TFFWT-FD) proposed by Sharma er al. [26]; (2)
An explainable graph feature convolutional neural network
for epileptic EEG classification (abbreviated as WTPRNet)
proposed by Xin et al. [27]. The proposed algorithm is abbre-
viated as AMWCNN. Table VII has given the experiments.

As shown in Table VII, when classifying healthy EEG
signals, including Datasets A and B, and epileptic EEG sig-
nals, including Datasets C, D, and E, the proposed algorithm
achieves a better classification effect than traditional machine
learning algorithm TFFWT-FD and deep learning algorithm
WTPRNet. This is mainly attributed to the fact that our

TABLE VIII
CLASSIFICATION COMPARISON RESULTS AMONG HEALTHY,
SEIZURE-FREE, AND SEIZURE EEGS

Classification Experiment

task Number Label

Database Dataset

Dataset A is labeled as 0
and Dataset E is labeled
as 1.

Dataset B is labeled as 0
and Dataset E is labeled
as 1.

Datasets A and B are
labeled as 0 and Dataset
E is labeled as 1.
Dataset C is labeled as 0
and Dataset E is labeled
as 1.

Dataset D is labeled as O
and Dataset E is labeled
as 1.

Datasets C and D are
labeled as 0 and Dataset
E is labeled as 1.
Datasets A and B are
labeled as 0, Datasets C
and D are labeled as 1
and Dataset E is labeled
as 2.

No. 2-1-1 Avs. E

Bonn EEG
Database

Healthy vs.

Ietal No. 2-1-2

B vs. E

AB vs. E

Cvs. E

Bonn EEG
Database

Inter-ictal

vs. Ictal D vs. E

CD vs. E

Healthy vs.
Inter-ictal No. 2-3
vs. Ictal

Bonn EEG
Database

AB vs. CD
vs. E

algorithm takes advantage of EEG multi-scale features while
associating the important information of EEG signals through
attention mechanisms while ignoring unimportant information.

2) Healthy vs. Seizure-Free (Inter-Ictal) vs. Seizure Activity
(Ictal): Healthy, seizure-free, and seizure EEG signals are
classified in this section. Using all datasets in Bonn EEG
Database, three experiments are designed to achieve different
classification tasks. The specific experiment descriptions can
be seen in Table VIIIL.

The proposed algorithm is tested for the above classifica-
tion tasks and compared with some commonly used algo-
rithms. These algorithms include: (1) An epileptic seizure
identify algorithm based on Fourier-Bessel series expansion
(abbreviated as FBSE) proposed by Gupta [28]; (2) An
automatic detection algorithm for epilepsy seizure based on
orthogonal matching pursuit, entropy, and DWT (abbreviated
as OMP-DWT) proposed by Zarei and Asl [29]; (3) An
epileptic EEG brain seizure classification algorithm based on
autonomous deep feature extraction (abbreviated as ACNN)
proposed by Woodbright et al. [30]; (4) A general regression
neural network for epileptic EEG classification based on dual
complex WT (abbreviated as DTCWT-GRNN) proposed by
Swami et al. [31]; (5) An explainable graph feature convolu-
tional neural network for epileptic EEG classification (abbre-
viated as WTPRNet) proposed by Xin et al. [27]. Table IX
has given the mentioned experimental results.

In the classification task of experiment No. 2, experiments
No. 2-1-1, No. 2-1-2, and No. 2-1-3 are all aimed at clas-
sification between healthy EEG signals, including Dataset A
and Dataset B, and seizure EEG signals, including Dataset E.
Due to there are quite large differences in features of these
two signals, almost all algorithms have achieved good classi-
fication results. In contrast, the classification effects between
seizure-free EEG signals, including Dataset C and Dataset D,
and seizure EEG signals, including Dataset E, are much worse
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TABLE IX
CLASSIFICATION COMPARISON RESULTS AMONG COMMONLY USED
ALGORITHMS AND OUR AMWCNN ALGORITHM FOR HEALTHY,
SEIZURE-FREE, AND SEIZURE EEGS

Experiment Dataset ~ Method Accuracy Specificity Sensitivity
Number
FBSE 99.5% - -
OMP-DWT 100% 100% 100%
No. 2-1-1 A vs. E ACNN 98.17% 96.82% 98.49%
: ’ DTCWT-GRNN 100% 100% 100%
WTPRNet 100% 100% 100%
AMWCNN 100% 100% 100%
FBSE 99.5% - -
OMP-DWT 98% 99.23%  96.79%
No. 2-1-2 Bvs.E  DTCWT-GRNN 98.9% 98.75%  97.92%
WTPRNet 100% 100% 100%
AMWCNN 100% 100% 100%
DTCWT-GRNN 100% 100% 100%
OMP-DWT 99% 100% 96.66%
No. 2-1-3 AB s B \pRNet 100%  100%  100%
AMWCNN 100% 100% 100%
FBSE 99.5% - -
OMP-DWT 98.5% 99.23%  96.79%
No. 2-2-1 Cvs.E  DTCWT-GRNN 98.7% 98.56% 98.15%
WTPRNet 99.2% 99.38%  97.17%
AMWCNN 99.39%  99.23%  98.42%
FBSE 97.5% - -
OMP-DWT 93% 91.21%  94.46%
No. 2-2-2 Dvs. E  DTCWT-GRNN 93.3% 9321%  91.19%
WTPRNet 99% 99.35%  98.82%
AMWCNN 99.11%  99.43%  98.90%
FBSE 99% - -
OMP-DWT 98.33%  98.41%  98.5%
No. 2-2-3 CD vs. E DTCWT-GRNN 90.4% 92.2% 94.2%
WTPRNet 98% 98.17%  95.95%
AMWCNN 98.12%  98.23%  97.66%
AB vs CDDWT—BayKNN 98.6% 98.35%  97.75%
No. 2-3 s E“ WTPRNet 98.75%  98.9% 99.22%
: AMWCNN 98.89% 99.10% 99.22%

than experiment No. 2-2-1, No. 2-2-2, and No. 2-2-3. This
is mainly because the feature differences between epilepsy
patients’ seizure activity and seizure-free EEG signals is rel-
atively small. Therefore, the classification accuracy of experi-
ments No. 2-2-1, No.2-2-2, No. 2-2-3 of all the classification
algorithms is relatively low. However, compared with other
epilepsy EEG classification algorithms, the proposed algorithm
still achieves a good classification effect, which also shows
the algorithm’s effectiveness in this paper. In experiments
No. 2-2-1 and No. 2-2-3, the specificity and sensitivity of the
proposed algorithm are slightly lower than other algorithms,
while the difference is not much, and it is the second-best
among all the algorithms. The accuracy of this paper is the best
among all algorithms, for which it can accurately classify EEG
signals between seizure activity and seizure-free. Moreover,
in experiments No. 2-3 can be seen in Table IX that the pro-
posed algorithm can be well applied to the three-classification
task, which can more accurately distinguish among inter-ictal,
ictal and healthy EEGs. AMWCNN can achieve a superior
classification effect.

3) Non-Focalvs. Focal: This section mainly focuses on EEG
signals records in epileptogenic structures area and other brain
areas. Two sets of experiments are designed with Dataset F
and Dataset N of the Bern-Barcelona Database. The specific
experiment descriptions are shown in Table X.

TABLE X
EXPERIMENT DESCRIPTIONS OF NON-FOCAL AND
FocAL EEG CLASSIFICATION

Database Classification Experiment Dataset Label
task Number
Bern-Barcelona Non-focal No. 3-1 N vs. F Dataset N is labeled as
Dataset vs. Focal 0, and Dataset F is la-
beled as 1.
TABLE XI
UNITS FOR MAGNETIC PROPERTIES
Experiment Dataset Method Accuracy  Specificity Sensitivity
number
FBSE-WT 95.85% 95.47% 96.24%
TOCF 99% 98.68% 99.32%
No. 3-1 N vs. F PCA-CSVM 99.56% 99.72% 99.52%
WTPRNet 99.67% 99.87% 99.57%
WCNN 99.70% 99.79% 99.65%

Finally, a classification test is carried out on EEG sig-
nals recorded from the focal area and EEG signals recorded
from the non-focal area. The proposed algorithm has been
compared with some commonly used algorithms meanwhile.
These algorithms include: (1) A flexible time-frequency
coverage wavelet transform algorithm for focal EEG sig-
nal classification based on Fourier-Bessel series expansion
(FBSE) (abbreviated as FBSE-WT) proposed by Gupta and
Pachori [33]; (2) Automatic focal EEG signal detection based
on third-order cumulant function (abbreviated as TOCF) pro-
posed by Sharma et al. [34]; (3) A focal EEG signal clas-
sification algorithm on the principal component analysis and
convolutional support vector machine (abbreviated as PCA-
CSVM) proposed by Xin et al. [21]; (4) The WTPRNet algo-
rithm proposed in [27]. Table XI has given the experimental
results.

The fact that the specificity of the proposed algorithm is
slightly lower than that of WTPRNet in experiment No. 3-1
can be seen in Table XI. But the difference is not significant
and is the suboptimal value of all algorithms. In this paper, two
kinds of signals in Dataset F and Dataset N, namely epileptic
focal EEG and non-focal EEG, are classified with optimal
accuracy. The accuracy is the highest among all comparison
algorithms. It can be seen from the above that the proposed
algorithm is robust and can achieve excellent classification
effects for different types of epileptic EEG classification.
EEG signals of healthy subjects, seizure-free EEG of epileptic
patients, and EEG during the epileptic seizure of epileptic
patients can be accurately classified. Furthermore, the focal
EEG signals and non-focal EEG signals of epileptic patients
can be accurately classified, too. It has a strong generalization
ability and can adapt to a variety of epileptic EEG signal
classification scenarios.

IV. CONCLUSION

A new attention-based wavelet convolution neural network
for epilepsy EEG classification is proposed in this paper.
Wavelet multi-scale analysis is first used to decompose the
input EEG signals to obtain EEG signals of different frequency
bands. Then these multi-scale EEG coefficients are then input
into the AMWCNN network proceeding with feature extrac-
tion first and then classification. Our AMWCNN algorithm
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can classify three categories: EEGs of healthy volunteers,
seizure-free EEGs of epileptic patients and seizure EEGs
of epileptic patients, and two categories: focal area EEGs
of epileptic patients and non-focal areas EEG of epileptic
patients. Relevant details from neurophysiological signals have
been extracted with the proposed algorithm, which is helpful
for the localization of focal epilepsy regions. A three-class
accuracy rate of 98.89% is obtained on Bonn EEG Database,
and a two-class accuracy rate of 99.70% is obtained on
Bern-Barcelona EEG Database. Although a good classification
effect and strong generalization ability have been achieved by
our method, the model training is relatively time-consuming.
In the future, the network model can continue to be optimized
to improve the efficiency of model training.
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