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Abstract— Recent research has advanced two degree-
of-freedom (DoF), simultaneous, independent and pro-
portional control of hand-wrist prostheses using surface
electromyogram signals from remnant muscles as the
control input. We evaluated two such regression-based
controllers, along with conventional, sequential two-site
control with co-contraction mode switching (SeqCon),
in box-block, refined-clothespin and door-knob tasks, on
10 able-bodied and 4 limb-absent subjects. Subjects oper-
ated a commercial hand and wrist using a socket bypass
harness. One 2-DoF controller (DirCon) related the intuitive
hand actions of open-close and pronation-supination to the
associated prosthesis hand-wrist actions, respectively. The
other (MapCon) mapped myoelectrically more distinct, but
less intuitive, actions of wrist flexion-extension and ulnar-
radial deviation. Each 2-DoF controller was calibrated from
separate 90 s calibration contractions. SeqCon performed
better statistically than MapCon in the predominantly 1-DoF
box-block task (> 20 blocks/minute vs. 8–18 blocks/minute,
on average). In this task, SeqCon likely benefited from an
ability to easily focus on 1-DoF and not inadvertently trigger
co-contraction for mode switching. The remaining two tasks
require 2-DoFs, and both 2-DoF controllers each performed
better (factor of 2–4) than SeqCon. We also compared the
use of 12 vs. 6 optimally-selected EMG electrodes as inputs,
finding no statistical difference. Overall, we provide further
evidence of the benefits of regression-based EMG prosthe-
sis control of 2-DoFs in the hand-wrist.
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I. INTRODUCTION

MORE than two million people live with limb absence
in the U.S., and this number increases by an average

185,000 each year [1]–[3]. Trans-radial amputations make
up 60% of total wrist and hand amputations, and documented
rates of prosthesis use vary from 27–56% for upper-limb
amputation [4]. The high demand for prostheses, expected to
increase by at least 47% by the year 2020, has brought more
support from government and growth of the market [5].

While laboratory-based research on electromyogram (EMG)
control has generated new strategies based on machine
learning algorithms, most commercial prostheses still use
simple two-site control schemes that have been available
for decades [6]. Typical myoelectric prosthesis sockets are
designed with two bipolar electrodes, one each located over
extensor and flexor muscles, to control one degree-of-freedom
(DoF) prosthesis hand open and close (Opn-Cls), respectively.
Kestner [7] found need for a prosthetic wrist, as the fixed
angle of a prosthetic hand is not compatible with all daily
tasks (e.g., holding flatware for eating, a bottle for drinking).
Although some advanced prostheses have a wrist rotator and
users can co-contract their muscles to switch between hand
open-close and wrist pronation-supination (Pro-Sup) [8], [9],
users mostly employ their body and arm/shoulder movement
for compensation instead [10]–[12]. Prosthesis mode switch-
ing, a.k.a. sequential 2-DoF control via co-contraction mode
switching, allows users to rotate the wrist with a complex and
time-consuming approach [13]. Performance of this technique
is highly influenced by a user’s residual limb condition,
since muscle contraction imbalance or neuron damage impede
co-contraction; and users need a long period of time to master
this skill, but easily fatigue [14].

Features extracted from myoelectric signals train mod-
els to estimate users’ intent. Regression modeling is one
learning approach used to realize simultaneous, indepen-
dent and proportional multi-DoF control [15]–[19]. Compared
with classification models, of which numerous varieties have
been investigated [20]–[25], the continuous outputs of regres-
sion estimates may more naturally mimic human movement.
Regression models have been found to be more robust to
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some unpredictable small variations in EMG signals, such
as fatigue or poor contact of electrodes, and may generate
better performance during untrained conditions compared to
classification models [19].

Most upper-limb myoelectric control users can easily oper-
ate hand open-close via the two-site conventional approach.
But for wrist rotation—although most limb-absent users can
easily rotate their residual limb repeatedly—the supinator
(a wrist rotator) is a deep muscle difficult to record using
surface EMG [26], and electrodes often shift during fore-
arm rotation. These factors challenge the usability of sur-
face EMG signals. As an alternative, researchers assessed
offline other wrist motions of extension-flexion (Ext-Flx)
and radial-ulnar deviation (Rad-Uln), especially since the
EMG signal during Rad-Uln has demonstrably distinct patterns
compared with the other wrist motions [27]. In the context of
proportional control of multiple DoFs, “distinct” patterns are
most clearly demonstrated when unique EMG channels record
large amplitude EMG when contracting directly along one
motion (e.g., radial deviation) and low amplitude EMG when
contracting directly along all other motions. These results
provide a potential 2-DoF control strategy by a corresponding
“motion” mapping/translation.

Some prior lab-based prostheses testing of multiple-DoF
control schemes used a large number of electrodes, or matrix
electrodes. Such systems are not practical in current commer-
cial prostheses due to cost and issues of electrode shorting/
lift-off. Some researchers found that at least 4 electrodes
were necessary to realize 2-DoF control, with improvement
occurring if the number of electrodes increased [28]–[30].
A balance can be found between economic benefits and
product quality if an optimal number of electrodes and their
location were decided [28], [31].

Recent laboratory work studied myoelectric control using
a 2-D virtual target tracing task, assessing performance via
path efficiency, completion time, and attempt-ratio [32]. Others
have studied the influence of training protocol [33], or of using
modeling techniques of myoelectric representation learning
(MRL) [34], principle component analysis (PCA) [33], and
frequency division technique (FDT) [35]. Real 2-DoF pros-
thesis control during either laboratory or home study found
a potential advantage of regression-based controllers [36] and
classification-based [37], [38] in multi-DoF control compared
with conventional control strategies.

Different regression-based approaches have been evaluated
offline and online (e.g., [18], [32], [34]–[36], [39]). Most
studies have used commercial prosthesis hardware, with cus-
tom controllers. Electrode site selection is usually circum-
ferential around the forearm (for hand-wrist prosthesis) with
equal inter-electrode distances, or manually selected based on
residual anatomy. The number of electrodes used has varied.
A few studies have combined pattern recognition with propor-
tional control [40], [41] (as have some commercial products).
A fundamental limitation of all of this work is the limited
sample size (often ≤10), which seems necessitated by the
complexity and cost of such studies [42], [43]. The aggregate
sample size of limb-absent subjects that have tested such
systems is even smaller (as small as one limb-absent subject

in some studies). Hence, there exists no standard approach to
regression-based multi-DoF simultaneous, proportional control
of prostheses, particularly in controller calibration, regression
method, number of electrodes used, electrode site selection,
etc.; nor have its advantages vs. disadvantages with respect to
other control approaches been adequately understood.

In this paper, we assessed regression-based simultaneous,
independent and proportional 2-DoF (hand-wrist) myoelec-
tric prosthesis control on both able-bodied and limb-absent
subjects, comparing three control strategies—Opn-Cls & Pro-
Sup direct control, a new Ext-Flx & Rad-Uln mapping control
with translation, and conventional two-site sequential control.
Six or twelve optimally-sited electrodes (out of 16 total)
were tested on a prosthesis to investigate the minimum num-
ber of electrodes feasible on commercial prostheses. Bypass
brackets were designed separately for able-bodied and limb-
absent subjects to carry a hand-wrist prosthesis adjacent to
the forearm/residual limb. Each bypass allowed subjects to
don the prosthesis without a socket, while allowing access to
the limb for electrode placement. The three control strategies
were tested with different standard physical tasks—box-block,
refined-clothespin relocation and door-knob (the latter two
requiring use of 2-DoFs). Six vs. twelve optimally-selected
electrodes were tested to explore the minimum number of
necessary electrodes for able-bodied subjects. Based on these
results, more targeted tasks were conducted on limb-absent
subjects.

II. METHODS

A. Experimental Apparatus

Experimental data were collected from 10 able-bodied
(5 male, 5 female; aged 18–45 years) and 4 trans-radial limb-
absent (3 male, 1 female; aged 39–65 years; 2 congenital,
2 traumatic amputee) subjects at Worcester Polytechnic Insti-
tute (WPI), as approved by the WPI Institutional Review
Board (IRB Protocol 17-155). Able-bodied subjects had no
physical limitations of their dominant forearm muscles. Limb-
absent subjects had ≥5 cm residual limb length with functional
muscle contraction and prior experience with myoelectric-
controlled prostheses. Subjects provided written informed
consent.

Subjects stood at the experimental table, adjusted to hip
height (Fig. 1). Sixteen bipolar EMG electrodes were secured
on the proximal forearm, equally spaced about the fore-
arm’s circumference. For able-bodied subjects, electrodes were
secured on the dominant side with the midpoint of the bipolar
contacts placed 5 cm distal to the elbow crease. For limb-
absent subjects, electrodes were secured on the affected side
at the level corresponding to that of their own prosthesis.
Each bipolar electrode consisted of 5 mm diameter, stainless
steel, hemispherical contacts separated 1 cm edge-to-edge,
oriented along the forearm’s long axis. Each EMG signal was
differentially amplified (Liberating Technologies, Inc. BE328
amplifier; 30–500 Hz pass band, CMRR > 100 dB over the
pass band) and provided selectable gain. All EMG channels
were sampled at 2000 Hz on a PC (16-bit resolution).

Then a 3D printed bypass prosthesis bracket was stra-
pped to the shoulder and arm on the same side as the
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Fig. 1. Experimental apparatus for box-block (top) and clothes pin
(bottom) tasks, limb-absent subject. The subject was asked to wear a
bypass bracket that attached a hand-wrist prosthesis. The forearm could
move freely.

electrodes (Fig. 1). A wrist rotator (Fillauer Motion Control
Standard Wrist Rotator, maximum speed 28 rpm) and pros-
thetic terminal device (System Electric Greifer DMC Plus,
proportional speed 8–200 mm/sec) extended from the bypass,
providing wrist Pro-Sup and hand Opn-Cls, respectively. The
electrodes (input) and the prosthesis control signals (output)
were part of a PC-based system programed in MATLAB
(The MathWorks, Natick, MA, USA) [44]. The main process-
ing loop of this system operated at 100 Hz so as to minimize
controller delays.

B. Prostheses Control System

1) Control Sources: Subjects compared two regression-
based 2-DoF simultaneous, independent and proportional
velocity control algorithms, and conventional two-site veloc-
ity control. Limb-absent subjects controlled the prostheses
by attempting to move their phantom limb. The control
algorithms were as follows. 1) Direct control (DirCon) in
which subjects’ Opn-Cls controlled Greifer Opn-Cls, and
subjects’ Pro-Sup controlled prosthetic wrist rotation. This
2-DoF approach is the most intuitive. 2) Direct control with
mapping/translation (MapCon) in which subjects’ wrist Ext-
Flx controlled Greifer Opn-Cls (Ext corresponded to Opn),
and subjects’ Rad-Uln controlled prosthetic wrist rotation (Rad
corresponded to pronation). Subjects were permitted to invert
either/both of these mappings (although none chose to do so).
3) Sequential control (SeqCon) in which subjects controlled
either Opn-Cls or Pro-Sup, then switched between them
by triggering a co-contraction EMG signal. Co-contraction
was defined as a simultaneous contraction of both processed

forearm EMGs (processing described below) above set thresh-
olds for a defined time duration [45], [46]. Each respective
threshold was set between the EMG values triggered dur-
ing a maximum co-contraction and normal hand-wrist tasks,
as selected by the subject. The time duration was set between
30–100 ms, again selected by subject preference.

2) Control Calibration and Thresholding: For calibration of
DirCon and MapCon (Fig. 2), subjects performed a 90 s
calibration consisting of 10-s of rest and eight distinct 10-s,
contiguous constant-posture constant-force contractions (four
1-DoF and four 2-DoF). Since maximum voluntary contrac-
tion (MVC) cannot be measured on the affected side of
prosthesis users, all subjects were instructed to maintain,
as best as possible, a contraction target effort of 30%—without
feedback. MVC was not measured in either the able-bodied
or limb-absent subjects. For DirCon, the contraction sequence
was: Cls, Opn, Sup, Pro, Cls+Sup, Cls+Pro, Opn+Sup, and
Opn+Pro. For MapCon, the contraction sequence was: Flx,
Ext, Uln, Rad, Flx+Uln, Flx+Rad, Ext+Uln, and Ext+Rad.
Raw EMG signals from all channels were digitally notch
filtered (second-order IIR filter at 60 Hz, notch bandwidth
of 1 Hz), highpass filtered to attenuate motion artifact
( fc = 15 Hz, fifth-order Butterworth filter), rectified, lowpass
filtered ( fc = 16 Hz; Chebyshev Type I filter, ninth-order,
0.05 dB peak-to-peak passband ripple) and downsampled from
2000 Hz to 100 Hz. Then, a critically damped lowpass filter
( fc = 1 Hz, second-order) [47] was applied to further smooth
the signal and estimate EMG standard deviation (EMGσ , a.k.a.
processed EMG). The first and last second of each 10 s con-
traction was removed to avoid filter and movement transients.
Then, each EMGσ from the resting contraction (weighted
eight times) and the eight active contractions were used as
inputs to a regression-based (2-output) static EMGσ -force
model [31]. Re-using one rest contraction balances the weight
of the regression fit, without extending its duration. A force
of zero was assigned as the output target for unused DoFs
during each contraction. Fit coefficients were estimated via the
linear least squares pseudo-inverse method, in which singular
values of the design matrix were removed if the ratio of
that singular value to the largest was less than a tolerance
value (T ol = 0.01, based on previous study) [16], [48].
Backward stepwise selection was utilized for optimal selection
of either 6 or 12 electrodes (out of 16 total). In this manner,
only the best channels yielding the lowest RMSE between
EMG-force and target force were used [28], [31], and their
gains were calculated for prostheses control. In addition, this
RMSE provided an assessment of the calibration quality.

During experimental trials using DirCon and MapCon,
EMG-force was computed in real-time, then two threshold-
ing methods were applied. First, a resting threshold was
applied to each direction of the two individual DoFs (total
of four thresholds) to minimize the impact from noise and
unintentional EMGσ signals. Initially, the threshold was set
to 10 %MVC for each direction. Then, subjects were asked to
rest and to slowly move their arm. If unintentional prosthesis
movement resulted, the corresponding threshold was slightly
increased until no movement occurred. Second, a fixed-ratio
co-activation thresholding method was applied to attenuate the
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Fig. 2. Sequence of calibration contractions. Subjects follow the instructions to perform indicated constant-pose, constant-force contractions
over 90 s. The recording was used for coefficient calculation and calibration quality assessment.

Fig. 3. Thresholding methods for 2-DoF control including resting (inner
square) and fixed-ratio thresholding (blue and red lines emanating from
inner square). Based on method of Fougner et al. [49].

risk of inadvertent activation of another DoF (Fig. 3). When
the ratio of the larger force (in %MVC) to the smaller force
(from the two DoFs) was less than a threshold, only the
DoF with the larger force was actuated. If the two forces
are drawn in the x-y plane, a default threshold angle of
α = 25 degrees [49] was used. This angle could be changed
during setup as desired by the subject.

For SeqCon, the two channels which produced the most
distinct EMGσ (based on channel amplitudes) when subjects
performed Ext and Flx calibration, respectively, were manually
chosen. For limb-absent subjects, we selected EMG sites near
the location of the sites used by their existing two-site pros-
thesis controller, whenever multiple distinct channel options
existed. Each channel gain was set to correspond to 30%
MVC. The estimated force was calculated as the algebraic
difference of the forces estimated by each channel. A resting
threshold was applied to each channel to reduce the influence
of noise and small unintentional activation. For switching
between the 2 DoFs, a fixed window size (30–100 ms) and
a co-contraction threshold were set to detect a co-contraction.
All the channels and coefficients were manually calibrated
until subjects could easily control the prostheses and trigger
co-contraction.

3) Hardware Control: The estimated hand and wrist force
levels, in %MVC, were linearly mapped to hand and wrist
velocity (speed and direction), with 50% MVC in each cor-
responding to maximum speed. Built-in hardware thresholds
were essentially disabled by matching the software thresholds
to them. Thus, all thresholding was set in our custom software.

C. Experimental Protocol

Subjects stood for all tasks, but otherwise their posture was
not constrained (Fig. 1). To prevent cumulative muscle fatigue,
at least two minutes rest after calibration and one minute
rest between trials were provided. All limb-absent subjects
completed 10–20 minutes of mirror-box training before the
trials to help rebuild their phantom limb control sensation.
The two traumatic amputees had prior mirror-box training
experience.

To assess controller performance, three tasks were chosen
from widely-used outcome measures described in the liter-
ature. 1) The box-block task [50] was a 1-DoF assessment
mainly testing hand Opn-Cls. Subjects grasp (hand Cls) a
block and then drop it (hand Opn) after traversing over a
partition. They return back over the partition and repeat.
We did not lock the prostheses into 1-DoF control during this
task. The number of transferred blocks in 60 s and number of
drops were measured in each trial. 2) The refined-clothespin
relocation task [51] was a 2-DoF assessment. Subjects perform
hand Cls to grasp a clothespin (2 lbs. resistance) from a
horizontal rod, rotate the clothespin 90◦ (wrist Pro or Sup),
then place and release (hand Opn) the clothespin onto a
vertical rod. Once complete, subjects rotate their wrist back to
its original orientation and attempt to relocate another clothes-
pin. Subjects were allowed to use arm or body movement
for compensation. If the clothespin dropped, subjects moved
on to the next clothespin. The time required to complete
three successful moves (maximum of 120 s) and number of
drops were measured in each trial. 3) The doorknob task was
a 2-DoF assessment. Opening a door is a common but impor-
tant task that most people face every day. Compared with
the SHAP door-handle test [52], our task used a round knob
so as to require actuation of both the wrist and hand—more
appropriate for 2-DoF assessment. During each task cycle,
subjects grasped the round knob of the door (hand Cls), rotated
the knob (wrist Pro or Sup), pulled the door open, and then
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released the knob (hand Opn). Subjects then shut the door to
ready for the next trial. The time required to complete three
successful door openings (maximum of 120 s) was measured
in each trial.

Three control strategies (DirCon, MapCon, SeqCon) were
tested on all subjects. Subjects initially performed calibration,
then used all 16 electrodes to test all motions and their com-
binations. Thresholds were adjusted, based on their feedback,
to enhance control robustness and accuracy. If it was still
difficult to control the prostheses, all subjects were offered
at most three calibrations and chose the best one for the
tasks. These calibration steps, combined with subject practice,
typically lasted 20–30 minutes per controller. Additional time
was provided, as needed, until each subject confirmed that
they were comfortable controlling the prosthesis. Then for
control tasks, able-bodied subjects used DirCon and MapCon
with either 6 or 12 electrodes (backward selected). Limb-
absent subjects only used 6 electrodes for DirCon and Map-
Con, to shorten the experiment length to prevent fatigue. All
subjects used SeqCon with 2 electrodes (manually selected,
as described above). The three control strategies, number of
electrodes used (only varied for able-bodied subjects) and three
tasks were randomized during the experiment. Subjects were
blinded to the number of electrodes in use. Three trials of data
were collected for each condition.

D. Statistics

1) Calibration Quality Assessment: The RMSEs from the
calibration quality assessment satisfied the normality assump-
tion. Thus, repeated measures analysis of variance (RANOVA)
and post hoc paired t-tests with Bonferroni correction (sig-
nificance level p = 0.05) were used to test for RMSE
differences. Prior to RANOVA, the degree of sphericity (β)
was used to adjust the degrees of freedom by either the
method of Greenhouse-Geisser (β < 0.75) or Hyunh-Feldt
(0.75 < β < 1). Each RANOVA assessed all possible
interactions. These interactions were not significant, unless
noted otherwise in the Results. When interactions were found,
we proceeded to post hoc pair-wise comparison of all factor
combinations, since the number of combinations was small.

2) Task Outcomes Involving Able-Bodied Subjects (Including
Comparisons Between Able-Bodied and Limb-Absent Subject
Results): We separately averaged each outcome measure (num-
ber of box-block transfers, time per clothespin transfer, and
time per door open and close cycle) across the three trials
per condition. Prior to each statistical test, we evaluated
the normality assumption of the test data. The number of
drops per trial in box-block and clothespin tasks failed the
normality test, thus a non-parametric Friedman test was used
to test performance differences. All other outcome measures
satisfied the normality assumption. Thus, RANOVA and post
hoc paired t-tests with Bonferroni correction were used to test
performance differences. Adjustments for degrees of freedom
and treatment of interactions were performed as described
above.

3) Task Outcomes Involving Only Limb-Absent Subjects:
When comparing performance within a task for the limb-
absent subjects, our subject pool was quite heterogeneous

Fig. 4. Calibration time-series examples from one subject for a) MapCon
and b) DirCon. Dashed red line segments show target force level. Wavy
blue lines show model-estimated force.

(2 congenital and 2 traumatic limb loss; distinct remnant
musculature for each; distinct past experience with myocontrol
for each), thus performance differences were tested using
“n-of-1” statistical analysis (i.e., separate statistical analysis
for each subject). The n-of-1 approach has been used before
in prosthesis control research [36] and is well suited for
heterogeneous subject pools with chronic conditions [53].
Thus, we separately conducted RANOVA (after confirming
data normality) and post hoc t-tests with Bonferroni correc-
tion for each subject, without averaging the three trials per
condition. Adjustments for degrees of freedom and treatment
of interactions were performed as described above.

III. RESULTS

A. Calibration Quality Assessment

Fig. 4 shows example target force levels and EMG-
estimated forces for a set of calibration trials. Fig. 5 sum-
marizes across subjects the RMSE between the target %MVC
and that estimated from EMGσ of each calibration contraction
type, separately for able-bodied and limb-absent subjects,
and number of electrodes retained after backward stepwise
selection. Both hand and wrist errors always contributed to the
RMSE, even during 1-DoF tasks. This assessment describes
how well subjects can produce the desired calibration contrac-
tion, which forms the basis of the 2-DoF control algorithms.

For able-bodied subjects, a three-way RANOVA of RMSE
was computed with factors: control strategy (DirCon, Map-
Con), number of electrodes (6, 12) and calibration contraction
type (9 values, see Fig. 5). A significant interaction was found
between control strategy and number of electrodes [F (1, 9) =
16.0, p = 0.002], while calibration contraction type was
significant [F (8, 72) = 43.2, p < 10−6]. Post hoc comparison
of the interacting factors found that for both DirCon and
MapCon, 12 electrodes had lower RMSE than 6 electrodes
(p ≤ 10−4). For contraction type, rest always had lower
RMSE than all other types ( p < 10−4), Cls / Flx exhibited
lower RMSE than Pro / Rad ( p = 0.005), Cls+Sup / Flx+Uln
(p = 0.003), Cls+Pro / Flx+Rad (p = 0.006) and Opn+Sup /
Ext+Rad (p = 10−4); Opn / Ext had lower RMSE than
Opn+Sup / Ext+Rad (p = 0.004); and Sup / Uln had lower
RMSE than Cls+Pro / Flx+Rad (p = 0.012) and Opn+Sup /
Ext+Rad (p = 0.026).
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Fig. 5. Calibration quality assessment boxplots. RMSE for each
contraction type under different control methods (MapCon, DirCon) and
number of EMG electrodes (6, 12) for both able-bodied and limb-absent
subjects.

For limb-absent subjects, a two-way RANOVA of RMS
error with factors control strategy and calibration contrac-
tion type found only type was significant [F (1.5, 4.5) =
19.1, pGG = 0.007]. Post hoc comparison only found rest
motion had lower RMSE than all others ( p < 0.04).

B. Box-Block Task

For able-bodied subjects (see Fig. 6 for summary results),
the number of transfers in one minute, where more transfers
represented better performance, was compared between 2-DoF
control strategies (MapCon, DirCon) and number of electrodes
(6, 12) via a two -way RANOVA. No statistical differences
were found.

Next, we limited analysis of the 2-DoF control strategies
to trials using 6 electrodes, available for both able-bodied
and limb-absent subjects (see Fig. 6 for summary results).
For number of transfers, a mixed two-way RANOVA with
within-subjects factor of control strategy (DirCon + 6 elec-
trodes, MapCon + 6 electrodes, SeqCon + 2 electrodes) and
between-subjects factor of group (able-bodied, limb-absent)
found control strategy to be statistically different [F (2, 24) =
21.62, p < 10−5], but group was not [F (1, 12) = 3.285, p =
0.095]. Post hoc comparison found that SeqCon transferred
significantly more blocks than both MapCon (p < 10−3) and
DirCon (p = 0.004). Note that while using SeqCon on this
task, mode switching was not disabled. Nonetheless, the task
was completed predominantly using only the hand DoF, and
body/elbow/shoulder movement. Separately, a Friedman test
on number of drops per trial (able-bodied subjects only) found
no significant difference between the three control strategies.

Additionally for each limb-absent subject, the number of
transfers in one minute (see Fig. 7) was compared between
three different control strategies (MapCon+6 electrodes,
DirCon+6 electrodes, SeqCon) via a one-way RANOVA,

with post hoc comparison made when a significant difference
was found. The three trials per condition were not averaged.
For three of the four subjects, the RANOVA was significant
[F (2, 6) > 27, p ≤ 0.001], with post hoc comparison showing
that SeqCon transferred more blocks (by a factor of 2–4)
than either MapCon or DirCon (p < 0.038). For two of the
associated post hoc evaluations, DirCon also transferred more
blocks than MapCon (p < 0.038).

C. Refined-Clothespin Relocation Task

For able-bodied subjects (Fig. 6), the time per move, where
shorter time represented better performance, was compared
between 2-DoF control strategies (MapCon, DirCon) and
number of electrodes (6, 12) via a two-way RANOVA. No sta-
tistical differences were found.

Next, we limited analysis of the 2-DoF control strategies to
trials using 6 electrodes, available for both able-bodied and
limb-absent subjects (Fig. 6). For time per move, a mixed
two-way RANOVA with within-subjects factor of control
strategy (DirCon + 6 electrodes, MapCon + 6 electrodes,
SeqCon + 2 electrodes) and between-subjects factor of group
(able-bodied, limb-absent) found control strategy to be sta-
tistically different [F (1.27, 15.24) = 16.97, pGG < 10−4],
but group was not [F (1, 12) = 0.007, p = 0.93]. Post hoc
comparison found that SeqCon took significantly longer time
than both MapCon ( p = 0.003) and DirCon (p = 10−5).
Separately, a Friedman test on number of drops per successful
move (able-bodied subjects only) found no significant differ-
ence between the three different control strategies.

Additionally, for each limb-absent subject, time per move
(Fig. 7) was compared between three different control strate-
gies (MapCon+6 electrodes, DirCon+6 electrodes, SeqCon)
via a one-way RANOVA, with post hoc comparison made
when a significant difference was found. The three trials per
condition were not averaged. For two of the four subjects, the
RANOVA was significant [F (2, 6) = 11, p ≤ 0.009], with
post hoc comparison in both showing that SeqCon required
more time (poorer performance) than DirCon (p ≤ 0.01). For
one of these subjects, SeqCon also required more time than
MapCon (p = 0.001).

D. Door-Knob Task

For able-bodied subjects (Fig. 6), the time per door-open-
close cycle, where shorter time represented better performance,
was compared between 2-DoF control strategies (MapCon,
DirCon) and number of electrodes (6, 12) via a two -way
RANOVA. No statistical differences were found.

Next, we limited analysis of the 2-DoF control strategies
to trials using 6 electrodes, available for both able-bodied
and limb-absent subjects. For time per cycle, a mixed two-
way RANOVA with within-subjects factor of control strategy
(DirCon + 6 electrodes, MapCon + 6 electrodes, SeqCon +
2 electrodes) and between-subjects factor of group (able-
bodied, limb-absent) found significant interaction between
these two factors [F (2, 24) = 3.8, pGG = 0.037]. We pro-
ceeded to paired post hoc comparisons, finding that with the
SeqCon control strategy, limb-absent subjects required more
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Fig. 6. Boxplot results for a) box-block task (number of transfers per minute, drops per minute), b) clothespin task (time per move, drops per
successful move), c) door-knob task (time per open/close cycle).

Fig. 7. Boxplot results for each limb-absent subject for the box-
block task (top row), clothespin task (middle row), and door-knob task
(bottom row).

time than able-bodied subjects (p = 0.008); and with the limb-
absent subject group, SeqCon required more time than both
MapCon (p = 0.005) and DirCon (p = 0.01).

Additionally, for each limb-absent subject, time per cycle
was compared between three different control strategies
(MapCon+6 electrodes, DirCon+6 electrodes, SeqCon) via a
one-way RANOVA, with post hoc comparison made when a
significant difference was found. The three trials per condition
were not averaged. For two of the four subjects, the RANOVA

was significant [F (2, 6) > 24, p ≤ 0.001], with post hoc
comparison finding that SeqCon required more time than either
of MapCon (p ≤ 0.003) or DirCon (p ≤ 0.003). For one other
subject, the RANOVA was significant [F (2, 6) = 20.72, p =
0.002], with post hoc comparison finding that SeqCon and
DirCon each required more time than MapCon (p ≤ 0.009).

IV. DISCUSSION

This research assessed the performance of regression-based
2-DoF simultaneous, independent and proportional myoelec-
tric prosthesis control with different control strategies (DirCon,
MapCon) and number of optimally-sited electrodes (6, 12),
as compared to conventional sequential control (SeqCon).
Evaluation was tested on standard box-block task (1-DoF
assessment), refined-clothespin relocation task (2-DoF assess-
ment) and a door-knob task (2-DoF assessment). The over-
all results showed no significant difference between 6 and
12 electrodes. When tested on limb-absent subjects with only
6 electrodes, all subjects successfully controlled the prostheses
to complete the tasks. Both MapCon and the more intuitive
DirCon exhibited good performance, indicating they could be
potential approaches for 2-DoF control.

A. Calibration Quality Assessment

In this study, subjects were offered up to three calibration
trials, and could self-select the “best” trial after being given
ample time to become comfortable with controlling the pros-
thesis. We presumed that a calibration with low EMG-force
RMSE facilitates successful 2-DoF control, and vice versa.
Hence, we assessed EMG-force performance of the accepted
trial. The principal findings were that RMSE was lower during
rest contractions and that 12 electrodes provided better EMG-
force estimation than 6. The rest result is likely due to the
fact that subjects can easily maintain a reproducible rest
contraction, even in the absence of force feedback. But, it is
difficult to accurately maintain a fixed active force level in the
absence of feedback [54], [55], leading to poor tracking of the
target force. One possible future solution is to feedback EMGσ
in real time, which still avoids the need for measurement of
force.
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The finding that offline EMG-force estimation improved
with 12 electrodes vs. 6 has been noted previously [28], [31].
Anecdotally, however, we found that subjects were not nec-
essarily choosing the calibration trial with the lowest RMSE.
In fact, some low RMSE calibration trials produced control
models in which subjects could not actuate in one of the
directions (i.e., no movement achievable). These calibrations
were not selected. Nonetheless, a better metric might be the
worst-case error out of the various control directions within
a calibration trial, or some other metric that insures robust
performance in all movement directions. This issue of strong
offline EMG-force estimation not correlating to strong online
prosthetic control has been noted by past studies. But, it is pos-
tulated that subjects can learn and adapt to the forward dynam-
ics of the prosthesis in regression-based proportional control
processors, perhaps reducing the requirement for highly accu-
rate forward dynamics [19], [56]. Similarly, some studies of
classification-based myocontrol of prostheses have found that
high offline classification accuracy does not necessarily lead to
high online performance [25], [57], [58]. These observations
are disconcerting, since online performance evaluation is far
more expensive and time-consuming than offline (in which
many different processing schemes can be evaluated, with
many parameter variations), which likely slows the advance-
ment of control algorithms. To combat this problem, recent
investigation found that a combination of offline performance
metrics [59], or alternative metrics [60], better correlated with
online performance in classification-based controllers. Thus, a
path may still exist for classification-based offline prosthesis
control algorithm development, which would be a welcomed
efficiency. Perhaps similar metrics can be developed for pro-
portional control algorithms. In any case, further investigation
is warranted to develop a self-assessment of calibration quality.

We calibrated using 10 s contractions at 30% MVC effort.
It is likely that shorter durations would yield similar EMG-
force performance, and thus be more convenient [61], [62].
Other effort levels might also be more appropriate, and could
be investigated in the future. In fact, it is not clear that the same
effort level should be prescribed for each movement direction.
What is most important seems to be controllability. Additional
gain (or gain attenuation) could be applied to each movement
direction by the controller. Further, selection of the various
noise floor thresholds also could strongly influence controller
performance.

B. Sequential Control With Co-Contraction Was Better
for 1-DoF Box-Block Task

Considering trials using 6 electrodes, SeqCon had
(statistically significant) higher number of transports per
minute on the 1-DoF box-block task than each of MapCon
and DirCon. Because we didn’t lock wrist rotation during this
task, 2-DoF control had the risk of unwanted wrist rotation,
after which subjects lost time realigning the wrist to grasp the
next block (e.g., similar to [63]). Subjects reliably contracted
flexor muscles, then extensor muscles to grasp and release
blocks, respectively. Therefore, an option to switch temporarily
to 2-site SeqCon may be necessary within advanced prostheses

controllers as an alternative scheme during activities when
only Opn-Cls (1-DoF) contractions are required.

C. Two-DoF Control Was Best for 2-DoF Tasks

Sequential control is a complicated approach for 2-DoF
control. None of our able-bodied subjects had prior experience
using co-contraction for mode switching, thus required a
relatively long training time. One limb-absent subject had used
a prosthesis with EMG co-contraction mode switching for
several years, so achieved complete calibration in less than
5 minutes. The remaining limb-absent subjects struggled to
learn the skill. Their imbalanced contraction between flexion
and extension muscles made co-contraction difficult. EMGσ
from one channel often increased faster than the other, thus
the difference between the two channels caused prosthe-
sis movement prior to triggering the desired co-contraction.
We mitigated this issue by rigorous selection of thresholds,
but could not completely avoid it. Furthermore, frequent co-
contraction is likely to cause fatigue.

Multi-DoF control is the trend for future prostheses
development. Several virtual studies utilizing classification
tests [64], [65] and/or target tracking [32], [39] have shown
that limb-absent subjects can control a virtual 2-dimensional
movement task with high precision. Using a physical pros-
thesis, all our limb-absent subjects had no difficulty realizing
simultaneous, independent and proportional 2-DoF control,
without prior experience doing so. Some prior research has
found poorer performance when using Pro-Sup inputs, perhaps
due to electrode shift over muscle during Pro-Sup rotation
or because key active muscles (e.g., supinator) are found
deeper within the forearm and may not have EMG that is
as identifiable at the skin surface. In contrast, summarizing
our results across the 2-DoF tasks found that DirCon (Pro-
Sup queued wrist rotation) performed similar to MapCon
(Rad-Uln queued wrist rotation), and these two control strate-
gies performed noticeably better than SeqCon.

To realize 2-DoF control, four distinct patterns/dimensions
of EMG signals should be generated and then distinguished
by the controller. For MapCon, which utilized more distinct
wrist actions (Ext-Flx and Rad-Uln), subjects found little diffi-
culty in separately controlling prosthesis open, close, pronate,
supinate, or their combinations. But for DirCon, which utilized
less distinct wrist actions (Opn-Cls and Pro-Sup), some sub-
jects inadvertently produced wrist supination when attempting
to trigger hand open. To reduce these errors, some subjects
slowly opened the prosthesis hand, or triggered prosthesis hand
open by simultaneously activating native/phantom hand open
with low-effort pronation. We largely mitigated this problem
by setting higher Sup thresholds, reducing the sensitivity
of rotation. Subjects seemed to prefer this higher threshold,
since they seemed to prioritize hand open/close performance,
achieving small hand rotations through body posture and
shoulder movement.

Another principle to realize 2-DoF control is the ability
of subjects to reproduce the same EMG patterns as during
calibration. For able-bodied subjects, reproducibility is facili-
tated by feedback from their real hand and wrist to produce
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the same motions. Limb-absent subjects do not have this
advantage. In fact, congenital limb-absent subjects will never
have experienced these feedback sensations. These differences
may explain, in part, why the able-bodied subjects performed
better than the limb-absent subjects on the 2-DoF door-knob
task. Accordingly, congenital limb-absent subjects may be
more amenable to MapCon, since they would be mapping
“motions” which they have never experienced in the first place.
If novel motor patterns are to be learned, selection of patterns
that are more distinguishable from surface EMG are likely to
be beneficial.

Traditionally, multi-DoF control is assumed to best be facil-
itated by selecting intuitive control strategies/phantom limb
contractions [23], [66]–[68]. Indeed, limb-absent subjects have
also opined this assumption [69]. However, recent evidence
suggests that, with multiday training, feedback can be used
to habituate non-intuitive muscle synergies that might be
more advantageous for prosthesis control [70], [71]. Hence,
multiday studies, which are more reflective of actual prosthesis
use, may be necessary to best contrast the advantages of
intuitive contractions vs. those which may be less intuitive
but perhaps better for prosthesis control (after training).

D. Number of Electrodes and Channel Selections

Six or 12 optimally-sited electrodes demonstrated no signifi-
cant difference when subjects controlled the prostheses for any
of the tasks, even though 12 electrodes provided better EMG-
force estimation during calibration of both DirCon and Map-
Con. The tasks and conditions were randomized and subjects
were blinded to the number of active EMG channels in use.
Most subjects could recognize the difference between 12 vs.
6 channels due to different channel selection and different
coefficients, but they could not tell which option provided
better control. Six electrodes are reasonable to apply on a com-
mercial prostheses considering cost, complexity and required
microcontroller computation speed. When 6 electrodes were
applied on limb-absent subjects, they could easily control
the prosthesis after practice. Since adjacent EMG signals
are highly correlated, a further increase in EMG channels
introduces more redundant information, along with increased
risk of electrode shorting, lift-off, etc. [72]. It is possible that
even fewer than 6 electrodes might be acceptable, although
not likely less than 4 for simultaneous, proportional and
independent 2-DoF operation [28]–[30]. We used backward
stepwise selection from 16 candidate electrodes to reduce the
number of electrodes to 12 or 6. In practice, this selection step
would be part of the prosthesis fitting operation completed by
a prosthetist and, thereafter, the electrode sites would be fixed
into their socket. Though different subjects had their own best
electrode locations, the selected electrodes were always spread
around the limb, not concentrated in one muscle region.

E. Limb-Absent Subject Performance

Each limb-absent subject had prior myoelectric prosthesis
control experience, completed mirror-box training before the
experimental trials, and received practice time with each
controller. Anecdotally, the mirror-box training was not judged

by the subjects to be essential, since their prior myoelectric
prosthesis use seemed to guide their perceived contraction
pattern preferences. Nonetheless, we anecdotally observed that
subjects became more skilled in the use of the prosthesis trial
by trial. These learning effects were mitigated in our statistical
comparisons because we randomized the testing order for each
subject. Hahne et al. [36] compared 2-DoF, regression-based
hand-wrist prosthesis control performance in five limb-absent
subjects across two days, and found some improvement on
the second day. They postulated that prosthesis control might
benefit from interactive learning; the algorithm learns the EMG
signal patterns from the user and generates corresponding
coefficients, then the users learn how to use the prosthesis,
etc.

The statistical tests using only limb-absent subject data
variously found significance for the box-block, clothes-
pin and door-knob tasks, suggesting that different subjects
exhibited unique differences in performance. Numerous pre-
existing factors—such as muscle contraction ability, length
of prosthesis use, limb-loss type and learning ability—should
greatly influence task performance. Hence, prosthesis con-
troller implementation for different users must consider their
unique needs and characteristics. Of note, all limb-absent
subjects used 2-DoF control for the first time in this study,
and with only 20–30 minutes of practice. Yet, each limb-absent
subject performed better on each 2-DoF task using each 2-DoF
controller (compared to SeqCon).

F. Two-DoF Controller Limitations and Challenges

Though each subject could complete each of the three tasks
using the 2-DoF controllers, substantial challenges remain.
It was obvious that the quality of calibration was essential to a
subject’s performance. For some subjects, the first calibration
did not result in effective prosthesis control, perhaps because
these subjects may have focused more on achieving the
instructed calibration contraction profile and not on contraction
efforts that would be easy for them to reproduce during real
tasks. For these subjects, the second or third calibration usually
led to a dramatic improvement in control. A more objective
measure of calibration “success” is desired to inform the user
if they need to re-calibrate for better control. Assessment of
overall RMSE between target force and EMG-estimated force
may be dubious. Analyzing the error from each individual
motion direction after calibration might better help the user
gradually develop the best patterns for everyday calibration.

Another issue was unintentional movement from
another DoF. We manually applied two thresholding methods
to reduce the impact from unintentional movement. However,
a more reproducible, automated method for threshold selection
should be developed. The unintentional movement usually
happened in two cases. First, it occurred when subjects had
a fast change from one motion to another. In this situation,
EMG in most channels would spike, producing EMGσ values
much higher than normal contraction. These contractions
usually triggered a correct movement of the desired DoF,
but also generated unexpected movement from another DoF.
Second, unintentional movement was sometimes produced
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when subjects used very high force levels to control the
prostheses, likely due to antagonist muscle co-contraction.
In both of these cases, the contraction patterns are not
present in the calibration data. It is hard to completely
avoid unintentional movement during control, but effective
threshold selection and lower muscular efforts can reduce the
sensitivity of our current approaches. In this way, users can
focus on one DoF with accurate and robust control and use
an additional DoF when needed.

G. Primary Results and Contributions of This Work

The primary results and contributions of this work include:

• The work adds to the body of evidence on the suc-
cessful use of regression-based EMGσ -force models for
simultaneous, independent and proportional myoelectric
control of 2 DoFs in a hand-wrist prosthesis. A small
number of literature studies/subjects exist in which online
performance has been evaluated, processing methods vary
for each, and the aggregate sample size of limb-absent
subjects in these studies is even smaller. Our studies
with limb-absent subjects, therefore, add substantively
to the literature. We have shown that our regularization
method (Moore-Penrose pseudo-inverse) can provide use-
ful online myocontrol of a physical prosthesis.

• One-DoF controllers demonstrated some advantages in 1-
DoF tasks, while 2-DoF controllers performed better in 2-
DoF tasks. Prosthesis control algorithms should consider
providing a mechanism for users to volitionally toggle
between such controllers, in order to select the best
controller for the task.

• Determining optimal locations to site EMG electrodes
for prosthesis control has historically been more of
an art than a science [73]. We previously introduced
applying several electrodes about the limb, then selecting
offline a minimum number of optimal electrodes via
backward stepwise selection in an EMGσ -force model
[28], [31]. In the current work, this method was evalu-
ated with online tasks using a physical prosthesis, with
both able-bodied and limb-absent subjects. We demon-
strated that offline EMGσ -force estimation benefited from
12 electrodes, but online myocontrol performed no dif-
ferent with 6 optimally-sited electrodes (out of 16 total).
In practice, electrode site selection would be performed
during prosthesis fitting and used to select permanent
electrode sites. No automated methods for site selection
are available in commercial devices. Our backward selec-
tion method could provide such a method.

• This work provided considerable methods detail and
discussion on the pivotal role of noise threshold selection
in myocontrollers. These parameters and how they are
used in the prosthesis controller tend to receive far
less attention. But, most muscle effort occurs at low
contraction, wherein measurement noise has a dispro-
portionate influence [74]. Future work could look at
more formal methods of noise attenuation, along with
automated and reproducible selection of algorithm para-
meters/thresholds.

• Our work found statistical differences when comparing
performance within limb-absent subjects, but these dif-
ferences were not uniform. Some of these distinctions
may simply reflect statistical variation. But, others may
be a reminder of the unique anatomical and physio-
logic characteristics of each prosthesis user. That is, a
“one-size fits all” solution may not be best for the limb-
absent population.

V. CONCLUSION

This laboratory study evaluated two regression-based 2-DoF
prosthesis control methods, compared with conventional co-
contraction sequential control in box-block, refined-clothespin,
and door-knob tasks on both able-bodied and limb-absent
subjects. We found that in the box-block task that focused
on 1-DoF performance, conventional SeqCon performed better
than MapCon and DirCon. In 2-DoF tasks (clothespin, door-
knob), both MapCon and the more intuitive DirCon performed
better than SeqCon, with faster and more robust performance.
Six optimally-sited electrodes (out of 16 total) had overall
similar performance with 12 electrodes and are more feasible
for commercial prosthesis applications. More algorithm and
hardware design to improve control comfort and robustness
are appropriate next steps.
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