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Abstract— Objectives: Eye blink artifact detection in
scalp electroencephalogram (EEG) of epilepsy patients is
challenging due to its similar waveforms to epileptiform
discharges. Developing an accurate detection method is
urgent and critical. Methods: In this paper, we proposed
a novel multi-dimensional feature optimization based eye
blink artifact detection algorithm for EEGs containing rich
epileptiform discharges. An unsupervised clustering algo-
rithm based on smoothed nonlinear energy operator (SNEO)
and variational mode extraction (VME) is proposed to detect
epileptiform discharges in the frontal leads. Then, multi-
dimensional time/frequency EEG features extracted from
forehead electrodes (FP1 and FP2 channels) combining
with the improved VME (IVME) threshold are derived for
EEG representation. A variance filtering method is further
applied for discriminative feature selection and a machine
learning model is finally learned to perform detection.
Results: Experiments on EEGs of 16 subjects from the
Children’s Hospital of Zhejiang University School of Medi-
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cine (CHZU) show that our method achieves the highest
average sensitivity, specificity and accuracy of 95.04, 89.52,
and 93.01, respectively. That outperforms 5 recent and state-
of-the-art (SOTA) eye blink detection algorithms. Signifi-
cance: The proposed method is robust in eye blink artifact
detection for EEGs containing high-frequency epileptiform
discharges. It is also effective in dealing with individual dif-
ferences in EEGs, which is usually ignored in conventional
methods.

Index Terms— Epileptiform discharge, improved varia-
tional mode extraction, variance filtering, multi-dimensional
EEG feature optimization.

I. INTRODUCTION

YE blink artifact detection and elimination are important

in EEG analysis [1], [2], particularly for EEG-based
nervous system diseases analysis [3]-[7], such as epilepsy,
cerebellitis, etc. Eye blinks are generally caused by blinking
or eye movement, and are mainly obvious in the front of the
scalp. The signal strength of electrooculogram (EOG) usually
deceases when the lead position to the eye increases. Eye
blinks are usually difficult to avoid during EEG recording
[8]-[10]. The artifact detection and removal are always chal-
lenging. The reason behind is that the characteristics of eye
blinks are similar to neuron discharges or other normal EEGs
caused by nerve system diseases [11], such as epileptiform
discharges of epilepsy patients.

Adaptive filter is one of the representative methods in
eye blink detection [9], [11]-[13], but suffers the limitation
of requiring additional correlated reference electrodes [11].
A multi-window derivation and summation method (MSDW)
exploiting the width statistic of eye blink waveforms is
presented in [9]. Winner filter can overcome the additional
reference channel issue, but it requires initial calibration and
cannot be applied online. In [14], a minimum noise estimate
filter is developed to remove eye blink artifacts by an iterative
threshold method. In [15], the maximum overlap wavelet
transform decomposition (MODWT) is used to perform time-
frequency analysis on EEGs, which has been applied to filter
single channel eye blinks and muscle artifacts. Based on the
stationary wavelet transform (SWT), a method [16] on signal
skewness has been developed to remove eye blinks. But due to
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the influence of individual differences, the skewness threshold
for each individual fluctuates significantly, leading to poor
performance. Without using prior knowledge and reference
electrodes, blind source separation algorithm (BSS) is regarded
as the most common and effective method in eye blink
artifact detection for multi-channel EEGs [17], [18]. Principal
component analysis (PCA) [19] and independent component
analysis (ICA) [20] are the most recognized BSS algorithms
in artifact detection. In [19], it is shown that PCA is better
than regression-based blink artifacts elimination. But EEGs
and eye blinking artifacts may not always meet the premise
of PCA, such as obeying Gaussian distribution, orthogonal
principal components. Different to PCA, ICA is built on the
assumption that the sources are independent to each other,
and achieves the decomposition by a linear transformation.
It is stated in [21] that the bidirectional pollution effect
of EEG and eye blinks has little effect to ICA. But the
statistical independence requirement is built on large amount
of EEG data, directly leading to a sharp increase in computing
burden [12], [22]. Manual intervention on exact source amount
and data distribution is another issue in ICA. To alleviate
this deficiency, ICA combining with multiple empirical model
decomposition (IMEMD) is developed in [23].

Machine learning based intelligent algorithms recently
became popular in eye blink detection. In [24], the genetic
algorithm is applied to EEG feature optimization and the
Parzen window detector is employed for eye blink artifacts
detection. [25] uses discrete wavelet transform combining
with a meta-heuristic threshold optimization to achieve arti-
facts detection. In [26], ICA is combined with support vec-
tor machine (ICA-SVM) to remove blink artifacts, which
is further extended to wavelet ICA (WICA-SVM) in [27].
Autoencoder (AE) has been applied for eye blink EEG feature
learning in [28], [29], where SVM (SVM-AE) and recursive
least square adaptive filter are respectively adopted as the
detector. Aiming at low-cost single channel EEG application,
a computationally-efficient algorithm with variational mode
extraction (VME) and discrete wavelet transform is proposed
for eye blink detection and removal in [30]. Deep belief
network combining with AE has shown significant perfor-
mance in [31]. Recently, an unsupervised clustering method
based on a cascaded hybrid thresholding and Gaussian mixture
model (GMM) is developed for eye blink detection for healthy
and patients’ EEGs, respectively [32].

Although rich results on eye blink detection and elimination
have been reported in the past, it is noted that most are on
clean or normal EEGs. Practically, eye blink detection in EEGs
of patients suffered from nervous system diseases is more
worthy of study and challenging. Eye blink artifacts usually
have more serious misleading impact on the EEG based
diagnosis of nervous disease. For instance, for frontal epilepsy,
the pathological EEG discharges appearing in the frontal
electrodes have very similar waveforms to eye blinks, making
the detection crucial in disease analysis. Existing representa-
tive methods, including adaptive filtering [12], generic algo-
rithm [24], MSDW [9], SVM-AE [28], VME [30], Revised
VME [33], iterative template [34], ICA-SVM [26], WICA-
SVM [27] and GMM [32], are generally not suitable, as shown

TABLE |
COMPARATIVE ANALYSIS OF EYE BLINK DETECTION METHODS

Adapt to Epileptiform Run On [ 1oy rential
Methods High-Frequency Discharge Automatic a few Treatment
Discharges Screening Channels
‘Adaptive filtering [12] v v
Generic method [24] Vv Vv Vv
MSDW [9] v v v
SVM-AE [28] v v
VME [30] vV v
Revised VME [33] v v
Iterative template [34] Vv v v
ICA-SVM [26] V
WICA-SVM [27] Vv
GMM [32] V N vV
MDF [35] v v v v
Proposed method N Vv Vv v

in the comparative study presented in Table 1. To address this
issue, a multi-dimensional EEG feature optimization (MDF)
based epileptiform discharges and eye blink artifacts detection
algorithm is recently developed in [35]. An unsupervised
clustering is preliminarily applied to screen out epileptiform
discharges on EEGs of epilepsy patients, and then a machine
learning model is trained for eye blink detection. But MDF
and all aforementioned methods generally become poor when
EEGs contain consecutive and high-frequency epileptiform
discharges, as compared in Table 1.

Inspired by MDF [35] and VME [30], a novel eye blink
detection algorithm that is robust to EEG epileptiform dis-
charge affection is developed in this paper. To enhance the
epileptiform discharges and eye blink artifacts clustering per-
formance, the hybrid features taken from raw EEGs and
filtered EEGs by SNEO and VME are firstly derived for epilep-
tiform discharges filtering. An improved VME (IVME) based
robust threshold algorithm is then developed to overcome the
less effective issue of VME in handling EEGs containing
continuous eye blink artifacts, large offset, or multiple epilepti-
form discharges. Finally, a feature optimization selection with
variance filtering is performed on the improved VME threshold
and multi-dimensional time-frequency EEG features [35] for
machine learning based detection model training. Fig. 1 shows
the general flowchart of our method. Comparing with existing
state-of-the-art (SOTA) eye blink detection algorithms, the
main contributions of the paper are threefold:

o A robust K-means clustering algorithm is developed to
screen out epileptiform discharges to reduce the affection
to eye blink detection, where 20 discriminative statistical
features, including the maximum value of the monoton-
ically increasing slope (MSMI), the absolute average of
the first-order difference (AAF), etc., are extracted from
the partial slope sequences of raw EEG and filtered EEG
by SNEO and VME for clustering.

o« An improved VME (IVME) algorithm that can adapt
to consecutive eye blink artifacts, large EEG offset,
frequent epileptiform discharges is developed. A robust
threshold that exploits the properties of eye blink duration
and peak range ratio is derived for eye blink artifact
characterization.

o Combining the improved VME threshold feature with
multi-dimensional time-frequency EEG characteristics
in [35], a variance filter based optimization that can
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Fig. 1. The proposed eye blink artifact detection algorithm.
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TABLE Il
SPECIFICATIONS OF THE CHZU EYE BLINK DETECTION DATABASE
. . Epileptiform Eye blink/ .

Subjects Ages Descriptions lc)iiscl;arge normal EEG Duration
S1 3y10m Healthy 0 170/233 15h 48min
S2 Sy5m Epilepsy 112 341/187 15h 47min
S3 6ylm Cerebellitis 0 275/334 12h 26min
S4 8y2m Epilepsy 0 172/274 16h 18min
S5 Ty9m Epilepsy 0 166/197 1h 55min
S6 4y2m Bronchitis 0 153/414 15h Smin
S7 9y0m Epilepsy 43 56/239 2h Imin
S8 8y8m Epilepsy 0 315/406 1h 55min
S9 12y5m  Tic disorder 0 265/494 15h Smin
S10 Ty9m Dizzy 0 178/490 2h 1min
S11 Ty5m Epilepsy 104 102/104 2h 4min
S12 TySm Epilepsy 68 180/73 15h 57min
S13 9y4m Epilepsy 134 210/94 1h 34min
S14 4y2m Epilepsy 179 310/145 15h 34min
S15 12y0m Epilepsy 230 315/122 16h 05min
S16 11ylm Epilepsy 104 279/143 15h 32min

effectively adapt to subject EEG difference is developed

for feature selection and machine learning based eye blink

artifact detection model training.
We evaluate the proposed eye blink detection algorithm on the
long-term recorded EEGs of 16 children from the Children’s
Hospital of Zhejiang University School of Medicine (CHZU),
where among these subjects, 11 patients with epilepsy, 1 with
cerebelitis, 1 with bronchitis, 1 with Tic disorder, 1 with dizzy,
and the rest are healthy. Comparisons to many state-of-the-art
(SOTA) eye blink artifact detection algorithms are presented
to show the robustness of the proposed algorithm in dealing
with EEGs containing epileptiform discharges.

Il. DATABASE AND METHODOLOGY
A. Database

The EEG data used in the paper are recorded from
16 subjects in the Children’s Hospital of Zhejiang University
School of Medicine (CHZU) [36]. Table II shows the detailed
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specifications of the database. The age ranges from 3 to
12 years old. The EEG duration for 9 children is longer than
15 hours, 1 is longer than 12 hours, and the rest are longer
than 1 hour. The EEG recording follows the international
10-20 standard, by a 16-bit A/D converter to collect 20 to
64 channel records with 1000 Hz. Among all subjects, 8 sub-
jects contain epileptiform discharges. The sample numbers of
epileptiform discharges and eye blink artifacts of each subject
are presented in the table. It is noted that all data are marked
by experienced neuroscientists from CHZU.

B. Methodology

The proposed eye blink detection algorithm generally
contains three parts: 1) Epileptiform discharge filtering,
an unsupervised K-means clustering based on hybird features
extracted from the original EEG and the filtered EEGs by
SNEO and VME is developed for epileptiform discharge filter-
ing, 2) Multi-dimensional EEG feature extraction, an improved
VME threshold feature combining with multi-dimensional
EEG features in [35] is proposed for signal representation,
3) Feature optimization and eye blink detection, the variance
filtering method is applied to select discriminative features
for model learning and SVM is trained for eye blink artifact
detection.

1) Epileptiform Discharge Filtering: Eye blink artifacts nor-
mally exist in the frontal region of brain, usually exhibit
strong power in the two prefrontal lobe electrodes (FP1,
FP2) in EEG. The signal amplitude is around 100~300 uV
and the wave width is generally between 250~450 ms. Eye
blink artifact has a very similar waveform to epileptiform
discharges, spikes, and other signature waves, where they are
critical in nervous system disease analysis, such as epilepsy,
encephalitis, etc, as shown in Fig. 2. The appearance of eye
blinks usually affects the analysis, making eye blinks detection
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Fig. 3. Filtered EEGs by SNEO.

from epileptiform discharges very critical. In [35], we pre-
sented a primary study on epileptiform discharge screening
for eye blink detection with unsupervised learning, where
8-dimensional features extracted from the slope sequence of
filtered EEG by SNEO are adopted as the input patterns
for EEG representation. But it is found that the clustering
method in [35] is less effective in handling EEGs containing
frequently appeared epileptiform discharges in continuous
signal segments. The reason behind is that EEG is typical
non-stationary random signal with plentiful local fluctua-
tions, which seriously affects the characteristics of slope and
skewness.

To address this issue, a hybrid filtering method using
SNEO [37] and VME based signal transformation [30] is
applied to EEG processing after 50 Hz notch filtering and
0.5-30 Hz band-pass filtering. It is noted that eye blink arti-
facts and epileptiform discharges normally jointly affect the
FP1 and FP2 channels. Therefore, only these two channels are
used for clustering. SNEO can highlight the high instantaneous
energy at the high frequency of EEGs and is effective on spikes
and sharp waves detection. The SNEO filtering is

S@ =w@)* @x@)*x(@) —x(@ - D*xx@+1) (D

where x(i) is the EEG, w(t) represents the Barrett window
function. Fig. 3 shows the filtered spike, eye blink artifact, and
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Fig. 4. Filtered EEGs by VME.

normal EEGs by SNEO, respectively. As observed, SNEO has
a sensitive response at the position of epileptiform discharges
when comparing with eye blink artifacts and normal EEGs.
That is SNEO transformation can significantly enhance the
smoothness of the original EEGs, making the epileptiform
discharges and eye blinks more obvious and prominent.

Inherited from variational mode decomposition (VMD),
an elegant VME algorithm with a simple version of VMD
has been developed in [30]. VME can obtain the specific
desired mode of interest of the signal by approximating the
center frequency band. The basis of VME is to decompose the
input signal x () into the desired signal u,(n) and the residual
ur(n) as x(n) = ug(n) + u,(n). Setting the center frequency
w, the approximate center frequency w,; can be obtained by
iterative updation, and the expected signal uy is iteratively
approximated, with details as

(@) + o (0 — o) i (0) + 22

[1 +a? (w— cu;")4] [1 + 20 (o — a):f)z]

2
m-+1 Zgow ﬁgH_l(CO)’
ot 3)

2
~ 1
>3 [ @)

Here, « is the bandwidth of the adjustment filter, and A is the
Lagrangian multiplier, which iteratively optimized by

Amt1
uZH' () «

)

@) < @) + o [R) - (i @ + R @)] @
The VME signal V(i) can be obtained by

x (@) a2 (i — WM V(i) +430)/2
([1+a?- (i = (wa)™)*]-[142-a- (i — (wa)™)?])
where a is the compactness coefficient, and V(0) is set to
be 0. For details of VME, one can refer to [30]. Fig. 4 shows
the filtered signals by VME. As clearly observed, the local
high-frequency fluctuations after VME transformation are sig-
nificantly reduced. The smoothed signal is more significant for
feature extraction and clustering.

Vi+1)=

(5)
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Fig. 5. The proposed unsupervised epileptiform discharge filtering.
TABLE Il

THE EEG FEATURES FOR EYE BLINKS AND EPILEPTIFORM
DISCHARGES CLUSTERING

Feature Calculation Signal
MSMI max {T'S(n)} EEG
SCMI count(T'S(n)>k) EEG
MSSN max {T'S(n)} SNEO
SCSN count(T'S(n)>k) SNEO
MSVM max {T'S(n)} VME
ASMI L SN TS(n) VME
e ST e v e
MAF max(|V(j +1) -V VME
AAS V()| VME
MAS max(|V(j +2) -V VME

The steepness of EEGs, which has been shown a discrim-
inative pattern of epileptiform discharges, is applied for eye
blinks and epileptiform discharges clustering. Similar to [35],
the monotonically increasing partial slope sequence 7S(n)
is firstly obtained. Then, the monotonically increasing partial
slope count ST'S of each signal exceeding a given threshold
is calculated by

STS = count(TS(n) > k) 6)

where k is a preset threshold. The operation is performed
on the original EEG, the filtered EEG by SNEO and VME.
Based on the partial slope sequence and the slope count,
20-dimensional features on the 2 frontal channels are extracted
(FP1 and FP2, 10 features on each channel), where for
the original EEG, the maximum value of the monotonically
increasing slope (MSMI) and the slope count of monotonic
increasing part (SCMI) are extracted, and for SNEO, these
two similar features are also derived, in short as MSSN
and SCSN, respectively. The effectiveness of these features
has been verified in [35]. For VME, 6 features, including
the maximum value of the monotonically increasing slope
(MSVM), the average value of the monotonically increasing
partial slopes (ASMI), the absolute average of the first-order
difference (AAF), the absolute maximum of the first-order dif-
ference (MAF), the absolute average of the second-order
difference (AAS), the absolute maximum of the second-order
difference (MAS), are extracted. Table III shows the detailed
calculations of all these features.

For illustration, Fig. 6 compares the distributions of 4 VME
features obtained from EEGs with/without epileptiform dis-
charges, where the estimated probability density distributions

associated with the 4 features are also depicted for comparison.
The distribution differences between epileptiform discharges
and other EEGs are significant (Same observations can be
found in the rest 2 VME features, MSVM and ASMI, the plots
are omitted here due to page limitation). To perform epilepti-
form discharges filtering, the unsupervised K-means algorithm
on the 20 features is performed, as shown in Fig. 5. Fig. 7
visualizes the clustering performance comparison between our
algorithm and MDF. Comparing with our method, there has
a clear overlap between the EEG categories with/without
epileptiform discharges by MDF.
2) Multi-Dimensional Feature Optimization:

a) Improved VME (IVME) algorithm: After the above epilep-
tiform discharge filtering, a novel multi-dimensional feature
extraction and optimization algorithm is developed for EEG
representation in eye blink artifact detection. First of all, the
16 discriminative features in [35] are also inherited for eye
blink detection in this paper, where the details can be referred
to [35]. Additionally, a new feature based on VME [30] with
improvement on robust and adaptive thresholding is developed.
VME can extract the approximate value of eye blinks from
contaminated EEG, and is effective in locating eye blink
position without any implementation calibration or artifact
reference. VME first extracts the desired mode m(n) from
the original EEG, and then calculates the local maximum
value of the desired mode to achieve eye blink detection by
thresholding. The threshold is defined as [30]

_ median(Im(n)|)
©= 0.6745 V2logN @

where N is the EEG segment length. Since eye blink generally
lasts for 0.2 to 0.4 second, N is set be 0.5 second to cover the
eye blink duration.

Although promising eye blink detection performance can be
achieved in [30], we find that VME is less effective in dealing
with data containing continuous multiple eye blink artifacts or
having offset phenomenon in EEG segment. Fig.8 (a) shows
the threshold derived by VME [30] on EEG with multiple
continuous eye blinks. Due to the overall large amplitude,
there have 3 eye blinks been miss detected. To alleviate this
deficiency, we develop an improved VME (IVME) algorithm
for robust threshold calculation. Instead of using the original
VME filtered EEG, the EEG difference sequence within a
given interval is first obtained. Then, the improved threshold
is derived by

median(lm(n + An) —m(n)|) ~—~——
©= 0.6745 PlogN ()

where An denotes the interval, which we calculate it by

An=T - -t -r 9)

Here, T is the sampling frequency, #; represents the eye blink
duration (we set it to be 0.3 s in this paper), and r is the ratio
between the duration of the eye blink staring point to the peak
with respect to the full duration of a eye blink. According to
the property of eye blink wave, r is generally set to be 1/4.
Improved VME can effectively address the miss detection
issue in VME when multiple consecutive eye blinks are
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Fig. 8. (a) Threshold for eye blink detection obtained by VME [30], it can
be seen that some of the eye blink artifacts with low amplitude are missed,
as marked in the black boxes. (b) The blue line is the difference signal.
It can be seen that the IVME threshold is more robust, that can detect all
eye blinks, especially for those missed signals by VME, as shown in the
pink box in (b).

presented. As shown in Fig. 8 (b), all eye blinks missed by
VME can be correctly detected by improved VME. The EEG
difference signal can reflect the amplitude change of the offset
signal, thus reduce the high-amplitude phenomenon of the
non-blinking EEG. Moreover, for consecutive eye blinks, the
difference signals not only can retain high amplitude at the eye
blinks, but also remain low amplitude at other EEGs. To well
characterize EEGs in eye blink detection, the threshold (TRS)

Distributions of VME features: (a) AAF, (b) MAF, (c) AAS, (d) MAS.
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Algorithm 1 IVME Threshold Calculation
Input: EEG x(i), a, wg, k, An, N
Output: IVME based TRS

1: index count =0
cy(n) < VME(x(),a, wg)
cm(n) = |y(n+ An) — y(n)|
: Calculate the VME threshold 6 by

_ median(m(n)) JZlogN

0.6745

F VI )

5:fori =1to N do

6: if x(i + 1) > 6 then
7: count = count + 1
8: end if

9: end for

10: TRS = count

by improved VME is extracted as a pattern, where TRS
calculation is summarized in Algorithm 1.

b) Feature optimization by variance filtering: Combining the
improved VME threshold with the 16 discriminative features
in [35] for eye blink representation, the variance filtering is fur-
ther applied to feature optimization in this section. Comparing
with other feature selection, such as Relief, variance filtering is
confirmed effective in eye blink EEG feature optimization. The
details of variance filtering on eye blink feature optimization
can be referred to [35]. It is noted that for each subject, the
finally selected optimal features will be different due to the
individual discrepancy. Fig. 9 visualizes the variance filtering
based EEG feature optimization. Meanwhile, our proposed
eye blink detection algorithm is briefly summarized in Algo-
rithm 2. Particularly, SVM with the radial basis function (RBF)
kernel is used as the classifier for eye blink detection in this

paper.
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Fig. 9. Variance filtering based feature optimization.

Algorithm 2 The Proposed Eye Blink Detection Algorithm
Input: EEG x(i), a, wg, k, An, N, label
Output: Detection results by sensitivity, specificity, accuracy
1: Obtain S(i) by (1) and V(i) by algorithm in [30]

2: Calculate features in Table III

3: Unsupervised clustering based epileptiform discharge
filtering
: Obtain the threshold feature by IVME in Algorithm 1
: Calculate the multi-dimensional EEG features in [35]
: Perform feature selection by variance filtering algorithm
: Machine learning based eye blink detector training

~N O LB

C. Performance Evaluation

To test the performance, the CHZU eye blink artifact data-
base is used, where the training and testing data are randomly
selected with the ratio of 7:3. For performance evaluation, the
sensitivity, specificity and accuracy are calculated, which are
defined as

TP+TN
Accuracy = (10)
TP+ FP+TN+FN
Sensitivity = , Specificity = an

TP+ FN TN+ FP

Here, TP, FP, TN, F N represent true positive, false positive,
true negative, and false negative, respectively. For SVM in
the our method, the regularization parameter C and sensi-
tivity coefficient are optimized within a given region by the
cross validation. Meanwhile, the detection performance is also
compared with 5 state-of-the-art algorithms: 1) MDF in [35],
2) VME algorithm in [30], 3) ICA-SVM algorithm in [26],
4) WICA-SVM algorithm in [27], and 5) SVM-AE algorithm
in [28]. All compared algorithms are carried out in the paper
by the following settings.

For MDF, the thresholds in feature extraction are same
to [35], and SVM with the RBF kernel is applied as the
detector, where the parameter optimization is same to the
proposed algorithm. For VME, same optimization to [30]
is used. In ICA-SVM [26], the second-order statistics are
adopted to separate the EEGs, and 4 representative features,
1) the ratio of peak value to variance, 2) the absolute value
of Skewness, 3) the maximum value of the average cross-
correlation between the source component and the channels
(FP1, FP2, F3, F4, O1, 02), 4) the statistical distance between
the source component and the PDF of EEGs in the channel

® MDF e Ours

Accuracy
(=]
e )
=) a -

e
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192
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Fig. 10. Epileptiform discharge and eye blink clustering performance
comparison between our methods and MDF [35].

known to contain eye blinks, are extracted for SVM detector
training. The kernel parameters of SVM after optimization are
C = 72, 0 = 7. Wavelet multiresolution analysis (WMA)
is employed in WICA-SVM to perform preliminary EEG
filtering, as such the wavelet details corresponding to the
frequency range of interests can be retained [27]. The EEG
variance, Kurtosis, Shannon entropy, and amplitude range after
ICA are taken to train SVM for eye blink detection. The ‘db8’
is used as the mother wavelet and a linear kernel is used in
SVM, with the optimal C = 10. SVM-AE [28] first applies
SVM to extract variance, Kurtosis, and peak-to-peak amplitude
characteristics for EEG classification, and then uses a pre-
trained AE to perform eye blink filtering.

[1l. RESULTS AND DISCUSSIONS

1) Epileptiform Discharge Filtering Performance: The first
experiment shows the effectiveness of adding VME features
in epileptiform discharge filtering by comparing with the
clustering method in [35]. Fig. 10 plots the clustering accu-
racy on each subject. As observed, i) for subjects 2, 7, 9,
11~16, obvious accuracy improvement can be achieved by
our method. The enhancement is more significant on subjects
11~16 as there exist many epileptiform discharges in these
subjects, as shown in Table II. For all subjects, an average
of 1.42% accuracy increment can be offered by our method
over MDF. ii) Particularly, for subjects 14~16, the average
accuracy increment by our method is high to 5.14%. iii) For
the rest subjects, the performance of our method is the same
to or slight better than MDF as no epileptiform discharge
samples existed in these data. VME filtering can smooth the
original EEG, making it more suitable for filtering consecutive
epileptiform discharges with high frequency fluctuations.

2) Performance on IVME Threshold Feature: Detection per-
formance comparisons between our method by adding the
IVME threshold feature with respect to MDF [35] and
VME [30] are presented in Table I'V. The detailed results on
each subject and the average result on all subjects are obtained.
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TABLE IV
PERFORMANCE COMPARISON WITH RESPECT TO VME AND MDF METHODS
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 Average
Sensitivity
VME [30] 68.49 4922 6325 73.82 69.26 79.6 89.56 5855  71.06 7579 7227 7521 72.06  71.62 7253  69.63 70.75
MDF [35] 97.33  84.85 100 9333 97.22 95.9 95.65 9355 9444 8655 97.06 9524 9536 88.89 9446 9295 93.92
Ours 97.33  86.42 100 95 97.22 95.9 96.22 9398 9444 8893 98.08 96.53 97.51 9316 9589  94.09 95.04
Specificity
VME [30] 7826 6349  82.88 78.3 82.08 7222 6098  63.89 71.7 4923 5741 35.71 43.86 4872  30.65 50.68 60.63
MDF [35] 100 89.22 100 95.56 100 8542 9565 89.69 98.7 9459 96.88 7647 7727 6216 6446  69.61 87.23
Ours 100 88.76 100 95.18 100 8542 9574  90.37 98.7 9365 96.08 8375 86.41 66.15 7586  76.19 89.52
Accuracy
VME [30] 70.72 52.03 66.83  74.89 73 78.66  86.09  59.08  71.15 732 69.68 66.4 66.78  67.69  66.59  66.35 69.32
MDF [35]  98.37 87.5 100 94 9826 9294 9565 9186 9582 8798 96.67 8893 8882 78.02 83.07 8294 91.30
Ours 98.37  87.66 100 95.07 98.26 9294 96.15 9237 9582 89.82 9742 9249 93.75 8176 89.24  86.97 93.01
Time (s)
VME [30] 74 11.7 11.2 8.3 6.7 10.2 6.2 134 14 12.2 5.7 4.6 5.6 8.3 8.1 7.7 8.83
MDF [35] 71.2 103.7 28.9 1.6 20.7 24 16.2 13.1 136.9 114.9 29 329 2.6 55.3 11.3 15.6 48.05
Ours 71.2 103.7 28.9 1.6 20.7 24 16.2 130.1 136.9 114.9 2.9 329 2.6 55.3 11.3 15.6 48.05
02— 025 ————
elected feature
Il Dropped feature
0.2+ 0.2
Q Q
=3 =]
T0.15¢ 015 1
: :
. ] .
> >
0.05 - 0.05
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Feature dimensionality

(a) Subject 1

123 456 7 8 9 10111213 14 15 16|

Feature dimensionality

(b) Subject 4

Fig. 11. (a) is the variance values of all features for subject 1, where the TRS feature is not selected due to the low variance value, and (b) variance
values of all features for subject 4, where the TRS feature is selected for EEG representation.

The best result is highlighted using the bold font in the table.
It is observed that: i) for all subjects, VME generally suffers
poor detection performance with a relative low sensitivity,
specificity and accuracy. The overall average accuracy by
VME is only 69.32%. This is mainly because VME is not
specifically designed for eye blink detection with EEGs con-
taining epileptiform discharges. When encountering continu-
ous eye blinks, data drifting, large overall signal amplitude
or epileptiform discharges, the resulting threshold by VME
may not be sensitive to eye blink artifacts. A large number
of eye blink samples cannot be detected, resulting a poor
performance. ii) Comparing with MDF, adding the threshold
feature by the developed IVME into the proposed algorithm
can enhance the detection performance for subjects 2, 4, 7,
8, 10~16, where the improvement is obviously significant
on the last 5 subjects. For the rest subjects, our method
performs exactly the same to MDF. iii) Comparing with VME
and MDF, our method achieves the highest average accuracy,
specificity and sensitivity values. Particularly, the accuracy
increment over VME is high to 23.69%. Similar enhancement
on specificity and sensitivity can be achieved by our method
over VME.

Due to individual differences, in the variance feature selec-
tion stage, the improved VME threshold feature may not be

Accuracy

L L L L L L L
6 7 8 9 10 11 12 13 14 15 16 17
Feature dimensionality

I T R
2 3 4 5

Fig. 12. Accuracy on variance filtering based feature selection between
MDF [35] and our method on subject 4.

the optimal one been selected. For these subjects, that is
the reason why the detection performance by our method
is the same to MDF. Comparing with MDF, for subjects
whose EEG containing plentiful epileptiform discharges and
consecutive eye blinks, adding the improved threshold feature
by IVME can effectively enhance the detection performance.
Fig. 11 compares the variance value of each feature in variance
filtering on subject 1 and subject 4. The 17-th feature is
the threshold (TRS) by improved VME. As observed, for
subject 1, TRS is not selected as the optimal feature for
EEG representation, which explains the same performance
between our method and MDF. While for subject 4, as there
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Fig. 13. Detection performance comparison with respect to ICA-SVM [26], WICA-SVM [27] and SVM-AE [28].

contains epileptiform discharges and consecutive eye blinks in
EEGs, TRS is selected as one of the optimal features, which
can help to improve the detection performance. In particular,
we show the feature selection step in variance filtering and the
corresponding detection accuracy obtained by MDF and our
method on the EEG data of subject 4 in Fig. 12. As clearly
shown, the same first 5 features are selected by MDF and our
method, resulting the same performance. When the 6-th feature
is selected, both two methods reach the best performance, but
MDF is worse than our method. The reason behind is that
TRS is selected by our method as the 6-th feature.

3) Comparison With State-of-the-Art Methods: The proposed
eye blink detection performance is also compared with 3 state-
of-the-art (SOTA) methods, ICA-SVM [26], WICA-SVM [27]
and SVM-AE [28] in this section. The sensitivity, specificity,
and accuracy obtained on each subject are shown in Fig. 13.
As depicted, for most of the subjects, our method performs
overwhelmingly better than the 3 SOTA methods. Apparently,
the improvement is more obvious on these subjects contain-
ing epileptiform discharges. For some subjects, the detection
accuracy and specificity by the 3 SOTA methods are very
poor, even less than 50%. The main reason of the poor
performance is that all these 3 methods are not specifically
designed for handling eye blink detection in EEGs containing
rich epileptiform discharge waves. But our method not only
can achieve a promising performance on eye blink detection
in general EEG data, but is also robust to affections caused
by epileptiform discharges.

IV. CONCLUSION

The paper presents a novel eye blink artifact detection
algorithm that fully studies the affection of epileptiform dis-
charges in EEGs. The clustering method by employing the
improved VME filter based discriminate EEG features can
effectively screen out epileptiform discharges. The improved
VME threshold is capable in dealing with EEGs contain-
ing multiple consecutive eye blinks and large data drifting.
Combining with MDF and variance filtering based multi-
dimensional feature optimization, a robust eye blink detection
method that can address subject EEG difference is developed.
The most significant advantage of the proposed method is
that it can efficiently filter out eye blinks existed in EEGs
of complex neurological diseases, and has better applicability

and portability to different subjects. Future work will focus
on analyzing effective algorithms on more types of artifacts
detection in EEGs of neurological diseases.
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