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Abstract— Objective: The electroencephalogram (EEG)
tool has great potential for real-time monitoring of abnor-
mal brain activities, such as preictal and ictal seizures.
Developing an EEG-based detection system for patients
with epilepsy is vital for clinical management and targeted
therapy. Methods: This paper proposes a single-channel
seizure detection system using brain-rhythmic recurrence
biomarkers (BRRM) and an optimized model (ONASNet).
BRRM is a direct mapping of the recurrence morphology
of brain rhythms in phase space; it reflects the nonlin-
ear dynamics of original EEG signals. The architecture of
ONASNet is determined through a modified neural network
searching strategy. Then, we exploited transfer learning
to apply ONASNet to our EEG data. The combination of
BRRM and ONASNet leverages the multiple channels of
a neural network to extract features from different brain
rhythms simultaneously. Results: We evaluated the effi-
ciency of BRRM-ONASNet on the real EEG recordings
derived from Bonn University. In the experiments, differ-
ent transfer-learning models (TLMs) are respectively con-
structed using ONASNet and seven well-known neural
network structures (VGG16/VGG19/ResNet50/InceptionV3/
DenseNet121/Xception/NASNet). Moreover, we compared
those TLMs by model size, computing complexity, learning
capability, and prediction latency. ONASNet outperforms
other structures by strong learning capability, high stabil-
ity, small model size, short latency, and less requirement
of computing resources. Comparing BRRM-ONASNet with
other existing methods, our work performs better than
others with 100% accuracy under the identical dataset and
same detection task. Contributions: The proposed method
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in this study, analyzing nonlinear features from phase-space
representations using a deep neural network, provides new
insights for EEG decoding. The successful application of
this method in epileptic-seizure detection contributes to
computationally medical assistance for epilepsy.

Index Terms— Seizure detection, EEG biomarker, nonlin-
ear dynamics, neural network, transfer learning.

I. INTRODUCTION

PILEPSY is an acute, recurrent paroxysmal brain dys-

function caused by the over-discharge of brain neurons.
During an epileptic seizure, the patient may risk losing con-
sciousness, sustaining an injury, or even death. According to
the World Health Organization statistics, more than 60 million
people have epilepsy worldwide [1]. As an effective tool for
monitoring brain activities at the cerebral cortex level, EEG
has the advantages of noninvasiveness, low cost, and high tem-
poral resolution. Due to those advantages, EEG has excellent
potential for diagnosing various neurological diseases, such as
epilepsy [2], [3]. Manually visual inspection of epileptiform
abnormalities in EEG signals is time-consuming and may miss
meaningful features behind the observed time series. Develop-
ing automatic EEG monitoring systems for epileptic patients is
significant for accurate diagnosis of epilepsy, early warning of
seizures, and targeted assistance in clinical treatments [4]-[6],
such as deploying invasive wearable devices [7].

The EEG-based automatic epileptic-seizure detection strate-
gies have been discussed for over one decade but remain
challenging [8]. Automatic seizure detection mainly involves
two steps: feature extraction and classification. These features
can be obtained by manual quantification or deep learning
model coding [8]-[25]. Thus, we boil down those methods into
two types: the handcrafted-feature-based traditional machine
learning and the deep-learning-based methods.

The handcrafted feature-based machine learning methods
require manual feature extraction using the algorithms, such as
temporal fluctuation measurements, wavelet transforms, power
spectral density analysis, time-frequency distribution analysis,
and entropy extractor [8], [17]-[20], [24], [25]. The commonly
used classifiers include support vector machines [19]-[21],
[24], k-nearest neighbors [17], [21], and the classical arti-
ficial neural networks [10], [16], [21]. In addition, some
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studies would exploit multiple feature extraction algorithms
to ensure the features are sufficient for characterizing EEG.
Thus, various feature selection strategies are required for
refining the obtained features before feeding them into the
classifiers [11], [21].

Deep learning-based methods are designed to automati-
cally learn meaningful features from EEG [26]. Convolutional
neural networks (CNNs), as one of the most prominent archi-
tectures in deep neural networks, have achieved promising
results in seizure detection. Acharya et al. [12] implemented
a 13-layer deep one-dimensional CNN (1D-CNN) to detect
normal, preictal, and seizure patterns. In their study, three hun-
dred single-channel EEG signals were fed into the CNN and
finally achieved an overall accuracy of 85.1%. Zhou et al. [13]
proposed a two-dimensional CNN (2D-CNN) model for the
same task on the Freiburg database. By taking the power-
frequency graph and the amplitude-time graph as the input,
they ended up with an accuracy of 92.3%. Wei et al. [14]
proposed a three-dimensional CNN (3D-CNN) to identify
different stages of seizures. The 3D-CNN analyzes features
of multi-channel EEG signals from the dimensions of time,
amplitude, and channels simultaneously. They finally reached
an accuracy of 90%. In addition, the recurrent neural network
(RNN), as a type of model dedicated to processing time
series, is also studied and used for detecting epileptiform
discharge [23]. A recent review [27] indicates that CNNs are
the most widely used method for seizure detection (2D-CNN,
31.48%; 1D-CNN, 22.22%). In this paper, we aim to leverage
the capability of CNN to capture invisible features in different
EEG patterns.

According to our literature survey, most deep learning-based
methods exploit the neural network models to analyze EEG
signals in time and frequency domains [27]. Nonlinear analy-
ses are commonly used in handcrafted feature-based machine
learning methods. Precisely, the EEG dynamics are quantified
as several values to indicate the chaotic and rhythmic patterns
concealing in the nonlinear and non-stationary EEG signals
[28]. The quantification algorithms include recurrence qualita-
tive analysis (RQA), detrended fluctuation analysis, entropies,
fractal dimensions, Hjortj, Hurst exponent, Kolmogorov com-
plexity, largest Lyapunov exponent, and Lempel-Ziv complex-
ity [28]. Of note, entropies have been extensively used in
seizure detection [15]; however, just like all the varieties of
entropies finally generated the entropy values based on the
probability distribution. Certain important nonlinear features
would be neglected or lost during the manual extraction of
highly refined indicators. To avoid this problem, it motivated
us to combine the deep neural network with low-hierarchy
nonlinear features to reduce the information loss and charac-
terize the seizure-related nonlinear features more effectively.

The nonlinear features mentioned above are determined by
EEG signals’ periodicity, chaos, and non-stationary nature.
Inspired by the fact that those characteristics are related to
the internal structure of time series, we assume that the
morphology of EEG trajectory can partly reflect the nonlinear
dynamics. For example, RQA [29] was proposed based on a
recurrence plot inferred from the EEG trajectory’s morphol-
ogy. However, RQA requires manual quantification to extract

features from recurrence plots; the subjective steps in RQA,
such as thresholding recurrence plots, would lead to bias and
information loss. Meanwhile, the clinical analysis discovered
that the rate of interictal spikes would dramatically change
at the preictal period of seizure [30], and the brain rhythms
drastically altered at the onset of seizures [31]. Therefore,
we started this work with the hypothesis that taking the
morphology of multi-rhythmic trajectory as the input of CNN
models can effectively encode the seizure-free and seizure
patterns and distinguish them from healthy patterns.

Moreover, an encoding model with small latency is promis-
ing for a real-time application and contributes to the early
warning of epileptic seizures. Thus, this paper has investi-
gated various network structures and developed a lightweight
structure. The main contributions of this study are summa-
rized as follows: (1) A nonlinear biomarker, brain-rhythmic
recurrence map, is proposed to reveal the nonlinear dynamics
of EEG signals; (2) An effective model named ONASNet is
developed based on the optimized neural network searching
(NAS) strategy and the lightweight CNN cells; (3) The effec-
tiveness of biomarkers is validated on various models with
different structures, and the performance of their difference
is systematically studied in model size, learning capability,
and predicted accuracy; (4) The proposed method accurately
identifies normal, seizure-free, and seizure patterns with high
stability and low prediction latency.

Il. MATERIALS

The datasets used in this study are available in the “Klinik
fir Epileptologie, Universitit Bonn” repository. The Bonn
epileptic EEG dataset contains a total of 500 EEG trials.
Each EEG trial is a single-channel EEG signal with a sam-
pling rate of 173.61 Hz and a duration of 23.6 seconds
(4097 sample points). These trials have been pre-selected by
the data collector by removing the artifacts which result from
muscle activity and eye movement. This study defined three
categories for further investigation: a normal group, a seizure-
free group, and a seizure group. Therefore, the seizure-free
and seizure groups are derived from the EEG trails recorded
in the epileptogenic areas of the patients with epilepsy. The
recordings collected in the interictal period are seizure-free,
and those collected during seizures comprise the seizure group.
The seizure-free and seizure groups contain 100 EEG trails,
respectively. Furthermore, we selected 100 EEG trails from the
recordings collected from the healthy subjects in their relaxed
states.

According to clinical studies [32], [33], most seizures occur
with frequencies ranging from 2Hz to 29Hz. Therefore, the
EEG signals were filtered by a 4th-order zero-phase Butter-
worth bandpass filter with a filtering frequency between 2 and
30 Hz. Moreover, we identified each subject’s brain pattern
using multiple detection windows to enhance stability. Those
detection windows respectively extract a short EEG sequence
from each EEG signal without overlap and simultaneously
infer the results. Then, the averaged logits of all the detection
windows are used to predict the final results. In this study,
each detection window extracts 173 sampling points. Hence,
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twenty-three detection windows are used to identify a 23.6s
EEG signal.

[1l. METHODS
A. The Proposed Brain-Rhythmic Recurrence Map

To exploit the convolutional layers to capture the underlying
features in the EEG signals from the perspective of nonlinear
dynamics, we first propose a brain-rhythmic recurrence feature
map improved from recurrence plots (RPs). Subsequently,
we exploit the transfer learning technique to extract features
from the brain-rhythmic recurrence maps.

1) The Mathematical Explanation of Recurrence Plots: The
trajectory of EEG signals evolves in the high dimensional
phase space. The RP method transforms a high-dimensional
trajectory into a two-dimensional graph by calculating the
recursive features appearing in the phase space to reduce
dimensionality. In the following, we provide a brief description
of RPs mathematically.

Given a time series {x1, x2, . .., X, }, according to the Takens
embedding theorem [34], it can be reconstructed by several
state points in the phase space, and each point is defined as
the Eq. (1),

Xi:{xi,xi+r,-'-9-xi+(m—l)*’[}a i=1,293,-'-9N (1)

where N = n — (m — 1)z. The delay time t and embedding
dimension m were estimated using the mutual information
method [35] and the false nearest neighbor method [36], [37].
Then, the distance (d;;) between any two elements is defined
by the Euclidean norm as Eq. (2). Subsequently, a recursive
matrix can be obtained by Eq. (3) and Eq. (4),

dij = |Xi—Xj| @)

Rij = H (8 — d,‘j) 3)
o <0

H(x)_[l (x> 1) )

where ¢ is the threshold used for defining useful recurrence
features; in general, the value of ¢ can be defined by the
standard deviation of the signals or determined by setting a
specific percentage percent of the points as 1. From Eq. (2)
to Eq. (4), they delimit a sphere in the phase space by taking
one state point X; as the center and the threshold ¢ as the
radius. Then, the recurrence is captured when other states
X reach the inside space of the sphere. Fig. 1 illustrates the
RPs of the EEG signals, which were randomly sampled from
normal, seizure-free, and seizure groups. Benefitting from the
high temporal resolution of EEG signals, we could divide each
EEG trial into 23 one-second EEG segments. In Fig. 1, each
RP corresponds to the exemplified EEG segment depicted in
the black-framed sub-panel on the left. The state points on
the trajectory in the phase space comprise the axes of each
RP matrix. The state points denoted as black indicate that
recurrence occurs at those state points corresponding to the
horizontal and vertical axes of the coordinate.

In some instances, it is impractical to distinguish different
brain patterns based on the RPs directly. Therefore, further
quantifications are required to quantify the RP structures, such
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Fig. 1. lllustrations of the recurrence plots of the EEG signals sampled
from normal, seizure-free, and seizure groups.
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Fig. 2. Examples of the greyscale RPs obtained from different groups.

as RQA [38]. Then, those extracted indicators are used to
train the classical machine learning classifiers. However, such
a quantification procedure manually discards some natural
features that include essential information. With deep learning
techniques, CNNs can automatically extract the features from
the grid data. Therefore, using a deep neural network model
to analyze the RPs promises a greater probability of gaining
better performance.

Moreover, as shown in Fig. 1, the recurrence points (black
points) clustered together as several black chunks in seizure
patterns. It indicates that the original RP method cannot
provide detailed information when dynamic recurrence occurs
in the continuous state points. In other words, the original
RP method is not appropriate to characterize the recursive
structure when the trajectory of EEG folds in the embedding
space severely. Hence the corresponding RPs may lose the
crucial dynamical information due to binarization.

2) Construction of Brain-Rhythmic Recurrence Feature Map:
To address the issue mentioned above, we propose to directly
apply Eq. (2) to the state points (Eq. (1)) of each high-
dimensional trajectory. Hence a new RP (greyscale RP) with
detailed recurrence features can be obtained, as shown in
Fig. 2. The illustrations correspond to the exemplified sam-
ples’ 15th EEG detection window results. The greyscale RP
defines the recursive features as a range instead of binary
numbers, where the brighter points imply significant recursive
features. Thus, the method alleviates the bias and instability
induced by the different choices of the parameter ¢.

Furthermore, the synchronized electrical pulses of massive
neurons would induce rhythmic brain activity, which can be
captured at the cerebral cortex level. Hence the recorded
EEG signals typically contain five brain rhythms named delta
(0), theta (0), alpha (a), beta (f), and gamma (y). Each
rhythm corresponding to a specific frequency band frequently
occurs under specific brain states (TABLE I). As we stated
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Fig. 3. Construction of the brain-rhythmic recurrence feature maps and the examples derived from different groups.

TABLE |
THE FREQUENCY RANGE OF DIFFERENT BRAIN RHYTHMS

Rhythm Frequency Band Occurrence Period
6 2-4 Hz Related to the state of deep sleep
0 4.8 Hz Related to the.twﬂlght zone between
waking and sleep
Related to the state of relaxation
a 8-12 Hz . L
(e.g., peacefully imagining)
Related to the primary state of
B 12-30 Hz alertness (e.g., intellectual activity)
y 30-80 Hz Related to consciousness and

awareness

in Section II, the frequency bands lower than 2Hz and higher
than 30Hz have been filtered out during the data preparation
to focus on the frequency range most related to epileptic activ-
ities. Hence, the filtered signals involve d, €, a, f four brain
rhythms. We extract the sub-bands from the EEG time series
through the multi-level wavelet decomposition and obtain the
frequency bands from the reconstructed wavelet coefficients.

Considering that the low brain rhythms (0 and ) are rare
in the awake state of adults [39], we integrate the lower bands
with the frequency range from 2Hz to 8Hz as the slow brain
rhythm, regard the filtered EEG with the 8-12Hz frequency
range as the medium brain rhythm, and set the frequency
band higher than 12Hz as the fast brain rhythm. Subsequently,
by cooperating with the concept of RGB channels in color
images, the brain-rhythmic recurrence map (BRRM) is con-
structed upon those brain rhythms. We obtained BRRM by
concatenating the rhythmic-specific recurrence feature map
in depth. It includes three channels corresponding to slow,

medium, and fast brain rhythms. In Fig. 3, we illustrate the
construction of BRRM and show the BRRMs of two EEG
short sequences (the 10" and 15" sequences) split from the
exemplified EEG signal (the 50" sample) in normal, seizure-
free, and seizure categories. The BRRMs derived from the
same EEG signal, but different EEG sequences may have
a similar geometric pattern but different color distribution.
For example, in the 10" and 15" detection windows of the
illustrated seizure sample (Fig. 3(c)), the recursive features are
evident at 71 period but become weak at t, period. Of note,
the decreased recursive characteristics of the medium brain
rhythm (green color) induce this weakened recurrence in the
10t detection. In contrast, such decay in the 151 window is
caused by the slow rhythm (red color). However, the geometric
patterns of the BRRMs obtained from the different sequences
on the same EEG signals also may show differences (e.g.,
Fig. 3(b)) due to the evolution of the underlying nonlinear
dynamics over time. Moreover, compared to the greyscale
RPs (Fig. 2), the BRRMs of the normal and seizure-free
groups (Fig. 3(a) and 3(b)) in the 15" window are more
distinguishable.

Based on the observations
hypotheses:

a) the proposed BRRM provides a more precise and com-
prehensive representation of nonlinear features in EEG signals
than other relevant methods, including RQA, original RP, and
greyscale RP.

b) the BRRM is a potential biomarker that a deep learning
model can process to generate pattern-specific deep repre-
sentations for automatically identifying epileptic brain states
(seizure-free and seizure patterns).

above, we propose two
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Fig. 4. Neural network searching via RNN and reinforcement learning.

B. Transfer-Learning Method and the Optimized Network

The proposed three-channel BRRM can fully use convolu-
tional layers to process color images. It enables the network to
extract and fuse valuable features from different brain rhythms
simultaneously. From Fig. 3, we know the diversity of BRRMs
between different subjects from the same group. Therefore,
we utilized the transfer learning technique and cooperated
with the proposed BRRM to extract the pattern-specific deep
representations from different samples.

1) The Transfer-Learning Models: Our experiments evalu-
ated eight architectures by taking them as the bone of the
transfer-learning model (TLM). Seven of those bottom struc-
tures are derived from the acknowledged models, including
VGGI16 [40], VGG19 [40], ResNet50 [41], InceptionV3 [42],
DenseNet121 [43], Xception [44], NASNet [45]. Meanwhile,
we introduce another bottom structure named ONASNet,
an optimized NASNet produced by a modified neural archi-
tecture search strategy and an effective convolutional block
with inverted residual and linear bottleneck modules. TLMs
are obtained by replacing the respective top layers with a
simple structure comprising a global average pooling layer,
a dense layer, and a SoftMax activation.

2) The Background Related to the Optimized Network: The
neural network search method [46] was proposed to design
the architecture of the network by self-learning. NASNet
followed this idea to produce the model structure through
RNN and reinforcement learning (Fig. 4). Compared with
the handcrafted networks (e.g., VGG, ResNet, InceptionV3,
Xception), to automatically generate the optimized hyper-
parameters of architecture for obtaining the best validation
accuracy under the restricted computing cost. As shown in
Fig. 4, the controller RNN is a network having recurrent
layers, where each layer defines a hyper-parameter for training.
Indeed, to reduce the computing cost, we should pre-define the
limited candidate CNN operators (such as the convolutional
kernels and the filter number) to restrict the search space.

In the function @ of Fig. 4, h; and x, represent the state
and the input of RNN at time ¢, respectively. @ stands for
the parameters of recurrent layers and fully convolutional
layers. Those parameters determine the probability output of
RNN at the next time point, then, the corresponding action of
the CNN operator &;41 can be sampled from the probability
distribution. Each recurrent step (time point) of the controller
RNN is used to identify the optimized result of one CNN
operator (e.g., kernel size). Detailly, each layer of trained RNN
controls the ith operator at the /th layer in CNN (denoted as
ef). The optimization objective is to train the controller RNN
for generating an optimized CNN with the highest validation
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el e LS 8

Data x Search Block — Predictiony =
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Fig. 5. Neural network searching via gradient descent.

accuracy. However, the objective (validation accuracy) is not a
differentiable function of the optimization variable (parameters
of RNN w). Hence, reinforcement learning is required to solve
this problem. The symbol @ stands for the observed validation
accuracy from step ¢ to the last step 7 and is taken as the
reward for reinforcement learning. With the state [A;, x;] and
the action &, 1, the function @ can be considered as the policy
of reinforcement learning. Then, the optimization of the non-
differentiable problem can be alternatively solved by policy-
gradient algorithms [47], as shown in the equation @.

3) The Optimized NASNet (ONASNet): Although the method
described in Section III.B.2 could achieve the objective theo-
retically, training such RNN through reinforcement learning
is challenging and computationally costly, induced by the
non-differentiable problem. Therefore, making the network
search problem computationally differentiable is promising for
reducing computing costs. An integrated framework (Fig. 5)
with the parallel CNN cells is introduced to obtain the opti-
mal network through the gradient descent method. NASNet
implements neural network research in a cascaded way, where
the first step is searching for the optimal CNN cells, and the
second step is generating the whole network. Fig. 5 integrates
two levels in one framework, where a series of blocks construct
the optimal network, and each block represents one stage of
the network. Specifically, the block contains some parallel
pathways, representing one type of CNN cell.

As shown in Fig. 5, for the input X, we can attain a
tensor Z; from the ith CNN cells with the parameters w;;
then, an output tensor representing the policy of the block
is defined by the weighted average of the multiple tensors,
as the equation @ in Fig. 5. The weights o are determined
by the parameters @ and processed by the SoftMax function
to normalize those values. Consequently, for the input data x
and the ground truth y, the optimization objective of training
can be defined as the function ® in Fig. 5, where the error
between ground truth y and the predicted results y is measured
through a function F (e.g., cross-entropy), the output p(-)
is a differential function of the parameters # and w, the
E(W; ) is the penalty term that is flexible to the requirement
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(e.g., using the elapsed time of each CNN cell for penalty).
Finally, the back-propagation of the gradient makes the frame-
work converge to the optimal point. Then, the trained o
controls the cutting of the branches in the CNN cell search
block to remain only one branch in each block (e.g., the
randomly sampling according to the probability distribution
of a). Consequently, those selected CNN cells construct an
optimal network.

For the candidate CNN cells, we introduce two structures
(Fig. 6) applied at the first stage/block of the network and the
following stages/blocks, respectively. The basic CNN cell is a
convolutional layer that follows the batch normalization (BN)
layer and a nonlinear activation (Act) function. The green
part of the effective CNN cell conducts the convolutions
through pointwise convolution (PConv) and depthwise con-
volution (DConv) to reduce the parameters. The orange part
is a weighted activation for highlighting the vital channels,
and the grey part controls the output width (filter number)
of the CNN cell. The bolded symbols in Fig. 6 indicate
the candidate parameters, including the kernel size k, the
stride of convolution s, the number of filters in the initial
convolution f, the increasing ratio of input width in each
cell f;, the decreasing ratio of squeezed width in weighted
activation f,, the adjusted number of output width f,, and
the dropout rate in the Dropout layer. The last candidate
parameter is the repeated time p of the same cells. The residual
connection added in the effective CNN cell (the dashed line
in Fig. 6(b)) is conditionally controlled by an “on-off” switch,
which means the connection is added when the stride of the
depth-wise convolution equals one and is removed when the
stride is 2.

The number of blocks/stages in the network and the can-
didate CNN cells should be manually defined to delimit the
search space. According to the seven models involved in the
comparison, we configured the initial convolutional layer with
f = 32 filters and s = 2 stride and a total of eight down-
sampling levels. To generate a powerful model and compare
it with the other seven models, we conducted neural net-
work searching based on the ImageNet dataset on the server.
Moreover, in the following transfer learning experiments, all
eight models are initialized using the pre-trained model on
ImageNet. Besides the bottom and top layers, the other six
CNN blocks are optimized with the candidate parameters

TABLE Il
A COMPARISON OF THE TLMS IN MODEL SIZE AND
COMPUTING COMPLEXITY

TLM Bone Size (MB) FLOPs (G)
VGG16 168.54 30.71
VGG19 229.33 39.04

ResNet50 270.55 7.75
InceptionV3 250.63 5.69
DenseNet121 81.88 5.70

Xception 239.11 9.13

NASNet 52.28 1.15

ONASNet 47.16 0.79

(k € {3,5}, s € {1,2}) and the structures with f; = 6,
fa =24, f, = 8n (n is the integer) and 1 < p < 4. The
obtained model is termed the optimized NASNet (ONASNet).

C. The Configuration of the Learning Process

Five-fold cross-validation is exploited to validate the gen-
eralizability of different TLMs. Of note, we divided five-folds
upon the EEG subjects, not the detection windows, to ensure
that there is no overlap between the training and validation set.
We optimized the model using the Adam algorithm during
training based on the error measured by categorical cross-
entropy. The learning rate is configured based on the models
to ensure that the model can gradually learn from the data.
We adopted two learning rates (le-3 and le-4) to investigate
the capability of different TLMs at slow and fast speeds.

Transfer learning progress includes the training phase and
fine-tuning phase. Because ONASNet is generated based on
the ImageNet dataset, the bottom structures of the other
TLMs are initialized using the parameters pre-trained on the
ImageNet. The bottom layers are frozen during the training
of the top layers. The transfer learning experiments were
implemented on a Windows 10 computer with an Intel Core
i7-8700K CPU at 3.70 GHz, 32 GB RAM, and an NVIDIA
GeForce GTX 1080Ti, based on TensorFlow 2.3.0-GPU and
Python 3.7.11. Each model is trained by a batch size of 69 for
25 epochs, yielding 80 steps for each epoch and 2000 steps.
The training progress stops early when the categorical accu-
racy does not improve on the validation data in the five
consecutive epochs. Finally, all the parameters in the TLM are
unfrozen for further fine-tuning. The fine-tuning is started from
the early stop point of the training phase and implemented for
ten epochs. The training data is shuffled at the end of each
epoch in both phases.

IV. EXPERIMENTAL RESULTS
A. Comparative Study of Different TLMs

We systematically explored the framework performance
using different structures as the bone of the transfer-learning
model. The comparison includes (1) the size and the com-
plexity of the model (TABLE II), (2) the capability and the
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trained with a fast learning rate (Ir = 1e-3).

TABLE Il
A COMPARISON OF THE CANDIDATE TLMS IN MODEL LATENCY

TLM Bone Latency-Mean (ms) Latency-Std (ms)

VGGI16 93.27 3.45
VGG19 108.30 5.82
ResNet50 79.90 2.75
InceptionV3 72.88 3.00
DenseNet121 77.23 2.38
Xception 92.16 3.16
NASNet 75.38 2.49

ONASNet 66.00 2.29

stability of the model for learning deep representations (Fig. 7
and Fig. 8), and (3) the latency time of model for prediction
(TABLE II).

1) Results on Model Size and Complexity: Compared with
other models, ONASNet has the smallest model size and
model complexity, where the complexity of the model is
measured by floating-point operations (FLOPs). The size of
FLOPs indicates the computing cost in theory and reflects the
requirement of hardware (such as GPU) to run the model.
TABLE II demonstrates that the relationship between model
size and FLOPs is not linear. For example, the size of
ONASNet is only reduced by half compared to DenseNet121,
but the value of FLOPs in ONASNet is an order of magnitude
lower than DenseNet121. It implies that the dense connections
between the feature maps at different levels dramatically
increase FLOPs. Therefore, we did not consider this type
of structure when designing the candidate structures for the
optimized model.

2) Results on Learning Capability and Stability: Each panel
of Fig. 7 and Fig. 8 indicates the learning history of one
model in five folds. We sorted the panels of figures by the

TABLE IV
TRADITIONAL CONFUSION MATRIX

Predicted Negative
False Negative (FN)
True Negative (TN)

Predicted Positive
True Positive (TP)
False Positive (FP)

True Positive

True Negative

TABLE V
THE CONFUSION MATRIX FOR MULTICLASS CLASSIFICATION TASK

Predicted as 0 Predicted as 1 Predicted as 2

Normal (0) Too Foi Fo
Seizure-free (1) Fuo Ty Fi
Seizure (2) Fao Fa Ta

model size and denoted two phases of transfer learning by
the dashed line and the solid line, respectively. The circle
point means the start point of fine-tuning. ResNet50 and
ONASNet show strong learning capability in both phases and
achieve convergence faster than other models. Meanwhile, the
consistency of five-fold cross-validation is better in ResNet50
and ONASNet. Although the model size of NASNet is com-
parable to ONASNet, NASNet cannot precisely capture the
effective deep representations of our data. It indicates that
the generalizability of our CNN cell (Fig. 6) outperforms the
Reduction Cell proposed in NASNet.

We also investigated the training performance of those
models under a slow learning rate (Fig. 7) and a fast learning-
rate (Fig. 8). The fast learning rate significantly impacts the
stability of learning, and the early stop points of the training
are various in different folds. The stability of the VGG
structure (VGG16\VGG19) is destroyed when fine-tuning the
entire model at a fast rate. It implies that updating the gradient
of a large model with a fully cascaded structure is easily
influenced by the perturbation. Fortunately, this problem can
be relieved by residual and short-cut connections. Under the
fast learning rate, ResNet50 and ONASNet still outperform
others.

3) Results on Time Consumption: Furthermore, the latency
of the model is vital for real-time applications and high-
risk alarming. We recorded the latency of different TLMs for
predicting one patient in five-fold experiments (TABLE III).
With our GPU computing platform, ONASNet outperforms
other models by the most negligible average latency (66 ms)
and the lowest standard deviation (2.29 ms) in five-fold cross-
validation. Other TLMs are also faster than their original
version due to the modified lightweight top structure. However,
the FLOPs of other models (except NASNet) are at least
seven times larger than ONASNet. It means that ONASNet can
maintain the performance on a poorly performing computing
platform.

B. Performance Quantification and Comparison

1) Evaluation Metrics: The typical evaluation metrics
include accuracy, precision, recall (sensitivity), and specificity.
According to the traditional confusion matrix (TABLE IV),
we defined a new confusion matrix (TABLE V) for our
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TABLE VI
THE DETECTION PERFORMANCE OF THE PROPOSED METHOD AND NON-RHYTHMIC FEATURE MAPS
Learning . . Metrics
fi M
Rate Confusion Matrix Accuracy (%) Precision (%)
Labels BRRM biomarker Non-rhythmic features (NR) BRRM NR BRRM NR
N 1 1 1
orma 00 0 0 00 0 0 99.67 96.33 99.68 96.81
le-4 Seizure-free 1 99 0 11 89 0 (0.67) (*2.21) (£0.63) (£1.85)
Seizure 0 0 100 0 0 100 ’ ) ’ )
Normal 100 0 0 100 0 0 100 92.33 100 94.15
le-3 Seizure-free 0 100 0 23 77 0 (£0.00) (4.78) 0.00) (+3.34)
Seizure 0 0 100 0 0 100 ) ) ) )
TABLE VI
COMPARISON RESULTS BETWEEN THE PROPOSED METHOD AND OTHER EXISTING METHODS
Studies Method Cross-validation Macro-average Accuracy
Acharya et al. Raw data with a 13-layer Deep 1D convolutional neural network
10-fold 88.679
(2018) [12] (CNN) ° %
Yavuz et al. Cepstral analysis, Mel frequency coefficients feature extraction, 5-fold/10-fold 97.80% =+ 1.73% (5-fold)
(2018) [16] artificial neural network (ANN) with generalized regression 98.07% + 2.28% (10-fold)
Chandel et al. Three-band triadic wavelet decomposition and k-nearest neighbour )
(2019)[17] classifier (KNN) 5-fold 96.00%
San-Segundo et Fourier transform, wavelet coefficients and empirical mode o o
al. 2019 [18] decomposition (EMD), 2D CNN 5-fold 96.50% +0.44%
Gupta et al Fourier—Bessel series expansion (FBSE)-based rhythm separation,
201971 ()' weighted multiscale Renyi permutation entropy, least squares- 10-fold 97.33%
( ) [ support vector machine (LS-SVM)
Nabil et al. (2020)  DWT decomposition, approximate entropy, largest Lyapunov 10-fold 96.80%
1207 exponents and statistical indicators, multiclass SVM e
Tuncer et al An ensemble feature extraction network based on local graph 94.00% (linear discriminant analysis);
202021 ’ structure and DWT, feature reduction based on ReliefF and 5-fold 96.00% (SVM); 98.67% (ANN);
( ) [21] neighborhood component analysis, multi-classifiers 94.67% (KNN)
H t al. i i i i
assan i j Comp!ete ensemble EMD with gdaptlve noise, normal inverse 10-fold 98.67%
(2020) [22 Gaussian pdf parameters, adaptive boosting
Khanetal. (2021)  Hilbert vibration decomposition, correlation-based Q-score, long o o
23] short-term memory (LSTM)-based deep learning 3-fold 96.00% * 3.84%
Jing etal. (2021)  DWT, energy contribution weighting rules and non-zero processing 10-fold 96.59%
241 for signal and feature enhancement, SVM =7
Oliva et al. (2021) 105 measurements extr‘acl:ted from the{ power spectrum, spectrogram,
Y and bi-spectrogram, minimal sequential optimization supported by 10-fold 98.00% £ 3.22%
(2] the polynomial kernel classifier
Anuragi et al. FBSE-based empirical wavelet transform, 3D phase-space 10-fold 98.3%
(2021) [8] representation, entropy-based features, ensemble learning ’
0, 0, —1e
Our work (2021) Brain-rhythmic recurrence features, ONASNet, transfer-learning 5-fold 99.67% % 0.67% (Ir=1e-4)

100% (Ir=1e-3)

multiclass problem. In TABLE V, “T” means true, “F” means precision = _(Z L)
False, the first number of the subscript denotes the true label i=0 Tii + 2 Fji
and the second one denotes the predicted label. Three classes JE{0,1,...,N}, j#i (6)

are balanced in this study, which indicates that the macro-
average accuracy equals the macro-average precision. There-
fore, the model’s performance is evaluated by the equations (5)
and (6), where N is the number of classes.

2) Performance Evaluation: Moreover, we evaluated the
overall recall and precision metrics for the prediction results
obtained based on the BRRM biomarker and ONASNet.
Specifically, we compared the proposed biomarker with non-
rhythmic feature maps under the same model and training con-
Accuracy = _(Z Tii ), figuration. The results are summarized in TABLE VI, which

i=0 Tj; 4+ > Fjj indicates the contribution of the brain-rhythmic biomarker
jel{o,1,...,N}, j#i (5) for classifying seizure-free patterns from normal patterns.
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Furthermore, the proposed method finally reaches the best
performance of 100% accuracy under the le-3 learning rate.

3) Comparison With Other Recent State-of-the-Art Methods:
The performance of our proposed detection algorithm is com-
pared with other existing methods published in recent years
(TABLE VII). To ensure fairness, we included the studies
into comparison under the conditions that (1) experiments
were implemented based on the same data (Bonn University
epileptic EEG dataset), (2) the results were obtained the
same classification task (normal/seizure-free/seizure), (3) the
methods were validated through five-fold or ten-fold cross-
validation, and (4) the performance was evaluated by the
macro-average accuracy.

V. DISCUSSION

The method proposed in this paper is determined based
on our pre-experimental research. Firstly, we investigated the
effectiveness of the greyscale RPs (Fig. 2) against the original
RPs (Fig. 1) and the related quantifications (e.g., RQA).
Subsequently, we explored the effects of rhythmic analysis
on improving performance. We found that the brain rhyth-
mic recurrence map (Fig. 3) obtained by multi-level wavelet
decomposition and recursive phase-trajectory mapping are
promising for indicating epileptic patterns. Next, we studied
multiple advanced network structures (VGG, ResNet, Incep-
tion, DenseNet, Xception, NASNet) to validate the stability
of the biomarker on the different models. We also attempted
different training configurations to observe their respective
learning performance in this step. Besides the effects on
learning rate (Fig. 7 and Fig. 8), we also found that the
normalization strategy influenced the model accuracy. The
cross-rthythm normalization performed better than the inner-
rhythm normalization. Finally, we introduced an optimized
structure named ONASNet as the bone of the transfer-learning
model. We produced the ONASNet structure using the neural
network search algorithm (Fig. 5) and the hand-designed
CNN cells (Fig. 6). The pre-experiments investigated differ-
ent CNN blocks and determined two effective and light-
weighted CNN cells.

In Section IV.A.2), most TLMs can capture the difference
between normal, seizure-free, and seizure patterns through
the brain-rhythmic recurrence features and transfer-learning
technique, which indicates the effectiveness of the proposed
biomarkers and learning configurations. Furthermore, we com-
pared different TLMs in size, complexity, generalizability,
stability, and latency, proving the advantages of the proposed
optimized network ONASNet. To further discuss the pre-
dicted performance of those models, the validation results of
five-fold experiments are summarized in the confusion matri-
ces (Fig. 9). Even though the NASNet is the most lightweight
model (TABLE II) among the models (a) to (g) in Fig. 9, it is
seriously biased due to overfitting. We thought the failure may
result from the considerably complex Inception connections
and Added connections applied in the NASNet. In addition,
the VGG structure is not appropriate for a faster learning
rate. Thus, in our approach, we avoided overcomplicated con-
nections and fully cascading structures like VGG. Referring

A. Learning rate =1e-4

@, 4 ;®;, , 4@, 4, M@, ;| ,
o M 1
1 [0 2 2
T 2
C T 1 T 1 T 1 T 1
° o012 01 2 012 012
> ey 4y My 4 4@y 4 4y 4 5
To| M 1 32
Tl (2 [1]
2 19 49
| — | — T 1 1 T 1
Predicted Label
B. Learning rate =1e-3
@, , ;0 , @, ;@ , |
0 60 20 20
1 (40 60 20|11 2
E 2 |40 60 60 20
© T 1 T T 1 T 1 T 1
p o1 2 01 2 01 2
s @y 4 ®, 4 @, 4,0, , |
Fo 6
Tl (||
2 59 39

L T T
Predicted Label

Fig. 9. The misclassified subjects in five-fold cross-validation generated
by (a) VGG16, (b) VGG19, (c) ResNet50, (d) Inception V3, (e) DenseNet
121, (f) Xception, (g) NASNet and (e) ONASNet, where normal, seizure-
free and seizure patterns are respectively denoted as 0, 1 and 2.

to the usage of separable convolutions in the Reduction Cell
defined in NASNet, we applied depth-wise convolutions and
pointwise convolutions to reduce the parameters in our CNN
cell. Referring to the residual learning proposed in the ResNet,
we introduced a conditional inverted residual learning with
squeeze-and-excitation in our CNN cell (Fig. 6(b)). For the
input stage of the model, we applied a simple CNN cell to
process the data coarsely (Fig. 6(a)).

Although our method outperforms other methods listed
in TABLE VII, we did not involve some seizure detection
algorithms developed for different classification tasks or val-
idated through multi-channel EEG datasets. It is valuable
to explore those algorithms in the future and extend our
method from single-channel EEG signals to multi-channel
EEG signals. Moreover, we attained the ONASNet structure
through the neural network searching upon a large dataset
(ImageNet) and then transferred it from the source domain
(image classification) to the target domain (epileptic patterns
detection). Therefore, we believe that ONASNet can be further
simplified as a smaller model to directly train our small EEG
data to reach the same accuracy using less latency.

VI. CONCLUSION

This paper proposes a new EEG-based seizure detec-
tion strategy to decode EEG patterns in the nonlinear
dynamic domain through a modified deep learning model.
This method (a) decomposes an original EEG signal into
brain rhythms, (b) transforms those rhythms as brain-rhythmic
recurrence maps (BRRM) inferred from the dynamical
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trajectories in phase space, and (c) utilizes an effective neural
network (ONASNet) as a feature extractor and classifier
to identify normal, seizure-free and seizure patterns. The
BRRM-ONASNet framework is partly immune from losing
important nonlinear features, which would occur in the com-
plex feature engineering algorithms and traditional machine
learning methods.

We divided the brain activities into low, medium, and
fast thythms and then used their corresponding frequency
bands (sub-bands) of EEG signals to construct BRRM. Con-
sequently, the constructed BRRM was processed by the mul-
tiple channels in the neural network. This method leverages
the capability of a multi-channel model in analyzing color
images, which avoids using 3D CNN to process sub-bands.
The ONASNet is obtained through neural network searching
using a complex dataset (ImageNet) and then applied to our
small EEG dataset through the transfer-learning technique.
To compare with our model, we involved seven acknowl-
edged neural networks (VGG16, VGG19, Reset50, Incep-
tionV3, DenseNetl21, Xception, NASNet). Those models
were pre-trained on the ImageNet and transferred to the
epileptic EEG data with the same learning configuration.
The comparative study indicates that BRRM-based biomarkers
effectively identify epileptic patterns. The ONASNet-based
transfer-learning model outperforms the other seven TLMs
in model size, computing complexity, stability, and prediction
latency. The BRRM-ONASNet framework achieves an accu-
racy of 100% in five-fold experiments for predicting three
different brain states from Bonn epileptic EEG data. Our
performance is better than other reported results in the related
studies, but the limitation mentioned in the Discussion needs
to be further explored and studied in the future.
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