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Stability Analysis of fMRI BOLD Signals
for Disease Diagnosis

Honorine Niyigena Ingabire , Haibo Qu, Min Li, Sixuan He, Joan Toluwani Amos, Yan Cui ,
Qing Wang, Dezhong Yao , Dan Ma, and Peng Ren

Abstract— Previous studies have demonstrated that the
stability changes in physiological signals can reflect indi-
viduals’ pathological conditions. Apart from this, accord-
ing to system science theory, a large-scale system can
generally be divided into many subsystems whose sta-
bility level govern its overall performance. Therefore, this
study attempts to investigate the possibility of analyz-
ing the stability of decomposed subsystems of resting-
state fMRI (rs-fMRI) BOLD signals in order to assess the
overall characteristic of the human brain and individuals’
health conditions. We used attention deficit/hyperactive
disorder (ADHD) as an example to illustrate our method.
Rs-fMRI BOLD signals were first decomposed into dynamic
modes (DMs) which can illuminate the patterns of brain
subsystems. Each DM is associated with one eigenvalue
that determines its stability as well as oscillation frequency.
Accordingly, we divided the DMs within common BOLD
frequency bands into stable and unstable DMs. Then, the
features related to the stability of those DMs were extracted,
and nine common classifiers were used to differentiate
healthy controls from ADHD patients taken from ADHD-200,
a well-known dataset. The results showed that almost
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all features were statistically significant. Additionally, our
proposed approach outperforms all existing methods with
the highest possible precision, recall, and area under the
receiver operating characteristic curve of 100%. In sum,
we are the first to evaluate the stability of BOLD signals
and demonstrate its possibility for disease diagnosis. This
method can unveil new mechanisms of brain function, and
could be widely used in medicine and engineering.

Index Terms— Attention-deficit/hyperactive disorder
(ADHD), blood oxygen level dependent (BOLD), dynamic
mode decomposition(DMD), functionalmagnetic resonance
imaging (fMRI), stability, subsystems.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is a
non-invasive and ionization-free technique which essen-

tially utilizes blood oxygen level dependent (BOLD) con-
trast to reflect brain activity by capturing the changes in
cerebral blood flow and oxygenation concentration (known
as hemodynamic response) related to the energy required by
neurons due to a certain task (such as memory or cognition)
or during resting state [1]. Activation of a particular brain
region induces an increase in the blood flow to that region,
then deoxyhemoglobin in nearby blood vessels are replaced by
oxyhemoglobin. The diamagnetic property of oxyhemoglobin
leads to the generation of high-intensity of magnetic resonance
signal due to its reduced interference with the magnetic field
compared to that of deoxyhemoglobin (which is paramag-
netic). Thus, the BOLD contrast mechanism occurs as a result
of the differentiated magnetic properties of deoxygenated and
oxygenated blood. Therefore, this mechanism is used to reveal
the neurons which are activated at any given time.

fMRI was primarily used as a task-based scan to capture the
changes in cerebral blood flow and oxygenation concentration
(associated with specific task) which can be reflected in BOLD
contrast. Later, Biswal et al. found that spontaneous BOLD
signal generated by neurons while subjects are at rest reflects
their baseline BOLD variance [2]. Resting-state fMRI (rs-
fMRI) is a relatively novel method which is based on detecting
spontaneous low-frequency oscillations of the BOLD signal,
usually less than 0.1 Hz, over time. Task-state and rs-fMRI
have been widely used in neuroscience and clinical research.
However, rs-fMRI is easy to implement, demands little coop-
eration, reveals multiple brain networks, and does not require
any explicit task. Thus, studies have shown that rs-fMRI has
many advantages compared to task-based fMRI, particularly in
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studies involving patients with brain abnormalities including
strokes, tumors, traumatic injuries, paralysis, and attention
deficit [3]–[5]. Therefore, this study only considers rs-fMRI
signals.

A. Stability Analysis of Physiological Signals

Stability is an inherent property of a system, reflecting its
ability to maintain or recover its original structure, or to func-
tion under internal or external disturbance. Stability analysis is
not only essential in system science (or cybernetics), but has
also been applied in fields including industrial manufacturing,
product design, and power systems [6]–[9]. Furthermore, it has
recently been widely applied in the field of neuroscience.
Micro-level studies have showed that changes in synaptic firing
patterns are closely related to the brain disorders. For instance,
loss of synapses in brains of Alzheimer’s disease patients
leads to decreases in firing rate, which consequently change
the stability of neural networks by altering their dynamic
patterns [10]. Furthermore, Hocepied et al. found that epileptic
patients have more unstable electroencephalography signals
than those of healthy subjects [11].

Furthermore, previous studies have shown that the stability
of other physiological signals, such as respiratory signal
and blood oxygen saturation, can be used to determine an
individual’s health condition. For example, abnormal breathing
patterns were successfully extracted from a patient with
sleep apnea by simply evaluating the stability of that indi-
vidual’s heart rate, breathing patterns, and blood oxygen
saturation [12]. Therefore, Glass et al. even proposed that
the majority of pathological conditions occur as a result of
unstable physiological signals [13].

Although the stability of various physiological signals has
been analyzed, no studies have yet evaluated the stability of
fMRI BOLD signals. This study attempts to examine this, for
the following reasons: (1) Changes in neuronal firing rate have
been found to strongly parallel changes in cerebral blood flow,
which can be reflected in BOLD signals [1]. As mentioned
previously, instability in neuronal firing patterns mostly occurs
due to the presence of pathologies. (2) Measured fMRI BOLD
signals are widely used in neuroscience and clinical studies
because of their potential to capture dynamic characteristics
of the brain. Thus, we hypothesize that analyzing the stability
of BOLD signals could reveal new brain mechanisms and
potentially reflect individuals’ health conditions.

B. Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a data-driven
approach that extracts the most relevant spatial information
together with corresponding temporal information, from com-
plex large-scale data by regarding linear combinations of
spatial patterns at previous time points as the spatial pattern of
the observed data at the subsequent point [14]. This method
was first used to analyze fluid flows in fluid mechanics [15],
and has recently drawn attention in many other fields, such
as disease modeling and robotics [16]. Additionally, it has
been successfully employed to analyze brain-related signals.

For instance, Brunton et al. successfully extracted sleep spin-
dle networks by applying DMD algorithm on large-scale sleep
electrocorticography data [17]. Similarly, epileptic seizures
were accurately detected using the electroencephalography
signals of epileptic patients, by measuring the power of the
dynamic modes (DMs) of these signals at different frequency
bands [18]. Furthermore, Casorso et al. initially implemented
this method to analyze resting-state and motor-task fMRI
data, and successfully identified the classical resting-state,
task-state, and new task-state networks together with their
additional temporal characteristics [19]. Kunert-Graf et al.
also applied DMD together with unsupervised clustering on
rs-fMRI data, and successfully characterized spatial-temporal
patterns of individual’s resting-state networks [20].

Although these previous studies successfully implemented
DMD for fMRI analysis, they only focused on its spatiotem-
poral patterns. The stability of DMs of BOLD signals have
not yet been evaluated. Therefore, this study attempts to
analyze BOLD signals based on their stable and unstable DMs
decomposed by DMD. This was inspired by the following
reasons: (1) The human brain is considered as a complex large-
scale system, and its dynamic behaviors can be captured by
recorded rs-fMRI BOLD signals in macroscopic quantities.
Therefore, medical studies have successfully applied decompo-
sition methods such as independent component analysis (ICA)
and principal component analysis (PCA) to extract the most
significant information from fMRI data [5], [21], [22]. In con-
trast with those traditional fMRI signal decomposition meth-
ods, only DMD is able to extract components and their
stabilities from dynamic and high-dimensional data. (2) Apart
from this, according to system science theory, complex large-
scale systems can generally be divided into many subsystems,
whose stability determines the overall performance [23]. In the
case of human brain, the DMs decomposed from rs-fMRI
BOLD signals by DMD can reflect the underlying patterns
of brain subsystems. Thus, it is necessary to evaluate how the
macro-dynamic patterns of fMRI BOLD signals are affected
by the stability of their subsystems, which has not yet been
investigated by previous studies. Therefore, this study attempts
to analyze fMRI data based on stable and unstable DMs of
BOLD signals, which may not only help to illuminate new
brain mechanisms, but may also contribute to research on
mental disorders.

C. Attention-Deficit/Hyperactive Disorder

Due to the number of brain disorders, it would be impossible
for this study to implement our proposed approach on all
of them. Therefore, patients with attention-deficit/hyperactive
disorder (ADHD) are taken as an example to illustrate the
effectiveness of our approach. One of the most common
neurobehavioral disorders, ADHD normally first occurs dur-
ing childhood and lasts into adulthood. It is estimated that
approximately 5-10% of preschool and school-aged children
suffer from this disorder [24]. ADHD patients lack attention
and control, which leads to problems such as social integration,
unnecessary risk-taking, and memory impairment, which can
consequently lead to financial hardship for families and an
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enormous burden on society. Similar to many other brain
disorders, the underlying mechanism of ADHD is still not
fully understood. Different methods have been proposed to
highlight the brain mechanisms of ADHD patients using
rs-fMRI, including ICA, PCA, graph theory, correlation,
clustering, and neural networks [25]–[35]. For example,
Tabas et al. identified the differences between ADHD patients
and healthy subjects by combining independent components
and a spatial variant of the Fisher’s linear discriminant [26].
References [28]–[30] classified ADHD based on different
graph-based measures. Also, ADHD has been classified by
measuring the brain’s functional connectivity using different
correlation-based methods, including Pearson’s correlation,
and partial correlation [31]–[33]. Other studies applied dif-
ferent deep neural network on whole-brain connectivity for
ADHD classification [27], [35].

Although much effort has been made to study ADHD,
its automatic detection is still challenging. Currently, its
diagnosis is based on clinical-subjective symptoms, includ-
ing inattention, hyperactivity, and impulsivity. Therefore, this
study proposes a novel approach for rs-fMRI data analysis,
which is based on stability analysis of subsystems of BOLD
time series. We hypothesize that our proposed approach may
not only reveal new mechanisms underlying the functional
connectivity of the brain, but also can effectively improve the
diagnosis of brain disorders.

This study’s flow chart is shown in Fig. 1. First, the
preprocessed rs-fMRI BOLD time series were segmented into
short overlapping windows. The DMD algorithm was then
used to decompose individual window data into stable and
unstable DMs. Then, features corresponding to the stability
level of these DMs were extracted, and the differences between
the stability degree of DMs of ADHD patients and HCs were
investigated by implementing statistical tests on each extracted
feature. Finally, the classification performance of our proposed
approach was evaluated using nine well-known classifiers.

II. MATERIALS AND METHODS

A. Data Description

The rs-fMRI data used to evaluate our proposed approach
were taken from a common database, namely the Neuro
Bureau ADHD-200 database [36]. This database contains data
from eight imaging sites: Bradley Hospital/-Brown University,
Kennedy Krieger Institute (KKI), NeuroImage (NI), New
York University Child Study Center (NYU), Oregon Health
Sciences University (OHSU), Peking University (Peking),
University of Pittsburgh, and Washington University at Saint
Louis. Because Bradley Hospital/ Brown University, Wash-
ington University at Saint Louis, and University of Pittsburgh
do not provide fMRI data from ADHD patients, this study
used the data from five imaging sites (KKI, NYU, NI, Peking,
and OHSU) for further analysis. These imaging sites not only
comprise different number of subjects, but also acquired rs-
fMRI data using different parameters and equipment, which
makes the dataset quite diverse and provides an opportunity
to develop new robust models for ADHD diagnosis. A global
competition was held for classification of ADHD subjects,

Fig. 1. The flow chart of this study. We analyze DMs within three different
frequency bands: F1 (0.009-0.027 Hz), F2 (0.027-0.073 Hz), and F3
(0.009-0.08 Hz). Note: classification performance includes specificity,
sensitivity, accuracy, and area under the receiver operating characteristic
curve (AUC).

and preprocessed data, including training and test sets of each
imaging site, were provided by the consortium.

We used the preprocessed time series data of 954 region
of interests (ROIs) (resulting from ROI 1000 parcellation)
preprocessed using NeuroImaging Analysis Kit pipeline [36].
During preprocessing, the first three volumes were removed
to allow magnetization to reach equilibrium, site-specific slice
timing correction to the middle slice was performed, and the
parameters of a rigid-body motion between each time frame
and the median volume of a run were estimated, followed by
spatial resampling across frames. Next, the fMRI time series
were corrected from slow time drifts (using high-pass filter)
and physiological noise (using an automated labeling of noise
components in individual independent component analysis).
Then, for each subject, median volume of one selected fMRI
run was co-registered with corresponding structural-MRI scan
using Minctracc. The brain was also parcellated into 954 ROIs,
covering the grey matter using region-growing algorithm
based on the iterative merging of mutual-nearest neighbors.
Finally, average time series for each ROI were extracted.
Based on previous studies which used this dataset for fMRI
analysis, we also considered the BOLD components within the
frequency range of 0.009-0.08 Hz for further analysis [22],
[28], [34]. In addition, following previous studies, subjects
whose scans exhibited artifacts based on the performance of
quality control provided in the phenotypic information, were
excluded for further analysis [28], [34]. The demographic
information and the number of subjects for each group by
imaging site are shown in Table I.
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TABLE I
DEMOGRAPHIC INFORMATION FOR THE ADHD-200

DATA SAMPLES USED IN THIS STUDY

B. Computation of the Dynamic Mode Decomposition

DMD is an equation-free governing decomposition method
used to investigate the dynamic systems of large-scale data.
This approach has the advantage of extracting a set of DMs
that possesses both spatial and temporal patterns from a
multivariate time series. The DMD algorithm was refined by
Tu et al.., and is summarized below [37].

Consider measurements recorded from n locations at times
k�t , where a column vector xk contains the measurements at
snapshot k. For example, in the case of rs-fMRI data, these
measurements may denote BOLD time series data from n ROIs
sampled every �t (repetition time). The measurements from
m snapshots in time (sampling points) can be arranged into
two n × (m−1) raw data matrices X and Xs raw data matrices
as follows:

X =
⎛
⎜⎝

x11 . . . x1(m−1)
...

. . .
...

xn1 · · · xn(m−1)

⎞
⎟⎠ = [ x1 · · · xm−1 ] (1)

Xs =
⎛
⎜⎝

x12 . . . x1m
...

. . .
...

xn2 · · · xnm

⎞
⎟⎠ = [ x2 · · · xm ] (2)

According to the textbook ‘Dynamic mode decomposition:
data-driven modeling of complex systems,’ Xs is calculated by
shifting the columns of X by a single �t as shown above [38].
Therefore, an overlap exists between the observed data of these
matrices.

DMD assumes the existence of a linear operator H, which
determines the temporal progression from X to Xs such that:

Xs = HX (3)

The eigendecomposition of this operator H generates the
dynamic mode decomposition of these consecutive matrices,
X and Xs . The data matrix X is assumed to have high-
dimensional snapshots, i.e., the measurements n at each
snapshot are far greater than the number of snapshots m, thus
transition matrix H (with the size n × n) can be regarded as a
high-dimensional linear regression of the nonlinear dynam-
ics that governs the relationship between X and Xs . As a
consequence, computing the eigendecomposition of H is not
straightforward. Fortunately, the DMD algorithm utilizes a low
dimensional matrix H̃ resulting from the projection of H onto
the leading singular vectors of X to carry out decomposition
of H based on the following steps:

Step 1: Calculate the singular value decomposition (SVD)
of the raw data matrix:

X ≈ U�V∗ (4)

where U,�, and V respectively denote left singular vectors,
singular values, and right singular vectors. Then, substitute (4)
into (3) to obtain the SVD of Xs :

Xs = HU�V∗ (5)

Step 2: Approximate matrix H by computing the pseudoin-
verse of X using its SVD:

H ≈ XsX−1 � XsV�−1U∗ (6)

Step 3: Compute a low dimensional matrix H̃ by projecting
H onto the proper orthogonal modes of U:

H̃ = U∗HU = U∗XsV�−1 (7)

Step 4: Calculate the eigendecomposition of H̃ as follows:
H̃W = W� (8)

where the columns of the matrix W denote the eigenvectors
of H̃, and � is a diagonal matrix whose elements are the
eigenvalues of the full matrix H as well as the data matrix X.

Step 5: Compute the DMs of X using the time-shifted matrix
Xs and eigenvectors W:

� = XsV�−1W (9)

Notably, the columns of � represent the DMs or eigenvectors
of the high-dimensional operator H, and each DM φ j corre-
sponds to an eigenvalue λ j ( j = 1, . . . , K ) in diagonal matrix
� as shown in [37], where K denotes the total number of
DMs.

Finally, an approximation of the observed data can be
regarded as a simple dynamic model X̂(t):

X(t) ≈ X̂(t) = � exp(�t)g (10)

where a diagonal matrix � = log(�)/�t contains the
eigenvalues in continuous time, t denotes the time, and the
vector g has the weights matching the first measured time
point such that g = �−1x1.
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Fig. 2. The steps for computing the stability of DMs and their
corresponding frequencies.

Note that both � and � are complex values, and X̂
generally possesses non-zero imaginary components. Thus, the
eigenvalues can be written as λ j = r

iω j
j , where ω j and r j

(elements of �) represent the damping frequency and ratio of
φ j , respectively. Each DM oscillates at frequency f j , and can
be computed using the imaginary part of ω j as shown below:

f j =
∣∣∣∣ imag(ω j )

2π

∣∣∣∣ (11)

According to the theory of discrete time linear systems, the
magnitude of the eigenvalue determines whether the system is
stable or unstable. When

∣∣λ j
∣∣ < 1, the system is regarded as

asymptotically stable, otherwise it is unstable [39]. Therefore,
each eigenvalue determines the stability and frequency of its
corresponding DM (see Fig. 2).

In this study, we divided all the decomposed DMs into stable
or unstable DMs within three common frequency bands of
rs-fMRI BOLD signal, i.e. F1 (0.009-0.027 Hz), F2 (0.027-
0.073 Hz), and F3 (0.009-0.08Hz) (See Fig. 3 for an example).
These bands were only chosen for the following reasons:
(1) As mentioned above, this study used fMRI time series
taken from ADHD-200. The database provides preprocessed
fMRI time series within 0.009-0.08 Hz (F3). In addition,
previous studies used this database for analysis of fMRI data
considering BOLD components within frequency band F3.
In order to easily compare our proposed method with the
state-of-the art methods, we also follow the same strategy for
further analysis [22], [28], [34]. (2) It has been suggested that
the sub-components of the BOLD signal at frequency bands
0.009-0.027 Hz (F1) and 0.027-0.073 Hz (F2) can provide
different information for understanding the mechanisms under-
lying brain function [40]–[43]. For example, in [42], BOLD
components within F2 provided essential information to dis-
tinguish ADHD patients from healthy subjects. Furthermore,
the oscillatory signals associated with resting-state functional
connectivity were found to be mainly located within F1 and
F2 Hz [43]. Therefore, we analyzed BOLD components within
frequency bands F1, F2 and F3 separately for further analysis.

In the case of fMRI BOLD time series from n ROIs
(n = 954 in this study), their decomposed stable and
unstable DMs together with their corresponding eigenvalues
are demonstrated as follow:

� = [
�unst ,�st] ⇔ � =

[
�unst 0

0 �st

]
(12)

where �unst is the matrix whose columns are unstable DMs,
and their corresponding eigenvalues are in the diagonal matrix

Fig. 3. An example of the oscillatory frequencies and magnitudes of
eigenvalues of DMs for BOLD signals. (a) one HC; and (b) one ADHD
patient. The Horizontal axis shows the DMs of BOLD signals oscillating
at different frequencies (F1: 0.009-0.027 Hz, F2: 0.027-0.073 Hz, and
F3: 0.009-0.08 Hz) computed using their corresponding eigenvalues
(see (11)). The vertical axis illustrates the eigenvalues’ magnitudes
corresponding to the DMs of the BOLD signals, which determine whether
the DM is stable when its corresponding eigenvalue |λj| < 1 (shown in
blue), or it is unstable if |λj| > 1 (shown in red). It is worth noting that
distribution of oscillatory frequencies and magnitudes of the eigenvalues
of the DMs of the BOLD signals of the above subjects conforms to the
trends of the other subjects.

�unst as shown below:
�unst = [

φunst
1 , . . . ,φunst

d , . . . , φunst
D

]
(13)

�unst =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λunst
1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . λunst
d

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 λunst
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where φunst
d is a vector representing the unstable DM, and

its corresponding eigenvalue is denoted by element λunst
d .

d = 1, 2, . . . , D, and D indicates the total number of unstable
DMs. Each element of φunst

d , namely φunst
d (p), corresponds

to each ROI, where p = 1, 2, . . . , 954. At the same time, the
columns of �st represent stable DMs, and their corresponding
eigenvalues are shown in the diagonal matrix �st as follows:

�st = [
φst

1 , . . . ,φst
c , . . . , φst

C

]
(15)

�st =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λst
1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . λst
c

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 λst
C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where a vector φst
c denotes the stable DM, and the element λst

c
represents its corresponding eigenvalue, c = 1, 2, . . . , C , and
C is the total number of stable DMs. Each element of φst

c ,
namely φst

c (p), is associated with an individual ROI. It is
worth noting that according to the textbook ‘Dynamic mode
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decomposition: data-driven modeling of complex systems’, the
first singular values which account for over 85% of the total
variance of the data should be selected [38]; this study follows
the same strategy and the number of eigenvalues of all subjects
(which is equal to the number of DMs) was approximately 15.
Also, for each subject, number of stable DMs C and unstable
DMs D of the BOLD signals vary with time. Therefore, the
values of C and D are not fixed.

C. Feature Extraction

We first implemented DMD on short sliding windows
of BOLD signals. Specifically, DMs were computed within
32-frame windows sliding by 4 frames in each time interval.
This window size was chosen in accordance with a recent
study which also applied DMD on rs-fMRI data [20]. For
each window, we divided DMs at each frequency band (F1,
F2, and F3) into a set of stable and unstable DMs, as described
above. Then, three types of features were extracted: (1) the
ratio of unstable DMs to the whole set of DMs, (2) the
features extracted from eigenvalues, (3) the features extracted
from DMs (or eigenvectors). The first feature was extracted to
evaluate the ratio of unstable DMs to the total DMs as shown
below:

RD = D

D + C
(17)

Then, the parameters were derived from the eigenvalues,
because they can generally capture information inherent to
their corresponding DMs. We extracted these parameters as
follows. The parameter reflecting the relationship between the
eigenvalues of unstable and stable DMs:

R� =

D∑
d=1

∣∣λunst
d

∣∣
D∑

d=1

∣∣λunst
d

∣∣ +
C∑

c=1

∣∣λst
c

∣∣ (18)

where R� indicates the ratio of magnitudes of eigenvalues of
their corresponding unstable DMs to the whole set of DMs.
Similarly, we evaluated the fast convergent and divergent DM
by respectively computing the eigenvalue magnitudes of the
most and least stable DMs λmin and λmax as follows:

λmin = min
(∣∣�st

∣∣) (19)

λmax = max
(∣∣�unst

∣∣) (20)

Finally, we extracted the features from DMs. The DMs gen-
erally illuminate the relationships among ROIs. Each element
of 954 × 1 DM φunst

d or φst
c , namely φunst

d (p) or φst
c (p),

contains two essential pieces of information: the magnitude
of the element, which measures the participation of the ROI
within the DM (subsystem), and the phase, which reflects the
oscillatory phase of an individual ROI relative to others at that
DM’s frequency. In other words, the magnitude and phase of
each DM can indicate the activity level of the ROIs within that
dynamic pattern. Therefore, this study attempted to employ
the magnitudes and the phases of stable and unstable DMs
as important information for BOLD signals. We examined the

ratio of magnitudes and phases of the unstable DMs within
the total DMs as shown below:

RM
φ =

954∑
p=1

D∑
d=1

∣∣φunst
d (p)

∣∣
954∑
p=1

D∑
d=1

∣∣φunst
d (p)

∣∣ +
954∑
p=1

C∑
c=1

∣∣φst
c (p)

∣∣ (21)

R P
φ =

954∑
p=1

D∑
d=1

angle
(
φunst

d (p)
)

954∑
p=1

D∑
d=1

angle
(
φunst

d (p)
) +

954∑
p=1

C∑
c=1

angle
(
φst

c (p)
)

(22)

where RM
φ and R P

φ indicate the overall ratios of the magnitudes
and oscillatory phases of the 954 ROIs of the unstable DMs
to those of all DMs, respectively. Furthermore, for each ROI,
we calculated average of its magnitude and phase in stable
DMs as follows:

Mst
roi =

C∑
c=1

∣∣φst
c

∣∣
C

(23)

Pst
roi =

C∑
c=1

angle
(
φst

c

)
C

(24)

where Mst
roi and Pst

roi are both vectors (with size 954 × 1)
whose elements Mst

roi (p) and Pst
roi (p) respectively denote

the averaged magnitude and phase of the individual ROIs in
the stable DMs. Finally, we computed the average magnitude
and phase of each ROI in the unstable DMs Munst

roi (p) and
Punst

roi (p), as shown below:

Munst
roi =

D∑
d=1

∣∣φunst
d

∣∣
D

(25)

Punst
roi =

D∑
d=1

angle
(
φunst

d

)
D

(26)

Notably, the decomposition of BOLD signals provides com-
plex conjugate pairs of DMs as well as of eigenvalues, hence,
the phases of each pair of modes are also conjugate. Conse-
quently, the observed results in (24) and (26) will be zero.
In order to address this problem, for each DM, we subtracted
the phase of the first ROI from those of the other ROIs, then
we computed the average of the relative phases of all DMs.
It is also worth noting that for statistical and classification
analysis, we calculated the average of these newly developed
parameters from all windows of each subject’s BOLD signals.

D. Statistical Analysis

For each BOLD frequency band, we applied the Jarque-
Bera test on each feature extracted above to evaluate normality
at the 0.05 significance level, and found that only a few of
the extracted features follow a normal distribution. Therefore,
we implemented a Wilcoxon rank-sum test to evaluate the
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Fig. 4. The means and standard deviations of our six derived features
for each BOLD frequency band of ADHD patients and HCs. (a) RD
represents the ratio of the number of stable DMs to the total DMs
(see (17)); (b) RΛ denotes the ratio of eigenvalue’s magnitude of unstable
DMs to those of the total DMs (see (18)); (c) λmin represents an
eigenvalue of the most stable DM (see (19)); (d) λmax represents an
eigenvalue of the most unstable DM (see (20)); (e) RM

φ denotes the
overall ratio of the magnitudes of all 954 ROIs of unstable DMs to the
total DMs (see (21)); (f) RP

φ represents the overall ratio of the oscillatory
phases of 954 ROIs of unstable DMs to the total DMs (see (22)) (After
the Bonferroni correction, ∗p < 0.05, ∗∗p < 10−10).

difference of those extracted parameters between ADHD
patients and HCs. After applying Bonferroni correction, the
features with p value < 0.05 were then considered significant.

E. Classification

As illustrated in Fig. 5, we used the average magnitudes
and phases associated with all ROIs in stable and unstable
DMs of BOLD signals of ADHD patients and HCs at each
frequency band in order to evaluate the stability changes of
the whole brain. Thus, for the classification, a total of ten
features which shown in Fig. 4 and Fig. 5, were used to assess
the performance of our proposed approach. This performance
was evaluated using nine well-known classifiers: k-nearest
neighbor (KNN), Naïve Bayes, multilayer perceptron (MLP),
support vector machine (SVM), logistic, stochastic gradient
descent (SGD), random forest (RF), AdaBoost, and Bayes
Net [44]–[49].

We used the open-source software Waikato Environment for
Knowledge Analysis (WEKA) to build the aforementioned
classifiers [50]. The default hyperparameters values of each
classifier in WEKA have been widely used for classification
and have demonstrated good generalization ability. This study
also used the default mode of WEKA for classification (refer to
supporting material for more details). The proposed approach
was evaluated using training and test sets provided by the
ADHD-200 database. For the training set, 10-fold stratified

Fig. 5. The averages of the four derived features (i.e. magnitudes and
phases of all 954 ROIs in stable and unstable DMs Mst

roi,M
unst
roi ,P

st
roi,

and Punst
roi see (23)-(26)) of BOLD signals of ADHD patients and HCs

at each frequency band. (After the Bonferroni correction: ∗p < 0.05,
∗∗p < 10−10). Note: SDMs: Stable DMs; UDMs: Unstable DMs.

cross-validation (CV) was used to assess the model’s perfor-
mance. First, each dataset of the aforementioned sites was
divided into ten equally-sized subsets. Then, one of the subsets
was tested using a model trained on the remaining nine. This
procedure was repeated until every subset was used once
for testing. Then, the overall accuracy, precision, recall and
area under the curve (AUC) for the classifier was calculated
using the average performance over the ten classification runs.
For the test set, the hold-out approach was used to evaluate
the classification performance. First, the model was trained
using training set, then tested using the test set. Finally, the
performance parameters specificity, sensitivity, accuracy, and
AUC were used to evaluate the effectiveness of our proposed
approach for fMRI data analysis.

III. RESULTS

In this study, DMD is implemented on rs-fMRI BOLD time
series of both ADHD patients and HCs from each imaging site
independently. Since, the scanning parameters and equipment
of those sites were different, therefore their subjects cannot be
combined for analysis, as mentioned previously. Notably, the
statistical results of the data from all imaging sites exhibited
similar trend. Thus, we only showed the statistical results of
the data from NYU.

A. Statistical Analysis

For each BOLD frequency band (F1, F2, and F3), we found
that most of the extracted features were significant, especially
in the frequency bands F1 and F2. In general, as illustrated
in Fig. 4, the DMs of BOLD signals of ADHD patients at
frequency bands F1 and F2 were found to be less stable
compared to those of HCs.

Also, as shown in Table II, comparing the HC group
with ADHD patients, the number of ROIs with significant
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Fig. 6. The classification performance (accuracy, specificity, sensitivity, and AUC) for the features we developed to distinguish ADHD patients from
HCs using the NYU training set. Note: The results obtained using features extracted from BOLD signals at the frequency bands F1 and F2 are
presented in red because they are the same. It should also be noted that the performance was assessed based on 10-fold CV.

Fig. 7. The classification performance for the features we developed to identify ADHD patients from HCs using the NYU test set.

TABLE II
NUMBERS OF ROIS WITH SIGNIFICANT MAGNITUDES

AND PHASES IN THE STABLE AND UNSTABLE DMS

magnitudes and phases in both stable and unstable DMs
at frequency bands F1 and F2 after Bonferroni correction
were higher than those at frequency band F3 (observed using
(23) – (26) in methods section). Additionally, we found
that those ROIs with significant magnitudes and phases at
all frequency bands were mainly from temporal lobe and
cerebellum for all subjects from the five mentioned imaging
sites.

Since it is almost impossible to illustrate the average
magnitudes and phases of each ROI in stable and unstable
DMs observed in (23) – (26), as described in the method
section, we calculated the mean magnitudes and phases of all
ROIs for each subject; the results are shown in Fig. 5. As can
be seen, the magnitudes and phases of the ROIs in the stable
and unstable DMs of the BOLD signals within all frequency

bands were significant, except the phases of ROIs in stable
DMs at frequency band F3.

B. Classification Performance

As mentioned in the methods section, ten features (as shown
in Fig. 4 and Fig. 5) were used for ADHD detection. For
the training set, as shown in Fig. 6: (1) At both frequency
bands F1 and F2, all the classifiers accurately identified
ADHD at highest possible precision, recall, and accuracy
values of 100%. (2) At frequency band F3, all the classifiers
accurately classified ADHD patients and HCs, especially
SGD, AdaBoost, and SVM whose respective accuracy values
were 77.4%, 77.9%, and 77.9%. For the testing set, at both
frequency bands F1 and F2, the highest accuracy value of
73.2% was achieved using the KNN, Naïve Bayes, AdaBoost
and Bayes Net classifiers (see Fig. 7).

Finally, we compared our proposed approach for ADHD
detection with those of previous studies. As can be seen
in Table III, for the training set, our proposed method out-
performed all other existing methods. For the testing set,
our method is still promising using the extracted features
from BOLD signals within at least one frequency band of
subjects from each site, which demonstrates the potential of
our proposed method (see Table IV).

IV. DISCUSSION

In this study, we proposed a new perspective for analyzing
fMRI BOLD signals: analyzing the stability of BOLD signals
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHOD

WITH THE EXISTING APPROACHES FOR ADHD DIAGNOSIS

USING TRAINING SET FROM ADHD-200

based on their stable and unstable modes decomposed using
DMD. It is worth mentioning that in contrast with other
existing methods to decompose BOLD signals, such as ICA
and PCA, only DMD can extract components with their
corresponding stabilities. Their eigenvalues can determine
whether the corresponding dominant eigenvectors (or modes)
are stable or unstable (see Fig. 2). Furthermore, DMD is able
to reflect spatial patterns with dynamic temporal patterns of the
fMRI data, whereas ICA and PCA cannot capture its temporal
behaviors reflecting brain activity.

As mentioned in the introduction, this study hypothesized
that brain disorders influence the stability of the DMs in BOLD
signals, and the results conform to our hypothesis. For each

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED METHOD

WITH THE EXISTING APPROACHES FOR ADHD DIAGNOSIS

USING TEST SET FROM ADHD-200

BOLD common frequency band (F1, F2 and F3), as mentioned
in the methods section, we extracted features to reflect the rela-
tionship between stable and unstable DMs. Then, Wilcoxon
rank-sum test was conducted on each feature to assess whether
the DM stability of BOLD signals from ADHD patients and
HCs groups differed significantly (p < 0.05 after Bonferroni
correction). Interestingly, most of the derived parameters were
significant, especially in the frequency bands F1 and F2. This
is consistent with previous studies, which have suggested that
the subcomponents of BOLD signals at these frequency bands
may reflect different underlying brain patterns and cognitive
processes [40]. Also, this indicates that our proposed approach
can generally be effective in distinguishing between these
groups. Furthermore, as shown in Fig. 4, ADHD patients show
more instability in DMs of BOLD signals at the frequency
bands F1 and F2 compared with HCs. This may be due to
the presence of structural and functional brain abnormalities
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among ADHD patients, such as in the frontal cortex, cere-
bellum, and subcortical structures [51]. All of these observed
results conform to the findings of previous studies, which have
suggested that stability changes in individuals’ physiological
signals illuminates their pathological conditions. Additionally,
according to system science theory, stable subsystems gener-
ally contribute to the efficiency, order, and adaptability of the
whole system, whereas unstable subsystems do the opposite.
In our study, we also found the same phenomenon in the brain
system, i.e. the DMs of BOLD signals are more stable in HCs
than in ADHD patients, which demonstrates that their brain
systems of HCs function efficiently, orderly, and adaptively
compared to those of ADHD patients.

However, we also found some interesting phenomena:
(1) For all subjects from the four mentioned sites, we found
that the ROIs with significant magnitudes and phases mainly
came from the temporal lobe (including inferior, middle, and
superior temporal gyrus, hippocampus, and parahippocampus)
and cerebellum (including cerebellum crus and vermis). These
ROIs are consistent with the existing clinical findings of
ADHD. It has been reported that ADHD patients exhibit
abnormal activation patterns in the temporal lobe, which
is related to verbal memory and language [52]. Similarly,
several studies have reported that the cerebellum, which plays
an important role in motor control and cognitive functions,
malfunctions in the case of ADHD [53]. (2) Furthermore,
we found inconsistent trends in phases and magnitudes of ROIs
between stable and unstable DMs (see Fig. 5). This can indi-
cate that these parameters can reveal different physiological
information, thus it is essential to consider both of them for
analysis.

In order to further evaluate the effectiveness of our proposed
approach, nine different classifiers were used, since they utilize
different techniques for data classification. Encouragingly,
as illustrated in Fig. 6, each of the classifiers was able to
accurately distinguish HCs from ADHD patients at all fre-
quency bands, especially at F1 and F2. This may be due to the
following reasons: (1) In [42], children with ADHD exhibited
BOLD time series fluctuations with significant higher power
within frequency band F2 than healthy children. (2) Also, most
information of the BOLD signals related to resting-state func-
tional connectivity were found to be lying within frequency
bands F1 and F2 [43]. Thus, our findings support the evidence
that BOLD signals within frequency bands F1 and F2 provide
essential diagnostic information for ADHD [42]. In addition,
as can be seen in Tables III and IV, our proposed approach
outperforms the existing methods for ADHD detection in
classifying subjects from all five imaging sites. As can be seen
in Table IV, even though the specificity (or sensitivity) values
achieved by some existing methods on data taken from some
sites are high, their observed sensitivity (or specificity) values
are relatively low. However, our proposed method achieved
encouraging results (both specificity and sensitivity values).
This demonstrates the potential of our proposed method for
fMRI BOLD signal analysis, which can assist clinicians to
enhance automated diagnosis of ADHD.

In order to further demonstrate the improvement of our
proposed approach, we carried out a supplementary analysis.

We evaluated whether the age and sex of the ADHD patients
and HCs taken from the five sites differed significantly.
We found that the age and sex of subjects taken from NYU
were not matched (p value < 0.05), and the sex of subjects
taken from NI, Peking and OHSU, was also not matched.
In order to eliminate the age and gender factors which may
affect our conclusion, we excluded some subjects to match
the age and sex of ADHD patients and HCs taken from the
mentioned sites. We found that the results were the same as
those from the complete samples. Additionally, in classifying
age- and sex-matched subjects from all five imaging sites:
(1) Using features from BOLD signals at frequency band F1,
we achieved respective average precision, recall, accuracy, and
AUC values of 94.2%, 94.10%, 94.07%, and 0.938. (2) At
frequency band F2, the respective average precision, recall,
accuracy, and AUC values were 95.43%, 95.35%, 95.12%, and
0.96. (3) Using features from frequency band F3, we obtained
respective average precision, recall, accuracy, and AUC values
of 93.84%, 92.88%, 92.88%, and 0.94. These results are
consistent with those from all subjects (see Table III), which
demonstrates that the stability of BOLD signals is not affected
by either age or sex. Also, in order to evaluate the effects
of different window sizes and step sizes on our proposed
approach, we also considered 16-frame, 24-frame, 40-frame
and 48-frame windows sliding by 4 frames as well as 32-frame
windows sliding by 8 frames, 12 frames, and 16 frames.
The results are consistent with those from 32-frame windows
sliding over 4 frames. This shows that our proposed method
remains robust when using BOLD signals from different
window and step sizes.

We further applied our proposed method on two other
datasets: the Huaxi Hospital dataset (Chengdu city, Sichuan
Province, P. R. China) and NEUROCON dataset of the
Neurology Department of the University Emergency Hospi-
tal Bucharest, Romania. Huaxi Hospital provided rs-fMRI
data from 22 ADHD patients (ages: 11.2 ± 1.3 years)
and 16 age-matched HCs (ages: 10.8 ± 1.6 years). The
NEUROCON dataset is available at http://fcon_1000.projects.
nitrc.org/indi/retro/parkinsons.html, contains rs-fMRI data
from 27 Parkinson’s disease patients (ages: 68.7 ± 10.6 years)
and 16 age-matched HCs (ages:67.6 ± 11.9 years).
We assessed the performance of our proposed method on
these two datasets and compared it with one of the common
methods for fMRI analysis, known as brain network analysis.
First, we constructed brain networks by Granger causality
and phase locking value and extracted topological attributes
(clustering coefficient, rich-club coefficient, network density,
network strength, and average link strength) [54]–[56]. Then,
the classification performance of the aforementioned classifiers
was assessed based on 10-CV. As shown in Table V, for the
Huaxi dataset, our proposed method achieved the maximum
accuracy value of 94.7 % for detection of ADHD, outper-
forming those for brain network analysis (Granger causality
and phase locking value). In addition, the accuracy value
of 100% was achieved in identifying PD patients from HCs
taken from the NEUROCON dataset, demonstrating the good
generalization ability of our proposed method for diagnosis of
brain-related pathologies.
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TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH THE

COMMON APPROACHES FOR ADHD AND PD DIAGNOSIS

Finally, several points related to this study need to be
mentioned: (1) Although DMD has been recently implemented
for fMRI analysis, it has only been used to evaluate its
spatiotemporal characteristics, not the stability of DMs of
BOLD signals. Therefore, this study has assessed how the
stability of DMs (or subsystems) of BOLD signals affect
their macrodynamic patterns, which can indicate underlying
patterns of brain subsystems. In addition, we evaluated the
stability of DMs within three common frequency bands of
BOLD signals, however, more frequency bands should be
considered in the future. (2) In this study, we employed ADHD
for demonstrating our proposed approach, because there is
large ADHD database, namely ADHD-200 database, that has
already been preprocessed and has been used by many studies,
which allowed us to easily compare our proposed approach
with various existing methods. However, in the future, our
proposed approach should be applied to other brain diseases,
such as Alzheimer’s, to evaluate its possibility for disease
diagnosis. (3) Similar to rs-fMRI data, the data recordings
of task-state fMRI are also multidimensional. Therefore, our
proposed method might also be applied for task-state fMRI
data analysis, which may unveil new brain mechanisms that
cannot be obtained by traditional approaches.

V. CONCLUSION

According to previous studies, the stability of physiological
signals generally reflects an individual’s health condition. The
experimental results of this study conform to our hypothesis
that the stability of fMRI BOLD signals can play an important
role in disease diagnosis, which has not previously been
demonstrated. We also showed the significance of the system
science perspective for analyzing fMRI BOLD signals, i.e.
to regard BOLD signals as large-scale system and evaluating
how the stability of their DMs (subsystems) affects its overall

properties. Finally, the proposed approach has demonstrated
the capability to provide significant physiological information
which are not given by existing methods. We have also
demonstrated its great potential and accuracy in illuminat-
ing individuals’ health conditions. Thus, it might be widely
employed in clinical studies, as well as in various fields related
to engineering.
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