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Abstract— In this study, a multi-scale high-density convo-
lutional neural network (MHCNN) classification method for
spatial cognitive ability assessment was proposed, aiming
at achieving the binary classification of task-state EEG sig-
nals before and after spatial cognitive training. Besides, the
multi-dimensional conditional mutual information method
was used to extract the frequency band features of the
EEG data. And the coupling features under the combina-
tion of multi-frequency bands were transformed into multi-
spectral images. At the same time, the idea of Densenet
was introduced to improve the multi-scale convolutional
neural network. Firstly, according to the discreteness of
multispectral EEG image features, two-scale convolution
kernels were used to calculate and learn useful chan-
nel and frequency band feature information in multispec-
tral image data. Secondly, to enhance feature propagation
and reduce the number of parameters, the dense network
was connected after the multi-scale convolutional network,
and the learning rate change function of the stochas-
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tic gradient descent algorithm was optimized to objec-
tively evaluate the training effect. The experimental results
showed that compared with the classical convolution neural
network (CNN) and multi-scale convolution neural network,
the proposed MHCNN had better classification performance
in the six frequency band combinations with the highest
accuracy of 98%: Theta-Alpha2-Gamma, Alpha2-Beta2-
Gamma, Beta1-Beta2-Gamma, Theta-Beta2-Gamma, Theta-
Alpha1-Gamma, and Alpha1-Alpha2-Gamma. By comparing
the classification results of six frequency band combina-
tions, it was found that the combination of the Theta-Beta2-
Gamma band had the best classification effect. The MHCNN
classification method proposed in this research could be
used as an effective biological indicator of spatial cognitive
training effect and could be extended to other brain function
evaluations.

Index Terms— Multi-scale high-density convolutional
neural network, spatial cognition evaluation, task-state EEG
signals.

I. INTRODUCTION

SPATIAL cognition refers to the information processing
process of size, shape, direction, and distance of three-

dimensional objects in physical space or mental space [1].
Spatial cognitive problems such as cognitive degradation of
visuospatial structure and spatiotemporal disorientation are
common in some brain diseases. For example, the course
of Alzheimer’s disease (AD) is irreversible and its etiology
is not clear [2], [3]. Therefore, it is of great importance to
explore spatial cognitive training and assessment methods for
the prevention of spatial cognitive decline in healthy subjects.
It is a problem to be solved in the field of brain science
and cognitive science to analyze and study spatial cognitive
ability and find a quick and effective method to evaluate spatial
cognitive ability.

Due to the characteristics of the large volume and the
high dimension of EEG data [4], the task-state EEG recog-
nition method for spatial cognitive evaluation needs to input
appropriate features into the classification method to evaluate
the spatial cognitive ability. In traditional machine learning
algorithms, linear discriminant analysis [5], K-means clus-
tering [6], and SVM [7] were often used to classify EEG
signals. However, these methods have problems such as slow
computing speed, large storage space demand, and difficulty
in solving multi-classification problems [8], which result in
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limitations in the field of nervous system research. Deep
learning, as a high-performance method in the field of machine
learning, has been widely used in the field of EEG signal
classification. Some studies have proved the feasibility of deep
learning in the field of EEG research [9]–[13], Akrofi et al.
used multiple discriminant analysis and K-means clustering to
analyze EEG to evaluate and detect Alzheimer’s disease [9],
and Li et al. studied the classification of stroke patients and
healthy controls by evolutionary multinucleate support vector
machine based on genetic programming [12].

Compared with the results of other classical machine learn-
ing methods in EEG classification, the CNN classification
model has not significantly improved. The main reason is that
these researches on deep learning of EEG signals do not give
full play to the advantages of deep learning, especially CNN
for spatial information of data. The idea of multispectral image
transformation proposed by Bashivan [14] made up for this
defect. According to the research of Bashivan et al., it was
found that the classification effect of CNN with multispectral
image converted EEG signal as feature input was better than
other classifiers. At the same time, considering that the opti-
mization design of CNN was crucial to its final classification
performance, they combined the multi-scale convolutional
neural network with the high-density network. The multi-
scale convolutional neural network was proposed based on
Googlenet’s Inception [15]–[17], which could accelerate the
convergence speed of the network and effectively improve the
results of classification. To reduce the computational load of
the model and avoid the inability to update the parameters,
we used a two-scale convolution kernel to calculate and
learn useful channel and frequency band and other feature
information in the multispectral image data. The results did not
achieve the desired effect. Later, by referring to the Densenet
model structure proposed by Huang et al. [18], this structure
had good performance in CNN image classification, which
could greatly reduce the number of parameters. At the same
time, relevant studies have applied CNN improved model to
the field of cognitive evaluation. For example, Li et al. applied
CNN to improve the cognitive training effect of network
recognition [19] and many researchers also applied CNN’s
improved model to classify the emotion of EEG [20], [21].

Therefore, we improved the multi-scale convolutional neural
network based on the feature extraction method of multi-
spectral image transformation, proposed the new classifier
named multi-scale high-density convolutional neural network
(MHCNN), and applied it to the EEG signal classification
task of spatial cognition. In this experiment, 16 task-state
EEG signals collected by 7 volunteers before and after spatial
cognitive training were classified as data. In addition, multi-
scale high-density convolutional neural networks, multi-scale
convolutional neural networks, and traditional convolutional
neural network classifier models were used for comparative
analysis.

II. MATERIALS AND METHODS

A. Data Set
16 channels of EEG signals studied in this paper came from

Yanshan University. The experimental subjects were 7 male

volunteers without any mental system or neurological diseases,
aged between 21 and 26. All subjects signed informed consent
before the experiment [22], [23], and the experimental study
was approved by the Ethics Committee of First Hospital of
Qinhuangdao in Hebei Province, China (The approval number
is 2018B006 in 2018). The data set included two kinds of
EEG signals from 7 male volunteers participating in the game
of Virtual City Walking before and after VR spatial cognitive
training task (Virtual Morris Water Maze).

In the task of this study, subjects participated in a virtual
pool environment by wearing a VR head-mounted display and
used remote cues to navigate themselves to the target platform.
First, the subjects were made to understand the task require-
ments and learn the location of the platform according to the
remote cues. Secondly, the subjects searched for the hidden
platform location from different perspectives and directions
according to the distal cues from different starting positions
and trained their spatial cognitive navigation ability. Finally,
the platform was removed. And the spatial memory storage
ability was evaluated by navigating to the location of the
platform in memory according to the remote cues.

In the process of data recording, subjects need to stay awake
and relaxed, wear an electrode cap in a quiet room for about
10 minutes, and conduct human-computer interaction with the
virtual game through an external controller. Meanwhile, the
room temperature was kept at about 23◦C, with an error of no
more than 2◦C [22], [23]. The subjects’ spatial cognition was
assessed after performing a task without any training. Then
the game and spatial cognition were trained for 20 days. And
finally, the task was performed again on the 20th day, and the
spatial cognition was evaluated after training [22], [23].

In the study, the EEGLAB toolbox in MATLAB was
used to conduct preprocessing of EEG Data, including EEG
preview, filters, raw data inspection, EEG frequency division,
data extraction (epoch), baseline correction. First, obvious
waveform drift data were removed and power frequency inter-
ference was filtered. The electromyographic effects of blinking
or eye movements were then corrected by ICA and the artifact
signals due to device or subject movements were removed.
Then, EEG signals were divided into frequency segments. The
time window for extracting EEG data was set as 1 second
before and after the event, and the baseline correction was
carried out based on the 1 second before the event. EEG
signals were divided into 7 frequency bands: Delta(1-4Hz),
Theta(4-8Hz), Alpha1(8-10.5Hz), Alpha2(10.5-13Hz), Beta1
(13-20Hz), Beta2(20-30Hz), and Gamma(30-40Hz).

The distribution of EEG electrodes is shown in Fig. 1. EEG
signals from the following 16 channels were selected: Fp1,
Fp2, F3, Fz, F4, of the frontal lobe, F7, P7 of the left temporal
lobe, FCz, C3, C4, Cz, Pz of the parietal lobe, F8, P8, of the
right temporal lobe, O1, and O2 of the occipital bone, and the
bilateral auricle as the reference electrode. The channels are
numbered from left to right and from top to bottom according
to the scalp electrodes. As shown in reference [22].

An OpenBCI device with 16 wet electrodes was used in
the experiment, and the electrodes were placed according to
the international standard lead 10-20 systems. The sampling
frequency of EEG signals was 125Hz, and the sliding window
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Fig. 1. Distribution of EEG electrodes.

technology (the sliding window was 2 seconds, with an overlap
rate of 50%) was adopted to perform the segmentation of EEG
signals. Due to the different duration of the task before and
after the training, EEG signals of each frequency band before
and after the training were segmented into 424 and 289 sam-
ples respectively. The corresponding relationship between the
time domain and frequency domain was obtained by a fast
Fourier transform of each channel in a single sample.

B. Feature Extraction Methods

In this paper, we adopted the multidimensional conditional
mutual information (MCMI) method [24]. As we know, MCMI
is an improved method of the conditional mutual informa-
tion (CMI). While CMI only analyze the coupling dynamic
relationship between two different brain regions (or channels),
MCMI takes the influence of other channels on the coupling
characteristics of the two selected channels into considera-
tion. Briefly, 16 scalp electrodes were divided into 3 groups
according to the relevant position. The time series of two
channels are firstly selected and investigated to check whether
they belong to the same group. If they are in the same group,
an additional consideration for the influence of other channels
should be given. Otherwise, the two channels are far away
enough, and the influence of other channels is neglected.
Finally, we calculate the coupling strength matrix regarding
all the combinations of two channels.

In the experiment, the MCMI method was used to extract
features from task-state EEG before and after spatial cognitive
training. Then, the following three feature classification meth-
ods were used to classify and compare the results to verify the
feasibility, effectiveness, and accuracy of the proposed multi-
scale high-density convolutional neural network algorithm.

C. Existing Classifier Methods

1) Convolutional Neural Networks: The convolutional neural
network consists of five basic structures: the Input Layer, the
Convolutional Layer, the Pooling Layer, the Fully Connected
Layer, and the Softmax Layer. The role of the convolution
and pooling layer is to extract features from the input image,
while the role of the full connection and classification layer is
to classify. The convolutional neural network has been widely
used as a deep learning model, and the most basic structure
of CNN can complete feature extraction and classification.
CNN has also made many research achievements in EEG
analysis [14], [25]–[28]. This study took CNN as a classic

classification model for experimental comparison. The CNN
structure in the experiment is two groups of convolution
pooling and two layers of full connection. Relu is selected as
the activation function and Adam as the optimization function.

2) Multi-Scale Convolutional
Neural Networks: The multi-scale convolutional neural network
was proposed based on Googlenet’s Inception [15]–[17]. For
example, the multi-scale convolutional neural network used
in the literature [15] learned the original image through three
convolutional cores of different sizes. The similarity between
the multi-scale convolutional neural network and the classical
convolutional neural network lies in that they are stacked with
the convolutional layer, the pooling layer, the full connection
layer, and the final classification layer. The multi-scale con-
volutional neural network uses the multi-scale convolutional
kernel, which enriches the image features, retains the original
information of the image, and has better robustness. Some
studies have improved the structure of the multi-scale CNN
to analyze EEG signals [29], [30], verifying the feasibility of
applying this network to analyze EEG. In this paper, the multi-
scale part was added based on classical CNN for experimental
comparison [31].

D. Multi-Scale High-Density Convolutional Neural
Network

1) Design of Multi-Scale High-Density Convolutional Neural
Networks: EEG signals can be processed by multi-dimensional
conditional mutual information (MCMI) [24] method to obtain
multispectral image data including channel location and fre-
quency band characteristic information. The distribution of
characteristic information in multispectral image data is global
and discrete. If the convolutional layer in the constructed CNN
only uses a single-size convolutional kernel, the model will not
be able to effectively learn the feature information contained
in the multi-spectral image data.

The number of convolutional layers is also an important fac-
tor that determines the performance of CNN. Deeper networks
allow the model to learn more complex features.However,
when the training sample size was relatively small, if CNN
used too many convolutional layers for feature extraction of
data, the gradient would disappear and the parameter update
could not be transmitted to all the neural networks in the
process of backpropagation [32].

Therefore, we improved the classifier from the perspective
of the multi-scale convolution kernel and dense connection.
Among them, Huang et al. proposed the MSDnet method
based on this perspective, which used multi-scale network
architecture to train multiple classifiers with different resource
requirements [18]. To maximize the reuse of the calculation
between classifiers, they were incorporated into a single deep
convolutional neural network as early exits and connected
through dense connections. MSDnet sets up multiple classifi-
cations exits in a network. For simple images, the results can
be obtained directly from one of the previous classification
exits. For images that are difficult to be classified, reliable
results can only be obtained by going to a certain layer at the
back of the network. This kind of network structure will affect
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the accuracy of the late classifier and make the calculation of
the late classifier very demanding. Therefore, MSDNet is more
suitable to solve the problem of multiple classifications of
images with different degrees of difficulty under the condition
of limited computing resources.

The purpose of spatial cognitive EEG signal recognition in
this study is to binary classify multispectral images that are
difficult to classify under the condition of unlimited computa-
tional resources and obtain more accurate classification results
as far as possible. Therefore, MSDNet is not suitable for the
analysis of EEG signals in this study. Given the above analysis,
we proposed a multi-scale high-density convolutional neural
network based on deep learning knowledge and improved
CNN in the following aspects.

Adopt multiple-size convolution kernels. Multi-scale fea-
tures can effectively improve the results of image retrieval,
image classification, and object detection tasks. If deep con-
volution undergoes multiple downsampling, the characteristic
information of the large target may be lost. So we only used
a multi-size convolution kernel once after the input of image
data. At the same time, if the size of the convolution kernel is
too large, the parameters and training time of the whole model
will increase. To reduce the calculation amount of the model
and avoid the parameter that can not be updated, we used
(3 × 3) and (5 × 5) convolution kernels to calculate and learn
the useful channel, frequency band, and other characteristic
information in multispectral image data. Using the Leaky
Relu activation function can effectively avoid some useful
but negative feature information being ignored, change the
data distribution through the activation function, and reduce
the gradient disappearance of the deep neural network in the
training process.

Adopt a highly dense network of neural connections. By fea-
ture reuse, Densenet can alleviate the gradient disappearance
problem, and the characteristics of its model structure can
make the network narrower, reduce the amount of computa-
tion, and avoid the occurrence of overfitting. In Dense Block,
the feature graphs of each layer are of the same size and
can be connected to the channel dimension. The nonlinear
combination function in the Dense Block uses the structure of
BN+ReLU+3 × 3 Conv. After the convolution of each layer
in all Dense blocks, k feature graphs are output. That is, the
number of channels of the obtained feature graphs is k, or k
convolution cores are used. In general, a smaller k (such as 12)
is used, and better performance can be obtained. Because the
input of the following layer will be very large, the Dense Block
can use the bottleneck layer to reduce the computing amount.
Increase 1×1 Conv in the original structure (BN+ReLU+1×1
Conv+BN+ReLU+3 × 3 Conv) and reduce the number of
features to improve the computing efficiency. The middle
layer of the Dense Blocks is called the transition layer. The
transition layer compiled the model with the same size by
carrying out the following sampling operation (including a
1×1 convolution and 2×2 AVGpooling), and the structure was
BN+ReLU+1 × 1 CONV+2 × 2 AVGpooling. Assumed that
the number of channels in the feature graph obtained from the
Dense Block on the Transition layer was m, and the Transition

TABLE I
THE NETWORK STRUCTURE ADOPTED BY THE HIGH-DENSITY

CONVOLUTIONAL NEURAL NETWORK

layer could generate θ*m features (through the convolutional
layer). In this research, θ = 0.5 was used.

Before entering the first Dense Block, the high-density
network used was convolved once by the MSDnet method.
Because the data set used in this study was relatively simple,
the deeper model was easy to overfit. It contained two Dense
blocks in total, and each Dense Block contained 12 layers.
Final Dense Block was followed by an Average Pooling layer,
which was then fed into a Softmax classifier. Note that in
Densenet, all 3 × 3 convolution used padding =1 to keep the
size of the feature graph unchanged.

According to the above content, the detailed structure of
the multi-scale high-density convolutional neural network con-
structed is shown in Fig. 2. In the training process, the adaptive
stochastic gradient descent method was adopted instead of the
stochastic gradient descent method to update the weights in
the model iteratively.

2) Parameters Setting of Adaptive Stochastic Gradient
Descent Method: In Densenet, the stochastic gradient descent
method is used for training. Due to problems such as selecting
the value of the learning rate, unstable model, and failure to
reach the global optimal solution, we optimized the perfor-
mance of the adaptive stochastic gradient descent method [33].

First, the impulse is added to the stochastic gradient descent
method. Impulse could prevent the model from continuing
training when it reaches the global optimum. At the same time,
impulse could effectively speed up the learning process of the
stochastic gradient descent method, especially for the gradient
with noise and high curvature, which had a good inhibition
effect [33]. The core idea of the impulse is to introduce a
variable v to accumulate gradients generated before the current
iteration. When v is roughly in the same direction as the
current gradient, gradient descent will be enhanced; otherwise,
it will be reduced. Formula (1) and Formula (2) are related to
impulse:

vt+1 = μvt − α∇θ h(θt )(1) (1)
θt+1 = θt + vt+1 (2)

Where μ∈[0,1] is a random number, where α is the learning
rate.
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Fig. 2. Multi-scale high-density convolutional neural network.

Secondly, the learning rate is determined by setting
the threshold value k, which decreases linearly in the
first k*Epochs iteration, and decreases exponentially in the
[k*Epochs, Epochs] iteration. The relevant formula of this
method is shown in Formula (3):

α(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α − ω ∗ epocht

epocht � k ∗ Epochs

(α − ω ∗ k ∗ Epochs) e(−β∗(epocht−k∗Epochs))

epocht > k ∗ Epochs

(3)

where α is the initial learning rate, Epochs in the total number
of iterations, the epoch is the t-th iteration value, ω is the
linear rate of decline, β is the exponential rate of decline.
The initial learning rate α is set to 0.01 and μ = 0.9, which
is the most commonly used value of impulse in stochastic
gradient descent. The total number of iterations of Epochs is
set to 120, the drop rate � is set to 1e-5, the drop rate β is
set to 0.1, and the threshold K is set to 2/3.

E. Statistical Analysis

In this experiment, TensorFlow deep learning framework
was adopted to build the neural network, and 5-fold cross-
validation was adopted to evaluate the model. Four data were
trained, one data was validated, and the average value of
evaluation indexes was obtained after 5 validations as the
evaluation value of model performance. Precision, F1-score,
Recall, AUC, average verification accuracy curve, and average
verification loss curve were used to evaluate the classification
performance of the model.

Fig. 3. Average verification loss curve (a) and accuracy curve (b) under
the combination of Theta-Alpha2-Gamma band.

The verification accuracy curve is the variation curve of the
model on the Precision of the verification data set with the
change of the number of iterations during the training iteration
of the deep learning model. The verification loss curve is the
change curve of the loss value of the model to the verification
data set with the change of the number of iterations during
the training iteration of the deep learning model.

Since the verification accuracy curve and verification loss
curve can be used to evaluate the data fitting ability of the
neural network model, the average verification accuracy curve
and the average verification loss curve obtained from 5-fold
cross-validation are presented in this paper. At the same time,
Precision, Recall, F1-score, and AUC can be obtained in
each fold cross-validation process of the model. To facilitate
understanding, the average values of the 5 fold cross-validation
of these four indexes are presented.

III. RESULTS

A. Comparison of Experimental Results With
Different Classifiers

In this research, classical CNN, multi-scale CNN (MCNN),
and multi-scale high-density CNN (MHCNN) were studied
and compared. The multispectral image dataset was obtained
by processing spatial cognitive EEG data with MCMI. Com-
bined with the above three classifiers, the experimental results
are presented and compared for analysis.

1) Theta-Alpha2-Gamma Band Combination: The average
verification loss of multispectral image data constructed based
on the MCMI method in the three CNN models under the
combination of the Theta-Alpha2-Gamma band is shown in
Fig. 3(a). According to Fig. 3(a), the following results can be
drawn: the curve of CNN is the highest and tends to be stable
between 0.15 and 0.16 when the iteration reaches 110 times.
The curve of MCNN is the next, which tends to be stable
between 0.10 and 0.11 when the iteration reaches 85 times.
MHCNN has the lowest curve, which tends to be stable
between 0.07 and 0.08 when the iteration reaches 84 times,
and the curve is relatively smoothest after stabilization.

The average verification accuracy of multispectral image
data constructed based on the MCMI method in the three
CNN models under the condition of the combination of the
Theta-Alpha2-Gamma band is shown in Fig. 3(b). According
to Fig. 3(b), the following conclusions can be drawn: the
curve of CNN is the lowest and tends to be stable between
0.94 and 0.95 when the iteration reaches 100 times. The curve
of MCNN is the next, which tends to be stable between
0.96 and 0.97 when the iteration reaches 90 times. MHCNN



1046 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE II
EVALUATION VALUES OF MODEL UNDER THE COMBINATION

OF THETA-ALPHA2-GAMMA BAND

Fig. 4. Average verification loss curve (a) and accuracy curve (b) under
the combination of Alpha2-Beta2-Gamma band.

has the highest curve, which tends to be stable between
0.97 and 0.98 when the iteration reaches 83 times, and the
curve is relatively smoothest after stabilization.

Table II shows the average Precision, F1-score, Recall,
and AUC evaluation values of the multispectral image data
constructed based on the MCMI method in the three CNN
models under the condition of the combination of the Theta-
Alpha2-Gamma band. It can be seen from the table that the
four evaluation values of the multispectral image data in the
MHCNN model are significantly better than those of CNN and
MCNN.

2) Alpha2-Beta2-Gamma Band Combination: The average
verification loss of the multispectral image data constructed
based on the MCMI method in the three CNN models under
the combination of Alpha2-Beta2-Gamma band is shown in
Fig. 4(a). According to Fig. 4(a), the following results can be
drawn: the curve of CNN is the highest and tends to be stable
between 0.10 and 0.11 when the iteration reaches 105 times.
The curve of MCNN is the next, which tends to be stable
between 0.09 and 0.10 when the iteration reaches 95 times.
MHCNN has the lowest curve, which tends to be stable
between 0.07 and 0.08 when the iteration reaches 84 times,
and the curve is relatively smoothest after stabilization.

The average verification accuracy of the multispectral image
data constructed based on the MCMI method in the three CNN
models under the combination of Alpha2-Beta2-Gamma band
is shown in Fig. 4(b). According to Fig. 4(b), the following
conclusions can be drawn: the curve of CNN is the lowest and
tends to be stable between 0.96 and 0.97 when the iteration
reaches 103 times. The curve of MCNN is the next, which
tends to be stable between 0.96 and 0.97 when the iteration
reaches 90 times. MHCNN has the highest curve, which
tends to be stable between 0.97 and 0.98 when the iteration
reaches 83 times, and the curve is relatively smoothest after
stabilization. Fig. 4. Average verification loss curve (a) and
accuracy curve (b) under the combination of Alpha2-Beta2-
Gamma band.

Table III shows the average Precision, F1-score, Recall,
and AUC evaluation values of the multispectral image data
constructed based on the MCMI method in the three CNN

TABLE III
EVALUATION VALUES OF MODEL UNDER ALPHA2-BETA2-GAMMA

BAND COMBINATION

Fig. 5. Average verification loss curve (a) and accuracy curve (b) under
the combination of Beta1-Beta2-Gamma band.

models under the combination of Alpha2-Beta2-Gamma band.
It can be seen from the table that the multispectral image
data in the MHCNN model are significantly better than the
4 evaluation values of CNN and MCNN.

3) Beta1-Beta2-Gamma Band Combination: The average
verification loss of multispectral image data constructed based
on the MCMI method in the three CNN models under the
condition of the combination of the Theta-Alpha2-Gamma
band is shown in Fig. 5(a). According to Fig. 5(a), the fol-
lowing results can be drawn: the curve of CNN is the highest
and tends to be stable between 0.07 and 0.08 when the
iteration reaches 110 times. The curve of MCNN is the next,
which tends to be stable between 0.06 and 0.07 when the
iteration reaches 95 times. MHCNN has the lowest curve,
which tends to be stable between 0.05 and 0.06 when the
iteration reaches 84 times, and the curve is relatively smoothest
after stabilization.

The average verification accuracy of the multispectral image
data constructed based on the MCMI method in the three CNN
models under the combination of Beta1-Beta2-Gamma bands
is shown in Fig. 5(b). According to Fig. 5(b), the following
conclusions can be drawn: the curve of CNN is the lowest and
tends to be stable between 0.96 and 0.97 when the iteration
reaches 100 times. The curve of MCNN is the next, which
tends to be stable between 0.96 and 0.97 when the iteration
reaches 90 times. MHCNN has the highest curve, which
tends to be stable between 0.97 and 0.98 when the iteration
reaches 75 times, and the curve is relatively smoothest after
the stability.

Table IV shows the average Precision, F1-score, Recall,
and AUC evaluation values of the multispectral image data
constructed based on the MCMI method in the three CNN
models under the combination of Beta1-Beta2-Gamma bands.
It can be seen from the table that the multispectral image
data in the MHCNN model are significantly better than the
4 evaluation values of CNN and MCNN.

4) Theta-Beta2-Gamma Band Combination: The average
verification loss of multispectral image data constructed based
on the MCMI method in the three CNN models under the
condition of the combination of the Theta-Beta2-Gamma band
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TABLE IV
EVALUATION VALUES OF MODEL UNDER THE COMBINATION

OF BETA1-BETA2-GAMMA BAND

Fig. 6. Average verification loss curve (a) and accuracy curve (b) under
the combination of Theta-Beta2-Gamma band.

TABLE V
EVALUATION VALUES OF MODEL UNDER THE COMBINATION

OF THETA-BETA2-GAMMA BAND

is shown in Fig. 6(a). According to Fig. 6(a), the following
results can be drawn: the curve of CNN is the highest and
tends to be stable between 0.10 and 0.11 when the iteration
reaches 105 times. The curve of MCNN is the next, which
tends to be stable between 0.08 and 0.09 when the iteration
reaches 95 times. MHCNN has the lowest curve, which tends
to be stable between 0.05 and 0.06 when the iteration reaches
80 times, and the curve is relatively smoothest after the
stability.

Under the condition of the combination of the Theta-Beta2-
Gamma band, the multispectral image data based on the
MCMI method is constructed in three kinds. The average
verification accuracy in the CNN model is shown in Fig. 6(b).
Fig. 6(b) displayed that the curve of CNN is the lowest and
tends to be stable between 0.96 and 0.97 when the iteration
reaches 103 times. The curve of MCNN is the next, which
tends to be stable between 0.96 and 0.97 when the iteration
reaches 90 times. MHCNN has the highest curve, which
tends to be stable between 0.97 and 0.98 when the iteration
reaches 75 times, and the curve is relatively smoothest after
the stability.

Table V shows the average Precision, F1-score, Recall, and
AUC evaluation values of the multispectral image data con-
structed based on the MCMI method under the condition of the
combination of Theta-Beta2-Gamma band in the three CNN
models. It can be seen from the table that the multispectral
image data in the MHCNN model are significantly better than
the 4 evaluation values of CNN and MCNN.

5) Theta-Alpha1-Gamma Band Combination: The average
verification loss of multispectral image data constructed based
on the MCMI method in the three CNN models under the
condition of the combination of Theta-Alpha1-Gamma band

Fig. 7. Average verification loss curve (a) and accuracy curve (b) under
the combination of Theta-Alpha1-Gamma band.

TABLE VI
EVALUATION VALUES OF MODEL UNDER THE COMBINATION

OF THETA-ALPHA1-GAMMA BAND

is shown in Fig. 7(a). According to Fig. 7(a), the following
results can be drawn: the curve of CNN is the highest and
tends to be stable between 0.10 and 0.11 when the iteration
reaches 105 times. The curve of MCNN is the next, which
tends to be stable between 0.08 and 0.09 when the iteration
reaches 95 times. MHCNN has the lowest curve, which tends
to be stable between 0.05 and 0.06 when the iteration reaches
80 times, and the curve is relatively smoothest after the
stability.

The average verification accuracy of the multispectral image
data constructed based on the MCMI method in the three
CNN models under the condition of the combination of the
Theta-Alpha1-Gamma band is shown in Fig. 7(b). According
to Fig. 7(b), the following conclusions can be drawn: the curve
of CNN is the lowest and tends to be stable between 0.96 and
0.97 when the iteration reaches 103 times. The curve of
MCNN is the next, which tends to be stable between 0.96 and
0.97 when the iteration reaches 90 times. MHCNN has the
highest curve, which tends to be stable between 0.97 and
0.98 when the iteration reaches 75 times, and the curve is
relatively smoothest after the stability.

Table VI shows the average Precision, F1-score, Recall,
and AUC evaluation values of the multispectral image data
constructed based on the MCMI method in the three CNN
models under the condition of the combination of Theta-
alpha1-gamma band. It can be seen from the table that the
multispectral image data in the MHCNN model are signifi-
cantly better than the 4 evaluation values of CNN and MCNN.

6) Alpha1-Alpha2-Gamma Band Combination: The average
verification loss of the multispectral image data constructed
based on the MCMI method in the three CNN models under
the condition of Alpha1-Alpha2-Gamma band combination
is shown in Fig. 8(a). According to Fig. 8(a), the following
results can be drawn: the curve of CNN is the highest and
tends to be stable between 0.12 and 0.13 when the iteration
reaches 105 times. The curve of MCNN is the next, which
tends to be stable between 0.11 and 0.12 when the iteration
reaches 95 times. MHCNN has the lowest curve, which tends
to be stable between 0.08 and 0.09 when the iteration reaches
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Fig. 8. Average verification loss curve (a) and accuracy curve (b) under
the combination of Alpha1-Alpha2-Gamma band.

TABLE VII
EVALUATION VALUE OF MODEL UNDER THE COMBINATION

OF ALPHA1-ALPHA2-GAMMA BAND

80 times, and the curve is relatively smoothest after the
stability.

The average verification accuracy of the multispectral image
data constructed based on the MCMI method in the three CNN
models under the condition of Alpha1-Alpha2-Gamma band
combination is shown in Fig. 8(b). According to Fig. 8(b), the
following conclusions can be drawn: the curve of CNN is the
lowest and tends to be stable between 0.96 and 0.97 when
the iteration reaches 103 times. The curve of MCNN is the
next, which tends to be stable between 0.96 and 0.97 when
the iteration reaches 90 times. MHCNN has the highest curve,
which tends to be stable between 0.97 and 0.98 when the
iteration reaches 75 times, and the curve is relatively smoothest
after the stability.

Table VII shows the average Precision, F1-score, Recall,
and AUC evaluation values of the multispectral image data
constructed based on the MCMI method under the condition
of the combination of Theta-Beta2-Gamma band in the three
CNN models. It can be seen from the table that the multispec-
tral image data in the MHCNN model are significantly better
than the 4 evaluation values of CNN and MCNN.

B. Classification Results Under Different Frequency
Combinations Based on MHCNN

Under the combination of Theta-Alpha2-Gamma, Alpha2-
Beta2 Gamma, Beta1 Beta2 Gamma, Theta-Beta2 Gamma,
Theta-Beta2 Gamma, Theta-Alpha1-gamma, Alpha1-Alpha2-
Gamma band, MCMI processed the data to obtain the corre-
sponding six kinds of multispectral image data sets. The six
kinds of different feature sets are classified by the multi-scale
high-density convolutional neural network, and the obtained
results are presented and compared. Since the average ver-
ification accuracy and average verification loss of these six
features sets all reach saturation when the iterations reach
80∼90 times, only the average verification loss and average
verification accuracy between 80 and 120 iterations are shown
for the convenience of observation.

According to Fig. 9, the verification loss rates of Beta1-
Beta2-Gamma and Theta-Beta2-Gamma are the lowest, which

Fig. 9. Average verification accuracy curves under each frequency band
combination.

Fig. 10. Average verification accuracy curves under each frequency
band combination.

TABLE VIII
AVERAGE EVALUATION INDEX UNDER THE CONDITIONS

OF SIX FREQUENCY BAND COMBINATIONS

stabilize to 0.059 and 0.060, respectively. Alpha2-Beta2-
Gamma, Theta-Alpha1-Gamma, and Theta-Alpha2-Gamma
verification loss rates are the next. Alpha1-Alpha2-Gamma
has the highest verification loss rate, which is stable between
0.09 and 0.1.

According to Fig. 10, the verification accuracy of Beta1-
Beta2-Gamma and Theta-Beta2-Gamma is the highest, which
stabilize to 0.981 and 0.982, respectively. Verification accu-
racy of Alpha2-Beta2-Gamma is the next, which is stable at
0.979. And Theta-Alpha1-Gamma is stable at 0.975 and 0.974,
respectively. Verification accuracy of Theta-Alpha2-Gamma
and Alpha1-Alpha2-Gamma is the lowest, which are stable
at about 0.97.

Table VIII shows that under the combination of the Theta-
Beta2-Gamma band and Beta1-Beta2-Gamma band, the four
evaluation indexes obtained by CNN classification are all
higher than the other four evaluation indexes obtained. Theta-
Alpha2-Gamma is the lowest of the four evaluation indexes.

In conclusion, under the condition of the combination
of Theta-Beta2-Gamma and Beta1-Beta2-Gamma bands, the
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classification method combining MCMI and multi-scale high-
density convolutional neural network for processing the data in
this study achieves the optimal evaluation indexes. Therefore,
the combination of Theta-Beta2-Gamma and Beta1-Beta2-
Gamma bands can be preferred when using this classification
method to deal with similar classification tasks.

IV. DISCUSSION

A. Performance Analysis of MHCNN
In the field of image classification, CNN has become the

most widely used deep learning classifier with better per-
formance than other classifiers due to its ability to consider
both temporal and spatial information [34]. To improve the
performance of CNN, researchers have carried out optimiza-
tion and improvement in many aspects. On the one hand,
to change the structure of CNN, the multi-size convolution
kernel could be used for each layer. In terms of convolutional
layer connection, the residual connection could also be used
to realize skipping transfer or make each layer integrate
the feature output of other layers [35]–[37]. On the other
hand, the algorithm adjusted the parameters. For example, the
weight initialization method, activation function, optimization
function/loss function, learning rate, and other improvements
were made [38]–[40].

Studies showed that the training time of traditional convo-
lutional neural networks was too long, the accuracy was not
ideal, and could not get diversified image features. Gradient
dispersion would be generated in the process of backprop-
agation [41]–[44]. Based on these studies, we designed a
multi-scale high-density convolutional neural network based
on the multi-scale convolutional neural network and Densenet
structure. In terms of model optimization, we applied the
adaptive stochastic gradient descent method to the multi-scale
high-density convolutional neural network. This algorithm
could effectively avoid the problems of slow training speed of
deep learning model and ignoring the global optimal solution,
and then better evaluate the effect of spatial cognitive training.
Compared with the classical CNN model, our proposed model
has been greatly improved because of the superiority of the
CNN framework. It can be seen from the results in this
paper that MHCNN has a faster convergence speed and higher
accuracy under the combination of six frequency bands.

1) The Clinical Application Value of the MHCNN: In this
experiment, the classification effect of image data constructed
based on MCMI in three CNN models was compared under
six different frequency band combinations. It was found that
the multi-scale high-density convolutional neural network clas-
sification model based on MCMI had the best performance
under whatever frequency band combinations. It had obvious
advantages in the combination of six frequency bands.

In addition, the classification results of MCMI data in the
multi-scale high-density convolutional neural network model
under different frequency band combinations were separately
observed. It was found that no matter in the average verifi-
cation loss, average verification accuracy, or each evaluation
value of the CNN model, the CNN model is based on the
combination of Theta-Beta2-Gamma and Beta1-Beta2-Gamma
bands had the best classification effect. Therefore, it can

be concluded that the multi-scale high-density convolutional
neural network based on the combination of Theta-Beta2-
Gamma and Beta1-Beta2- Gamma bands is the most effective
method to evaluate the effect of spatial cognitive training.
This result is similar to some studies on spatial cognitive
EEG [12], [45]–[50]. In these studies, the EEG signal analysis
results of the combination of Theta-Beta2-Gamma and Beta1-
Beta2- Gamma bands were closely related to spatial cognitive
training.

Considering the shortcomings of the spatial cognitive ability
recognition and analysis method based on EEG signals in this
research, further improvements will be made in the future.
The experimental data are from the BCI-VR spatial cognitive
training and evaluation system independently developed by
the laboratory, and the data set used is not as large as the
data set usually used by deep learning. So more relevant
EEG signals can be collected to verify the universality of
the method proposed in this paper. In addition, it is also a
good practice to effectively evaluate spatial cognition in virtual
environments [50]–[53]. At the same time, our proposed model
aims to verify the effectiveness of cognitive training and can
be applied to clinical medicine.

For the improvement of network structure, the size and
number of multi-scale convolution cores, and the combination
with dense blocks can be optimized in the future. Actually,
spatial information can be found by analyzing different EEG
signals, but the current model did not deal with it yet. There-
fore, we will take the spatial characteristics into consideration
referring to the methods like TRCA [54] and CSP [55].
In addition to the EEG feature analysis, it will be of great
significance to find the reasons for the transformation and
key features, combined with the existing brain theory. Our
proposed model, which is designed for clinical use, is utilized
to verify the effectiveness of cognitive training. In the future,
we can invite more subjects to participate in our experiment as
the same as the reference [56], for the verification of reliability
of the model. We hope that our proposed method can be
combined with the online training, to monitor the changes of
subjects’ ability in real-time. Moreover, it will be of great
significance to analyze the causes of EEG changes as in [57],
combined with the existing knowledge of brain science.

V. CONCLUSION

The classification performance of the multi-scale high-
density convolutional neural network method was better than
that of the classical convolutional neural network method and
the multi-scale convolutional neural network method. The new
classification method could be used as an effective biological
indicator of spatial cognitive training effect, which provided
a new perspective for spatial cognitive ability evaluation and
analysis.
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