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Real-Time Multiple Gesture Recognition:
Application of a Lightweight Individualized 1D
CNN Model to an Edge Computing System
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Abstract— The human–machine interface (HMI) detects
electrophysiological signals from the subject and controls
the machine based on the signal information. However, most
applications are still only in the testing stage and are gen-
erally unavailable to the public. In recent years, researchers
have been devoted to making wearable HMI devices smarter
and more comfortable. In this study, a wearable, intelli-
gent eight-channel electromyography (EMG) signal–based
system was designed to recognize 21 types of gestures.
An analog front end (AFE) integrated chip (IC) was devel-
oped to detect the EMG signals, and an integrated EMG
signal acquisition device integrating an elastic armband
was fabricated. An SIAT database of 21 gestures was estab-
lishedby collectingEMG gesture signals from 10 volunteers.
A lightweight 1D CNN model was constructed and subjected
to individualized training by using the SIAT database. The
maximum signal recognition accuracy was 89.96%, and the
average model training time was 14 min 13 s. Given its
small size, the model can be applied on lower-performance
edge computing devices and is expected to be applied to
smartphone terminals in the future. The source code is
available at https://github.com/Siat-F9/EMG-Tools.

Index Terms— Convolutional neural network, electromyo-
graphy, gesture recognition, lightweight individualized
model, wearable device.

I. INTRODUCTION

HUMAN–MACHINE interfaces (HMIs) can detect and
understand electrophysiological signals transmitted from
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individuals. According to the information read, machines are
commanded to execute orders. Although HMIs have been
under development for many years, HMI devices generally
remain confined to laboratory settings. To promote their
acceptability to the public, researchers have been devoted to
making devices smarter and more comfortable in recent years.

Electromyography (EMG) signals are a type of physiologi-
cal spatiotemporal electrical signal measured from the skin,
which contains a large amount of motion information due
to muscle stretching activity. EMG signals are rich in signal
characteristics, thus enabling improvements in the accuracy
of signal recognition and control. These signals are widely
used in HMI research [1]–[3]. EMG signal-based personal
identification methods and personal verification methods are
proposed to match identity information and protect the security
of personal information [4].

Hand gesture recognition based on EMG signals is a topic
of interest, and the diversity of arm and wrist movements
allows for the capture of various hand gestures for training
and application to real-world scenarios. Kim et al. achieved
more favorable results in using four different gestures than in
using a remote to control an RC car [5]. Zhang et al. designed
a virtual Rubik’s cube game. Gesture control was employed
to evaluate the performance of their gesture classification
system [6]. Although most studies were based on hand gesture
recognition studies with arm EMG signals, one study verified
the feasibility of hand gesture recognition studies based on
wrist EMG signals [7].

Multiple studies on EMG-based gesture recognition use
signal acquisition devices that are uncomfortable to wear
[8]–[11]. The overall power consumption of such acquisition
devices is high because of the high number of sensors. This
characteristic lowers the acceptability to and popularity of
HMI devices among the general public.

To improve the accuracy of gesture recognition based on
EMG signals, a considerable number of signal collection
studies has involved the design of multichannel EMG sig-
nal acquisition systems, which contain more spatiotemporal
information than do single-channel systems. Thus, the corre-
sponding accuracy of gesture recognition is also enhanced.
However, gesture recognition accuracy improves only to a
certain extent when the number of channels is increased.
Stango et al. reported that the improvement in recognition
accuracy attributable to raising the number of channels was not

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8733-0488
https://orcid.org/0000-0002-5351-8546
https://orcid.org/0000-0002-6674-8180


YU et al.: REAL-TIME MULTIPLE GESTURE RECOGNITION 991

significant [12]. Multichannel devices introduce a relatively
high amount of noise because a greater number of electrodes
are in contact with the skin [13]. Furthermore, the use of mul-
tichannel EMG acquisition systems inevitably increases device
costs and the spatiotemporal computational overhead. This is
ascribable to the latency in gesture recognition and the large
amount of storage space used. Hargrove et al. observed that
signals from three critical channels were able to achieve 97%
classification accuracy for individual gestures [14]. To bal-
ance performance and recognition accuracy, an eight-channel
EMG signal acquisition system was constructed in the present
study.

HMI devices should not only be comfortable to wear but
also smart to use. Deep learning methods have high potential
for the extraction of features from signals, and with the
active development of deep learning in recent years, growing
attention has been placed on the combination of deep learning
and gesture recognition based on EMG signals.

Coôteé-Allard et al. used an armband called Myo for data
collection and employed transfer learning to facilitate the
classification of gestures by convolutional neural networks
(CNN). Seven gestures were recognized with 98.31% accu-
racy. However, due to the limited range of gestures involved,
the researchers could not determine whether the model could
achieve favorable recognition accuracy under multigesture
conditions [15]. Zia ur Rehman et al. input original EMG
signals into a CNN network model for gesture classification,
comparing the classification performance with those achieved
using linear discriminant analysis, stacked sparse autoencoders
with features, and raw samples. The CNN model outperformed
the linear discriminant analysis approach. The performance
of the CNN model and the stacked sparse autoencoders with
features did not differ significantly [16].

Geng et al. introduced a CNN for the classification of
high-density EMG signals and tested it comparatively on
three large, publicly available data sets [17]: Ninapro [18],
CapgMyo, and CSL-HDEMG [19]. The CNN model out-
performed classical classifiers such as k-NN, SVM, LDA,
and RF. The self-developed CapgMyo is a static gesture
database with 128 EMG signal channels. The researchers
tested 8 gestures corresponding to 18 participants 10 times.
The data in this database have been preprocessed, and the
validity of the gesture data was confirmed through 1-s trials.
By setting various time windows and overlapping windows,
data segmentation can be performed to generate a sufficient
amount of training data. Because the CapgMyo database has
high-density channels, subtle changes in hand gestures can
be captured with favorable accuracy. However, this database
contains only eight gestures. Moreover, the original study
used a two-dimensional (2D) CNN model for gesture signal
recognition [17]. Such models are not suitable for applications
involving wearable devices because of their high performance
overhead, although they can achieve high accuracy in gesture
signal recognition.

The evidence indicates that CNN models have a greater
advantage in the EMG-based gesture recognition system.
However, when the network model is overly complex, the
recognition speed decreases as the data volume increases.

A moderately complex network model can achieve high
recognition accuracy, and increasing its complexity does not
significantly improve recognition accuracy. To balance the
recognition accuracy and recognition speed, this paper mainly
focuses on a one-dimensional (1D) CNN model.

A considerable number of studies have achieved high accu-
racy in gesture recognition through testing on public data sets.
However, when a new individual gesture signal is input, it is
often not well differentiated and does not have favorable gener-
alizability. An ideal classification model should be lightweight,
accurate, and generically useful. The realization of all three
features in practical applications is challenging. Therefore, the
design idea of this paper is to balance the three metrics to
achieve better results in all aspects. Regarding generalizability
we replace it with individualization, through the design of a
lightweight 1D CNN model—which can achieve high recogni-
tion accuracy for individual gesture signals—an individualized
model was trained on new participant data in a relatively short
period of time.

In this study, a highly integrated, low-power wearable EMG
signal acquisition device was designed, and a lightweight CNN
model was designed using publicly available data sets. Due to
the lightweight of the model, we innovatively put forward the
concept of individual model. It compensates the deficiency
that the generic model does not recognize new individual
data well. The three model metrics of lightness, accuracy,
and generalizability achieved a favorable performance balance.
Moreover, an integrated system of gesture acquisition and
recognition based on EMG signals that can be applied to
edge computing devices is constructed. This provides a good
solution for portable gesture recognition system. In addition,
we constructed a 21-class static multigesture database based
on ethical specifications.

II. EMG SIGNAL ACQUISITION SYSTEM

To enhance the comfort of the EMG acquisition system,
an EMG signal acquisition device with high integration was
fabricated. An integrated chip was designed to acquire eight
channels of EMG signals to reduce power consumption, and
the electrodes of these eight channels were fixed on an elastic
band to ensure ease of wear.

A. AFE IC

The AFE has eight channels, as shown in Fig. 1. Each
channel consists of four stages: preamplifier (PreAmp), fixed
gain amplifier (FGA), band-pass filter (BPF), and program-
mable gain amplifier (PGA). The PreAmp and FGA each
contributes 20 dB gain. To reduce the noise caused by the
PreAmp and FGA, a capacitor-coupled structure is employed
for both stages. The gain of the PGA is programmed by two
control pins SEL_Gain with four options, which controls the
total feedback resistance of the PGA. The total gain of the
AFE reaches 500–2000 dB. The bandwidth of the band-pass
filter is adjustable by the off-chip capacitor and the control
pin SEL BW for low and high pass, respectively. The control
pins for all eight channels are connected, which means the
gains and bandwidths of the channels can only be set to the
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Fig. 1. Architecture of the AFE.

Fig. 2. Model diagram of the signal acquisition armband.

same value. The buffer at the output supplies the mA-level
drive ability. The right leg driven (RLD) circuit is applied in
the AFE to reduce the 50 Hz/60Hz inference.

B. Acquisition Equipment

As the number of channels increases to a certain level, the
accuracy of gesture recognition does not improve substantially,
but an excessive number of channels leads to computational
complexity, increasing the device cost and spatiotemporal
computational overhead and causing the system to become
bloated. If the number of channels is insufficient, detailed
information cannot be collected, reducing the accuracy of
gesture recognition to a certain extent. On balance, we used
an eight-channel EMG signal acquisition device. To ensure
the ease of wear of the acquisition device, we designed
an integrated elastic armband in which all electrodes were
embedded (Fig. 2).

To enable repeatable EMG signal acquisition, copper-nickel-
plated dry electrodes were used, and the distance between
positive and negative electrodes was set to 3 cm to ensure
a reasonable voltage amplitude. Eight pairs of positive and
negative electrodes are spaced evenly on the armband, and
the driven-right-leg electrode is placed in the middle of the
armband. Elastic was selected as the armband material to

Fig. 3. Signal acquisition process of the proposed system.

ensure the electrodes were in contact with the skin when the
device was worn. To ensure the consistency of the collected
EMG data, we considered the location of the electrodes in
relation to the skin carefully. We decided to anchor the first
pair of dry electrodes at the ulnar carpal extensors 3 cm from
the elbow of the left arm. The other seven pairs of electrodes
were evenly wrapped around the forearm by using the elastic
armband to prevent measurement inconsistencies caused by
differences in individual arm thickness.

The signal acquisition process of the system is shown in
Fig. 3. The signals captured by the electrode armband are
amplified and filtered by the AFE IC. They are then converted
from analog to digital signals by the ADC of the microcon-
troller (MCU) before being sent to the edge computing device
through the Bluetooth low-energy module.

Jetson Nano, Nvidia’s development platform for edge
computing, has a graphics processing unit (GPU) with a
0.5-TFLOPS configuration, a four-core 1.43-G Arm A57,
4 GB memory, BT/WIFI and Ethernet resources and expansion
pins, and screen connectivity through an HDMI interface.
Because this is an embedded platform, we performed cross-
compilation and examined the version dependency of devel-
opment tools on Ubuntu 1804, adapting the deep learning
framework PyTorch 1.4.0, which is highly compatible with
Cuda Toolkit 10.2 in Nvidia Developer.

Model training is carried out on high-performance comput-
ers. The pretrained model can be downloaded into the edge
platform. In the application phase, the real-time identification
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of the subject gesture can be performed by the edge computing
device. The configuration of this edge computing device is
comparable to that of a smartphone; therefore, the model
can potentially be imported to the smartphones in the future,
making the system truly highly portable.

III. LIGHTWEIGHT MODEL

A. Signal Preprocessing

Signal preprocessing contributes crucially to the final ges-
ture recognition results. The signal data may contain a large
amount of redundancy and may also have several outlier
interferences that reduce the gesture recognition accuracy.
Therefore, signal filtering must be performed. The signal
is first smoothed using a Savitzky–Golay filter, and the
Savitzky–Golaysmoothing equation is expressed in (1),

xk,s mooth = xk = 1

H

+w∑
i=−w

xk+i hi (1)

where k is the index value of the data point, w is the value of
the smoothing window which is 50 in this work, hi

H is a smooth
coefficient which is obtained by the least squares method [20].
Then the filtered function is detected for mutations by using
the slope method. Absolute value changes in the data are
detected over a 50-ms interval, and the segment is discarded if
the change exceeds a certain threshold value. In experiments,
the typical value of the experimental process is that the
variation cannot exceed 0.12 V within 50 ms. This is the
result of actual measurements made by on a large number
of observations.

B. 1D CNN Model

Using the CapgMyo database [17], we pruned the VCG16
network model and constructed a 1D CNN network model
(Fig. 4). The input data are the preprocessed EMG signal data,
which is convolved and computed by the convolutional layers.
The operation is expressed in (2), where input signal vector x
of length N is convolved with a filter vector w of length k,
k is 3 in this work, and b is the bias term, f is a non-linear
function, which is Rectified Linear Unit (ReLU) [21] in this
work. The output layer y of length N with zero-padding.

y( j) = f

(
k−1∑
i=0

ω(i)x( j − i) + b

)
, j = 0, 1, . . . , N − 1

(2)

The feature map generated by the convolution of the input data
is reduced by the pooling layer, where the maximum value in
a kernel window function u, with size m × 1 and stride s,
is taken over an input vector y resulting in an output vector z
defined as

z = max(u(m × 1, s)y) (3)

where m is 3 and s is 3 in this work.
After the average pooling layer the size of data is reduced,

and data are connected to the dense layer through the flatten
layer. The dropout layer is used to reduce the complexity and

Fig. 4. Block diagram of the 1D CNN model.

computation of the model and enhance model generalizability.
Finally, the softmax classifier is used for gesture category out-
put. The probability of each gesture is calculated by softmax
function, the gesture with the highest probability is selected
as the recognition result,

z = arg maxzi

ezi∑n
j=1 ez j

, i = 1, 2, . . . , n (4)

where zi is the output value of each gesture through the fully
connected layer, n is the number of gesture types which is
21 in this work.

The reason for this optimization is determined by the data;
we wanted to ensure that the capacity of the network matched
the size of the data. The input EMG data have a 1D signal
with a extremely low number of features compared to a 2D
picture, and a shallow layer of the network would be able to
parse the features well.

IV. INDIVIDUALIZED MODEL

A. SIAT Database Establishment

Using the acquisition device, we designed a data collection
visualization software. This software allows for the real-time
observation of signals transmitted from individuals, as well as
for the determination of signal quality. Through the spatiotem-
poral frequency domain display of the eight-channel signals
by the acquisition device, we observed industrial frequency
interference and special signal changes, such as baseline drift
and data mutation. We marked these special signal conditions
for subsequent signal processing.
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TABLE I
BASIC CHARACTERISTICS OF THE VOLUNTEERS

Fig. 5. SIAT database of 21 gestures.

In accordance with ethical norms, the 10 volunteers signed
an informed consent form prior to signal acquisition (ethical
approval number: SIAT-IRB-201115-H0540). The personal
information of the 10 volunteers is presented in Table I.
During signal acquisition, the volunteer’s elbow was placed on
the test bench for support to ensure that only the signals from
the forearm were firing. The arm was kept parallel to the wrist,
and each movement was performed at 70% of the volunteer’s
maximum force level until it was felt that the corresponding
muscle could be mobilized.

Each volunteer repeated each gesture, recorded over 5-s
increments, eight times. The consistency of the endurance
of individual muscles varies greatly, and some gestures are
easily fatigued by excessive force. Thus, the volunteers were
given sufficient rest periods between signal acquisitions. The
21 gestures were performed sequentially, and the force exerted
was determined by the researchers’ gesture guidelines to
ensure the consistency of the collected data. Finally, we con-
structed a database of 21 types of gestures in 8 channels for
10 volunteers, as displayed in Fig. 5.

Gestures 1 – 4 are wrist operations up, down, left, and
right. Gestures 5 – 12 are derived from CapgMyo database
and these gestures are isometric and equal-tension gestures,
which require the same force position and force angle for the
fingers. Gestures 13 – 21 are functional gestures that will be
used in daily life.

B. Individualization Adjustment and
Real-Time Recognition

As mentioned, the 1D CNN model was pretrained by
the CapgMyo database to balance accuracy and performance
overhead. Next, the model was trained separately for each
individual’s data such that recognition accuracy could be
improved. The trained model was downloaded to the edge
computing device.

When training the model, we focus on the hyperparameters
that exert substantial impacts on the neural network and use
a grid search approach to find the most appropriate hyper-
parameter configuration. In general, hyperparameters affect
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TABLE II
COMPARISON OF THE PRESENT SYSTEM WITH THOSE IN OTHER STUDIES

Fig. 6. Gain and noise performance of the AFE IC.

the accuracy, stability, lightness, and training time of the
model. We divide them into two categories. One is network
hyperparameters that require debugging, including the learning
rate [18], batch size [22], network depth and network width,
and regularized decay factor. The other category is data
hyperparameters relevant to this experiment. These comprise
the time window length and overlapping window length, which
determine the accuracy and data size, respectively; the channel
amplitude normalization process; and the filter configuration.
The hyperparameters were optimized to produce a sufficient
amount of qualitative data.

V. RESULTS

A. Portable EMG Signal Acquisition System

1) Implementation and Measurement Results of the AFE
IC: The chip is fabricated in a CMOS (0.18µm) with
a 1.6mm × 1.6 mm die area. The current is 379µA.

Fig. 7. Setup of the signal acquisition system.

The supply voltage is 3.3V. In the measurement, the control
pins of the chip are connected to the MCU. Therefore, the
input mode, gain, and bandwidth can have varying settings.
Fig. 6(a) presents the frequency response measured when the
total gain is set to 60dB with the control pins SEL_Gain
and when the bandwidth is set to 5–500 Hz by the off-chip
capacitor and the control pin SEL_BW. Fig. 6(b) displays the
noise spectrum output under a 60-dB gain setting, when the
input pins of the channel were shorted and connected to a
reference voltage. The input referred noise was calculated to
be 213nV/

√
Hz at 100Hz.

The performance of the AFE was compared with those
of systems in recent studies (Table II). The AFE not only
supports multiple electrophysiological signals and input modes
for HMIs but also has low noise and low power consumption.

2) Acquisition System: Fig. 7 presents the construction of
the acquisition system, which consists of the AFE IC, MCU,
Bluetooth low-energy module, and elastic armband. The edge
computing device is Jetson Nano. The eight-channel EMG
signals are first detected by the AFE IC and then digitalized
and transmitted by the MCU with the Bluetooth low-energy
module. The edge computing device processes the received
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TABLE III
GESTURE RECOGNITION ACCURACY AND TRAINING TIME

UNDER TIME WINDOWS OF VARYING LENGTH

signals and recognizes the current gesture with the pretrained
model. Finally, the monitor is used to display the results output
by the acquisition system in real time.

B. Lightweight Model Analysis

1) Data Preprocessing: We performed time slicing on EMG
signals over 1-s durations for data expansion. The smaller the
time slice is set, the more data can be obtained. The effective
frequency band of EMG signals ranges from 10 to 500 Hz,
which corresponds to a period of 2 to 100 ms. Thus, a 100-ms
EMG signal contains complete frequency domain data.

Table III displays the gesture recognition accuracy and
training time under time windows of varying length. When the
time window is set to 50 ms (corresponding to the frequency
band covered by 20–500 Hz), the loss of low-frequency
information from 10 to 20 Hz results in an accuracy 6.6%
lower than that under a 100-ms time window. However, the
training time is significantly reduced. The accuracy can be
improved by using the voting mechanism, which compensates
for the loss of low-frequency features attributable to the small
amount of time data.

The recognition result of each voting window is Ri

(i = 1, 2, . . . , N), N is the number of time windows. The
recognition accuracy of gesture G is P , P can be calculated as,

P = M

N
× 100% (5)

where M is the number of recognition results that satisfy
Ri = G. The result of the Nth window is the gesture G
with the largest P value, which is the classification result
with the most occurrences in a period of time, and the
accuracy of gesture recognition will be improved. The specific
implementation is to set N to 11.Furthermore, the window
overlap method can be employed to expand the data during
signal segmentation. We set the length of the final overlapping
window to 45 ms.

2) Model Performance Analysis: Given that high-density
EMG signals can be regarded as three-dimensional (3D) spa-
tiotemporal signals, 1D, 2D, and 3D CNNs alike can be used
as the main framework of the gesture classification network.
In general, 1D CNN models are structurally simpler than are
2D or 3D CNN model but sacrifice accuracy to a certain
extent.In our previous work [26], we compared the recognition
accuracy and the performance overhead of 1D CNN and 2D
CNN models on CapgMyo database. To balance the model
overhead and recognition accuracy, we use a 1D CNN model.
The present 1D CNN model is lightweight, with a floating
point operations(FLOPs) of only 5 708 288. We compensate for

TABLE IV
RECOGNITION ACCURACY AND TRAINING

TIME FOR EACH PARTICIPANT

the loss in accuracy of this 1D model through individualized
modeling.

Because eight-channel EMG signals were used, we selected
a model with a smaller number of parameters and a model
file size of no more than 50 kB. It has a negligible volume
overhead. With guaranteed gesture recognition accuracy, the
training time of the model is shortened and the performance
requirements of the edge computing device become less strin-
gent, thereby promoting device portability.

C. Individualized Model and Gesture Recognition

The model was trained individually for each participant,
and reasonable hyperparameters were set through automatic
optimization. The number of epochs was 50, the weight
decay is 0.1, the learning rate is 5 × 10−5 under the cosine
descent method, the time window length was 50 ms, and
the overlapping window length was 45 ms. The training set
was composed of 1, 3, 5, and 7 trials, and the validation
set consisted of 2, 4, 6, and 8 trials. Because of the win-
dow setting, 991 pieces of data were segmented from each
trial, for a total of 3964 over 4 trials. Thus, the training
and validation sets comprised a total of 83 244 data entries
(3964 × 21 classes of gestures). The actual data volume was
slightly lower than that because data preprocessing removed
abnormal data entries. By comparing the experimental results
of time domain data with frequency domain data as input,
we found that the model accuracy is higher when frequency
domain data of EMG signal is used as input. To enhance the
discriminative power of the neural network model, frequency
domain data was used as input.

Regarding the hardware, the GPU was the GeForce TITAN
X (12 GB; Nvidia). Moreover, PyTorch version 1.4.0 and
CUDA Toolkit 11.0 were employed. The maximum gesture
recognition accuracy, mean gesture recognition accuracy, and
mean training time was 89.96%, 82.93%, and 14 min 13 s,
respectively. Thanks to the lightweight 1D CNN model, the
training time for each individual is very short, and the new
individual data can be trained quickly to derive an individ-
ualized model. The information for each subject is shown
in TABLE IV.
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Fig. 8. Confusion matrix of the 21 gestures for participant 1. The horizontal and vertical axes display the predicted and true values, respectively,
and the meaning of each element is the ratio of the predicted value to the total value under the true value for each row.

Fig. 9. Matrix of individual 21-class gesture recognition accuracy. The horizontal axis represents the 21 gesture categories, the vertical axis
represents the participant number, and each value in the matrix represents the accuracy with which a given participant’s gesture was recognized.

High model accuracy for each class of gestures is the aim
when faced with a multiple classification task. A confusion
matrix can be employed in differentiating classification results.

In a confusion matrix, the horizontal axis presents the pre-
dicted values, the vertical axis displays the true values, and
the meaning of each element is the ratio of the predicted
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value to the total value under the true value for each row. In a
perfect confusion matrix, the most prominent elements are the
diagonal elements. These represent the elements for which the
predicted and true values accord. The confusion matrix of par-
ticipant 1 after one training session demonstrates that most of
the true gestures were consistent with the predictions (Fig. 8).

Fig. 9 displays the matrix of gesture recognition accuracy.
The horizontal axis of the matrix shows the participant number,
the vertical axis shows the gesture number, and the value of
each element is the accuracy with which that gesture was
recognized. Observation of the matrix columns revealed no
significant convergence in the accuracy of gesture type recog-
nition across participants. This provides evidence to support
the premise that the data are inconsistently distributed across
individuals. The accuracy of the first four columns of gestures
is higher, according to analysis because gestures 1 – 4 are
wrist movements, and the signal response of the corresponding
channel is strong when force is applied, which is easier to
identify. The accuracy of gesture 21 in participant 4 was
0.0 because the participant was too fatigued to perform the
gesture. The accuracy of gesture 17 in participant 6 was 0.11,
because its force pattern was easily confused with gesture 13
and gesture 16.

VI. CONCLUSION

In this study, a portable gesture acquisition and recogni-
tion system based on EMG signals was established. First,
an integrated EMG chip was designed to detect EMG signals
on eight channels simultaneously. The 0.18-µm CMOS chip
has a die area of 1.6 mm × 1.6 mm and consumes only
379 µA of power under a 3.3-V supply voltage. Using this
device, we constructed an SIAT database of 21 gestures
performed by 10 volunteers. A lightweight individualized
1D CNN model was designed and trained separately on the
data of each participant. The gesture recognition accuracy for
the 10 participants was 82.93% on average and peaked at
89.96%. The average training time of the model was only
14 min 13 s. The model can be deployed on edge computing
devices such as smartphones, freeing them from the reliance
on laboratory environments. Thus, it can be embedded into
EMG signal–based wearable gesture recognition systems in
the future.
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