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Use of Functional Data to Model the Trajectory
of an Inertial Measurement Unit and Classify

Levels of Motor Impairment for Stroke Patients
Yi-Ting Hwang, Wei-An Lu, and Bor-Shing Lin , Senior Member, IEEE

Abstract— Motor impairment evaluations are key
rehabilitation-related assessments for patients with stroke.
Currently, such evaluations are subjective; they are based
on physicians’ judgements regarding the actions performed
by patients. This leads to inconsistent clinical results. Many
inertial sensing elements for motion detection have been
designed. However, to more easily and rapidly evaluate
motor impairment, we require a system that can collect data
effectively to predict the degree of motor impairment. Lin et
al. used data gloves equipped with an inertial measurement
unit (IMU) to collect movement trajectories for motor
impairment evaluations in patients with stroke. The
present study used functional data analysis to model data
trajectories to reduce the influence of noise from IMU data
and proposed using coefficients of function as features for
classifyingmotor impairment. To verify the appropriateness
of feature construction, five classification methods were
used to evaluate the extracted features in terms of the
overall and sensor-specific ability to classify levels of motor
impairment. The results indicated that the features derived
from cubic smoothing splines could effectively reflect key
data characteristics, and a support vector machine yielded
relatively high overall and sensor-specific accuracy for
distinguishing between levels of motion impairment in
patients with stroke. Future data glove systems can contain
cubic smoothing splines to extract hand function features
and then classify motion impairment for appropriate
rehabilitation programs to be prescribed.

Index Terms— Functionaldata, inertial measurementunit,
motor impairment, spline, stroke.
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I. INTRODUCTION

CEREBROVASCULAR diseases (CVDs), the leading
cause of death and disability worldwide, were responsi-

ble for an estimated 17.9 million deaths globally in 2019 [1].
According to data from the Taiwanese government and in
2020, CVDs were the fourth leading cause of death and
approximately 50.1 of 100000 Taiwanese residents died of
CVDs [2]. Nevertheless, the number of stroke survivors
has been increasing owing to considerable improvements in
acute medical care. As such, the need for rehabilitation to
restore physical function has dramatically increased. Approx-
imately two-thirds of survivors can walk independently after
a stroke [3], [4], but less than half of them regain basic upper
limb function within a year of rehabilitation [5]. Stroke limits
their independence in activities of daily living and reduces
their quality of life. Thus, upper limb rehabilitation is crucial
for stroke survivors.

Appropriate rehabilitation can effectively aid patients in
achieving favorable recovery that enables them to perform
functional activities. A person’s rehabilitation plan is related to
their disability level. Clinical methods are available for evalu-
ating functional recovery, including the Fugl-Meyer test, action
research arm test, box and block test, Jebsen–Taylor hand
function test, and Brunnstrom stage (BS) test. As demonstrated
by [6], the outcomes of the Fugl-Meyer test, action research
arm test, and box and block test are strongly correlated, and
these tests have high test–retest reliability according to stan-
dardized guidelines. However, these clinical evaluation meth-
ods are subjective, and scores for the same patient can vary
among clinicians. Furthermore, without detailed movement-
related information, providing an individualized rehabilitation
plan can be difficult [7].

To reduce the burden on clinicians and improve the quality
of care, more accurate and efficient evaluations are required
for quantifying disability levels. Several tools for evaluating
upper limb and hand functions have been developed in recent
years. [8] designed a triaxial accelerometer-based system to
quantify the clinical features of Parkinson disease. [9], [10]
have used magnetic and inertial sensors to collect data when
patients performed the Movement Disorder Society–Unified
Parkinson’s Disease Rating Scale finger tapping (FT) task,
and [11] used inertial sensors to collect data and determine the
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features of parkinsonian tremors. Additionally, [12] designed
and implemented a smartphone-based system for automated
motor assessment by using low-cost off-the-shelf inertial
sensors for measuring the movement of the joint angle of
the upper body in patients with stroke. Furthermore, [13]
designed an inexpensive and portable motion capture system
by using a single reflective marker on the wrist to measure the
kinematic movements of stroke survivors. For measuring hand
kinematics, [14]–[17] have designed data gloves with inertial
and magnetic sensors to detect joint movements in various
directions.

Sensors can be easily used to collect a large amount of
data. Depending on the number of sensors and recording time,
various functional trajectories are available for each partici-
pant. To conduct further analyses, these variable trajectories
must be manipulated. [13] introduced five components, which
were crudeness, two speed profile deviations, smoothness,
and segmentation, to capture variable trajectories, and these
components were measured using confidence scores, which
required a reference trajectory and several threshold values.
On the basis of physical characteristics, [16] developed only
three features, namely average rotation speed, variations in
movement completion time, and quality of movement, from
raw data. [18] computed summary statistics, such as centrality
and variablity, and the extremes of variable trajectories, which
yielded over 3000 features. Related raw data were collected
from signals transmitted from multiple devices, and data
spikes, packet loss, and data gaps were noted when the server
could not receive and process data instantly [19]. Furthermore,
an inherent deficiency in related devices, such as clock stretch-
ing, can result in sporadic incorrect data points [20]. These
outliers greatly affect the accuracy of summary statistics,
especially extreme values.

Only some data trajectories have been examined in the
literature. This study introduced a functional analysis that
can capture entire data trajectories. Through a prespecified
basis function and an objective function, a functional form is
used to fit data trajectories. Instead of processing raw data,
this functional form eliminates the noise induced by data
collection [21]. This study investigated the feasibility of using
functional analysis to analyze sensor data. Unlike summary
statistics, which require the use of principle component analy-
sis (PCA) to reduce the number of features [18], in functional
analysis, the number of features depends on the number
of bases and is determined objectively through crossvalida-
tion. The feasibility of features derived from the functional
approach was demonstrated by evaluating the accuracy in
determining patients’ motor impairment level using the data
collected by [16]. Furthermore, because these features provide
sufficient information on data trajectories, the importance of
sensors was also examined, and the results can further reduce
the cost of developing data gloves.

II. METHODS

A. Participants
This study enrolled 15 patients with stroke and 15 healthy

age-matched individuals (H). The inclusion criteria for the
study were 1) age of 20–80 years and 2) the ability to maintain

Fig. 1. (a) Photograph of the data glove. (b) Positions of the IMU sensors.

a sit-up position for longer than 40 min. The exclusion criteria
included 1) a diagnosis of hemispatial akinesia or visual
attention deficit, 2) cognitive impairment, 3) joint defects in
the upper extremities prior to a stroke. In this study, the BS
test was used to evaluate motor impairment level. Of the
15 patients with stroke, 4 had BS4, 10 had BS5, and 1 had
BS6. A therapist determined and provided patients’ BS as the
ground truth for classification. Because patients at BS6 with
stroke typically have hand function that is clinically similar to
that of healthy individuals, the patient with BS6 was treated
as a healthy individual.

The average ages for healthy individuals and patients were
62.6 and 59.3 years, respectively. Nine patients and five
healthy participants were men. This study was performed at
Chi-Mei Hospital, Tainan, Taiwan, and was approved by the
Ethics Committee of Chi-Mei Hospital (IRB No. 10102-019).
All participants provided written informed consent.

B. Device and Task
Self-developed data gloves containing 16 inertial mea-

surement units (IMUs; LSM330DLC; STMicroelectronics,
Geneva, Switzerland) were used for data collection. A gyro-
scope and an accelerometer were included in each IMU to
capture data on triaxial angular velocity and acceleration. The
IMU data were collected by a microcontroller unit (MSP430;
Texas Instruments, Dallas, TX, USA) and were wirelessly
transmitted as encapsulated packets to a laptop through a
Bluetooth interface. Fig. 1 (a) presents a photograph of the
data glove, and Fig. 1 (b) displays the IMU sensor positions on
the glove. The detailed mechanical design is provided in [16].

All participants were asked to wear the data glove to detect
their hand motions when performing a thumb task (TT) and
a grip task (GT). The tools for these tasks are illustrated
in Fig. 2. The TT was designed to evaluate thumb dexterity.
In this task, each participant was asked to hold a cylinder in
their hand [Fig. 2 (a)] and then use their thumb to repeatedly
push a button on the cylinder. A complete motion was defined
as the completion of a press and release action. The GT was
aimed at assessing the dexterity of the entire hand. For this
task, each participant was asked to perform a grip and release
motion using the tool displayed in Fig. 2 (b). The grip and
release motions constituted a single complete motion. For
both the GT and TT, each participant was asked to perform
a complete motion within 4 s and repeat it ten times. For the
TT and GT, a complete motion comprised ten cycles.
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Fig. 2. (a) TT and (b) GT tools.

TABLE I
DATA RECORDING

Depending on their physical condition, each participant
was asked to repeat each task two or three times. In total,
60 and 63 sets of measurements were obtained for the TT and
GT, respectively, and 62 and 61 sets of measurements were
obtained from healthy individuals and patients with stroke,
respectively (Table I). The data were collected from 16 IMU
sensors. Furthermore, acceleration and angular velocity in
three dimensions were extracted for each sensor.

C. Data Analysis
Because the sensors collected data every 23 ms, the data

were manually divided into ten cycles to exclude the influ-
ence of between-cycle data. Although the participants were
instructed to complete both the TT and GT in 4-s cycles, the
actual cycle duration varied among them. To determine the
acceleration and angular velocity trajectories, the time space
was adjusted to [0, 1]. These trajectories were thus a function
of time, and functional data analysis could be used to model
the data trajectories.

Let yi denote the outcome measured at time xi , where i =
1, · · · , N . The general model is expressed as follows:

yi = f (xi) + εi , i = 1, · · · , N, (1)

where f (·) is a prespecified smoothing function, N is the num-
ber of sample points, and εi denotes independent zero-mean
random variables. The smoothing function is often expressed
in terms of basis functions as follows:

f (t) =
k∑

j=1

φ j (t)c j , (2)

where k is a prespecified number of bases, φ j (·) is a prespec-
ified j th basis, and c j is the corresponding j th coefficient.
Although the task motions were performed periodically, the
duration of each cycle varied among participants. In this
study, two basis systems were thus considered: truncated
power base splines (i.e., regression splines; commonly used
for nonperiodic functional data) and Fourier bases (commonly
used for periodic functional data).

1) Regression Splines: To define a polynomial spline, the
range is first divided into T disjoint subintervals by tl , where

l = 1, . . . , T (called knots) and t0 denotes the lower bound of
the time interval. For a subinterval (tl , tl+1), a truncated power
function of order d is used as follows:

φ j (t) = t j−1, 1 ≤ j ≤ (d + 1) (3)

φd+ j (t) = (t − t j )
d+, 1 ≤ j ≤ T, (4)

where (t)+ = t if t > 0; otherwise, (t)+ = 0. The number
of parameters is (d + 1) × (T + 1) − T × d = d + T + 1.
According to [22], a cubic spline (d = 3) is sufficient to fit
the data trajectory properly when a sufficient number of knots
is considered. The bases are presented as follows: φ1(t) = 1,
φ2(t) = t ,

φ j+2(t) = d j (t) − dT−1(t), 1 ≤ j ≤ T − 2, (5)

where

d j (t) = (t − t j )
3+ − (t − tT )3+
tT − t j

. (6)

Each of these basis functions satisfies d ′′(·) = d ′′′(·) = 0.
To prevent the selection of a maximal set of knots, the

penalized residual sum of squares was used as follows:

RSS( f, λ) =
N∑

i=1

(yi − f (xi ))
2 + λ

∫
( f ′′(t))2 dt, (7)

where λ ∈ (0,∞), denoting a fixed smoothing parameter,
is used to identify the estimator of c j s. An explicit unique
minimizer, a natural spline with knots at the unique values of
xi for i = 1, 2, . . . , N can be obtained as follows:

f (t) =
N∑

j=1

φ j (t)c j , (8)

where φ j (t) is an N-dimensional set of basis functions for
natural splines. The criterion defined in (7) can be reduced as
follows:

RSS(c, λ) = (y − �c)′(y − �c) + λc′�φc, (9)

where {�}i j = N j (xi ) and {�} j k = ∫
φ′′

j (t)φ
′′
k (t)dt . The

tuning parameter λ determines the smoothness of the fitted
curve.

The multivariate adaptive regression spline procedure is then
used to determine a suitable set of optimally positioned knots.
The optimal value of λ is determined through generalized
crossvalidation and is represented as

GCV(λ) =
∑N

i=1(yi − f̂λ(xi ))
2

(1 − M(λ)/N)2 , (10)

where M(λ) is the effective number of parameters in the
model, including λ, the number of knots, and the optimal
positions of the knots.

2) FourierSeries: A Fourier series uses sin and cos functions
as the basis functions. In other words, we have φ2r−1(t) =
sin(rωt) and φ2r (t) = cos(rωt), where ω represents the
period. The Fourier series is then defined as follows:

f (t) = c0 + c1 sin ωt + c2 cos ωt + c3 sin 2ωt

+ c4 cos 2ωt + · · · . (11)
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Fig. 3. Data analysis flowchart.

D. Methodological Summary

As stated, in the GT and TT, a complete motion comprised
ten cycles. A smoothing trajectory based on the regression
spline was obtained for each of these cycles. For the Fourier
series, a smoothing trajectory was obtained for each of these
cycles and also for ten cycles. The feasibility of these fea-
ture constructions for classifying the level of stroke-related
motor impairment was evaluated using the k-nearest neighbor
(KNN), support vector machine (SVM), decision tree (DT),
random forest (RF), and naive Bayes classifier (NB) methods.
The results of two assessments were considered. The first was
an overall evaluation of the entire system, and the second was
used examine the importance of each of the 16 sensors. Owing
to the limited numer of measurements taken, feature reductions
were required for the first assessment. Fig. 3 illustrates the
flow of the data analysis.

1) Feature Construction: The regression spline was applied
using the smoothing.spline package in R, and the default
hyperparameters were used, except for the maximum number
of knots (nknots). In this study, 10 knots was the maximum.
The resulting smoothing splines had 12 coefficient estimates.
For an individual variable, ten sets of coefficient estimates and
their corresponding averages were obtained. This was the first
feature type and was termed CI.

The Fourier function in R was used for data fitting.
When the smoothing trajectory was being derived for only one
cycle, three Fourier bases provided a satisfactory fit for each
cycle and resulted in six coefficient estimates. The average
estimates of six coefficients corresponding to ten cycles were
then obtained. This was the second feature type and was
termed CII.

In accordance with the preliminary data exploration related
to various bases, ten Fourier bases were selected for ten
cycles and resulted in 20 coefficient estimates. This was the
third feature type and was termed CIII. The fitted curves for
acceleration are provided in Fig. 4 (a) and (b). These fitted
curves could capture trajectories and were not influenced by
outliers.

2) Feature Reductions: In each recording, each of the
16 sensors collected data on six variables. In other words, data

Fig. 4. Plot showing raw data, (a) the fitted smoothing spline and Fourier
series for one cycle, and (b) Fourier series for ten cycles.

TABLE II
NUMBER OF ESSENTIAL FEATURES DERIVED FOR DIFFERENT

MEASURES AND THE DIRECTIONS OF EACH

CONSTRUCTION FROM THE TT AND GT

on 96 variables were collected in each recording. Feature con-
struction was performed for each variable. The total number
of CI, CII, and CIII features in each recording was equal to
96 variables multiplied by the number of coefficients for each
construction, (1152, 576, and 1920, respectively). As indicated
in Table I, the number of recordings was relatively small.
To avoid overfitting in the classification, one-way analysis of
variance and a Wilcoxon signed-rank test were performed to
identify the essential features. Heat maps were generated to
present the importance of features on the basis of these two
tests. The columns present the features, and the rows present
the triaxial (X , Y , and Z ) acceleration (A) and angular velocity
(G); all these data were captured by the 16 sensors. Different
colors represent different levels of significance. A feature was
regarded as essential if and only if both p values derived from
these two tests were significant (< 0.05).

Table II summarizes the number of essential features
derived using different measures and the directions of CI,
CII, and CIII from the TT and GT. For the TT, 25.5%,
20.7%, and 17.1% of the features constructed from CI, CII,
and CIII, respectively, were identified as essential features.
CI yielded a slightly larger number of essential features than
did CII and CIII. Among the essential features in CI, 20.3%
were derived from acceleration and were equally distributed
in terms of direction. Two-thirds of the essential features
derived from CII were also derived from acceleration but
were primarily distributed in the X and Z directions. The
essential features derived from CIII were obtained in equal
number from acceleration and angular velocity. Most essential
features obtained from acceleration were derived from the
X and Z directions, whereas the largest number of essential
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Fig. 5. Heat map of the p values of features constructed from CI on the
basis of TT data, where colored areas represent essential features from
different sensors and directions for A. NS denotes nonsignificance.

features obtained from angular velocity were derived from the
Y direction.

For the GT, a larger number of essential features was
provided; 41%, 42.4%, and 27.6% of such features were
constructed from CI, CII and CIII, respectively. Different
from the TT, for the GT, the number of essential features
derived from acceleration and angular velocity were similar
for all constructions. However, differences existed in their
extraction in terms of direction. The essential features derived
from acceleration were primarily collected from the X and Z
directions, whereas those from G were from the Y direction.
No essential feature was derived from the X direction for CIII.

The heat maps of the features related to the TT and GT are
presented in Fig. 5; the columns contain information on the
features and the rows contain information on measurements,
directions, and sensors. Different colors are used to differ-
entiate between the information presented in rows. Blue and
red indicate essential features for A and G, respectively, and
a gradient of colors from dark to light shades distinguishes
between the X , Y , and Z directions.

The blue column in Fig. 5 represents approximately 80%
of the essential features selected from A. The distribution of
color depth was relatively uniform, and the colored column
areas were more concentrated for sensors 3, 4, 5, 7, 10, and
13. The blue columns have had an feature distribution, but the
red columns had a higher concentration of features 5 and 10
(data not shown).

Most of the essential features for CII were features 1, 4,
and 5 derived from the X and Z directions of A, as indicated
in Fig. 6. For G, almost all six features were obtained from
the Y direction of sensors 1, 2 and 3, and features 1–5 were
obtained from the Z direction of sensors 3 and 4 (data not
shown). For CIII, most of the essential features derived from
A were features 11–20, and those from G were features 1–10
(data not shown).

Fig. 7 (a) and (b) display the essential features for A and
G, respectively. For A, all 12 features were essential features.
They were derived from sensor 15 from the X direction;
sensors 1, 2, 5, and 8 from the Y direction; and sensor 16 from
the Z direction. In addition, 15 features from sensors 4, 7, 8,

Fig. 6. Heat map of p values of features constructed from CII on the
basis of TT data, where colored areas represent essential features from
different sensors and directions for A. NS denotes nonsignificance.

10, 12, and 13 from the Z direction were essential features,
and Feature 11 from sensors 1 and 3–15 from the X direction
was an essential feature. As indicated in Table II, most of
the essential features for G were derived from the Y direction
[see Fig. 7 (b)]. Feature 6 from the Y direction of all sensors
was determined to be essential. Except for feature 12, most of
the other features from sensors 1–14 were determined to be
essential.

For CII, all features from the X direction of sensors 4, 5,
8, 10, 11, 13, and 14 and the Z direction of sensors 3, 4,
6, 7, 9, 10, and 12 for A were essential features, as shown in
Fig. 8. For G, all features from the Y direction of sensors 2, 5,
and 8–14 were essential features, and all features from the Z
direction of sensor 9 were essential features. A similar pattern
was also observed for CIII (data not shown).

3) Evaluations: Classification procedures were performed
separately for the TT and GT. The results from each classifica-
tion are summarized in a confusion matrix. Let ni j represent
the number of observations for the i th observed value and
the j th predicted value, where 1, 2, and 3 represent individ-
uals with a healthy status, BS5, and BS4, respectively [23].
The overall accuracy was determined by dividing the num-
ber of correct predictions by the number of observations
(
∑3

i=1 nii /
∑

i j ni j ). Furthermore, the accuracy of classifica-
tions in identifying individuals without stroke, patients with
BS5, and patients with BS4 was also computed. The accuracy
in identifying individuals without stroke was determined by
the number of correct predictions of individuals without stroke
divided by the number of observations for that group. The
other definitions were similar to the aforementioned one.
Finally, the average overall accuracy was determined, as was
the accuracy over 30 task repetitions by individuals without
stroke, patients with BS5, and patients with BS4.

The classification was performed using the train function in
R’s Caret package. The training control is based on a fivefold
crossvalidation scheme. For the KNN method, tuneGrid in the
Caret package was applied such that the main parameters were
decided automatically, and the value of k was set from 1 to 30.
In accordance with a suggestion in [24], the radial basis
function kernel was used for the SVM classification, and the
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Fig. 7. Heat map of p values of features constructed from CI on the
basis of GT data, where colored areas represent essential features
from different sensors and directions for (a) A and (b) G. NS denotes
nonsignificance.

total number of unique combinations was set to 10 for the grid
search. The cp value in tuneGrid under the DT method was set
to apply searches from 0 to 0.005 in steps of 0.0005. The mtry
value was set to 1:15 for tuneGrid under the RF method. Under
the NB method, the rf parameter was set to search from 0 to
5 in steps of 1, the usekernel parameteer was set as TRUE,
and the adjusted parameter was set to search from 0 to 5 in
steps of 1. All these classification processes were repeated
30 times to determine the final accuracy ( Ā). Furthermore,
the sample standard deviation (SD) of the accuracy level after
30 repetitions was obtained to derive the error interval for
average accuracy, where the lower and upper bounds were
Ā−1.96×SD and Ā+1.96×SD, respectively. The lower bound
was set to 0 when the computed lower bound was negative.
When the computed upper bound exceeded 1, the upper bound
was set to 1.

III. RESULTS

A. Data Classification Involving Three Groups

The essential features obtained from three constructions
were used as classification inputs. Analyses were performed
for each task as follows:

Fig. 8. Heat map of the p values of features constructed from CII on
the basis of GT data, where colored areas represent essential features
from different sensor and directions for (a) A and (b) G. NS denotes
nonsignificance.

1) TT: The average overall accuracy from 30 repetitions of
the TT was computed, as indicated in Fig. 9 (a). The highest
overall classification accuracy was that for CI, as determined
by the KNN method, followed by that for CI and CII, as deter-
mined by the SVM method. Regardless of the classification
method used, the essential features in CI had the best classi-
fication performance of all features. The classification ability
from the use of essential CII and CIII features varied based on
classification method. Under the KNN, DT, and NB methods,
CI yielded a slightly higher accuracy than did CII and CIII.
The error interval for CI under the KNN method was slightly
shorter than those for the other methods, whereas the error
intervals under the DT and NB methods were slight longer
than those for the other methods. The error intervals derived
from CI, CII, and CIII for the SVM and RF methods mostly
overlapped. Under the KNN method, the error interval derived
from CI was significantly higher that derived from CIII. Three
error intervals for the DT method were siginificantly lower.

Fig. 9 (b)–(d) presents the average accuracy in identifying
individuals without stroke, patients with BS5, and patients with
BS4. The highest average accuracy for individuals without
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Fig. 9. Average accuracy on the basis of TT data: (a) overall, (b) for
individuals without stroke, (c) for patients with BS5, and (d) for patients
with BS4.

stroke was achieved using the RF method and essential CII
features. The second highest accuracy was achieved using
the KNN method and essential CI features. The performance
of classification methods varied based on the construction
of essential features. Except for when the the KNN and
SVM methods were applied, the highest classification accuracy
was observed when essential CII features were used. The
essential CIII features had the poorest classification ability
among all features. The error intervals for CI, CII, and CIII
overlapped when the SVM method was applied, and the error
interval was slightly shorter for CII than it was for CI and
CIII. In particular, the lower bound of the error interval was
very close to 0.8. The error interval derived from CII was
slightly higher than those derived from CI and CIII when
the RF method was used. The error interval of the average
accuracy derived from CI and CII under the KNN method
was significantly longer than that derived from CIII. The
error interval was longer when the DT and NB methods were
applied. The DT method provided significantly lower error
intervals than did the other methods.

The highest average accuracy with which the patients with
BS5 were identified slightly exceeded 0.85, as indicated in
Fig. 9 (c). Except for the DT and NB methods, the classifi-
cation methods through which the essential CI features were
input performed favorably. Classification method performance
varied when the essential CII and CIII features were input.
Under the RF and NB methods, the average accuracy for
CIII was slightly higher than that for CII. Compared with
individuals without stroke, the error interval was slightly
longer for patients with BS5. Under the SVM and KNN
methods, the error intervals for CI, CII, and CIII overlapped,
but the error intervals for CII obtained from the SVM and
KNN methods were shorter than those for CI and CII. The
error intervals for CI and CIII under the RF method were
slightly longer than the relevant error interval for CII. Under
the DT and NB methods, the error intervals for CI, CII, and
CIII overlapped.

Only eight recordings were included for patients with
BS4. Regardless of which construction was used, excellent

classification ability was noted for this group under the SVM
and RF methods. Except for when the DT method was applied,
the average accuracy for CI was >0.91. For CIII, the average
accuracy was >0.81. When the essential CII features were
input, classification was only successfully performed under
the SVM and RF methods. Overall, the DT method had the
poorest classification ability. The longest error interval was
observed for patients with BS4. The upper bound for the KNN,
SVM, and RF methods was set to 1, and the lower bound for
the DT method was set to 0. The length of the error interval
derived from CI and CIII under the RF method was close to
0. That is, overfitting fitting was noted under the RF method
for patients with BS4. Under the SVM method, the length
of the error interval for CIII was close to 0, and the error
intervals for CI and CII were slightly wider than that for CII.
The KNN, DT, and NB methods provided a similar pattern of
error intervals for CI, CII, and CIII, where the interval lengths
derived from CIII for the KNN and NB methods and from CII
for the DT method were slightly shorter. The performance of
the DT method varied substantially across 30 repetitions.

2) GT: Fig. 10 (a)–(d) presents the average accuracy of
30 repetitions of the GT. The essential CI features under
the SVM method had the highest overall average accuracy,
followed by the essential CII features under the KNN method.
Among constructions, the SVM method had the best clas-
sification ability. Except for those under the DT method,
essential CI features had an average classification accuracy
of >0.78. When the essential CII features were input, the
average accuracy under the KNN and SVM methods was
>0.84. Except for when the SVM method was used, the
essential CIII features did not provide sufficient information
to enable classification. The error interval patterns under the
SVM, DT, and RF methods were similar. The error interval for
CI was significantly higher than that for CIII. When the KNN
method was used, the accuracy derived from three essential
constructions differed significantly. The error interval derived
from CII was higher than that from CI, and that from CIII
was significantly lower. Most of the error intervals derived
from CI, CII, and CIII overlapped under the NB method and
the DT method.

Fig. 10 (b) presents the average accuracy for classifying
individuals without stroke. When the essential CI features
were used as inputs under the SVM method, the average
accuracy was closer to 1. Except under the DT method, the
average classification accuracy was >0.85 when the essential
CI features were input, whereas that when the essential CII
features were input was >0.80. The essential CIII features
had the poorest classification ability of all features. The error
intervals derived from CI under the SVM and RF methods
were slightly longer than those from CII and CIII. The lower
bound of the error interval for the SVM method exceeded
0.8. Under the KNN method, the lower bound of the error
interval derived from CI and CII exceeded 0.8, whereas the
upper bound under the error interval derived from CIII was
close to 0.8. The patterns of error intervals under the DT and
NB methods were similar.

The average accuracy for classifying patients with BS5 was
similar to that for classifying individuals without stroke. Under
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Fig. 10. Accuracy on the basis of the GT data: (a) overall, (b) for the
individuals without stroke, (c) for the patients with BS5, and (d) for patients
with BS4.

the SVM method, when essential CI features were used, the
highest average accuracy of 0.88 was obtained, as indicated
in Fig. 10 (c). When the essential CII features were used, the
second highest average accuracy of 0.85 was obtained under
the SVM method, and the third highest average accuracy was
obtained under the KNN method. Regardless of construction,
the RF and NB methods had average accuracy levels slightly
exceeding 0.7 and 0.6, respectively. Three error intervals
overlapped under the SVM, DT, RF, and NB methods, where
the error interval derived from CI was slightly higher than
those derived from CII and CIII. The error interval patterns
derived CI, CIII and CIII under the KNN method were similar
to those for the individuals without stroke.

Under the RF and SVM methods, when the essential CI
features were used, the average accuracies obtained were
approximately 1 and 0.94, respectively [Fig. 10 (d)]. Regard-
less of essential feature construction, the average accuracy
under the RF method was >0.9. Classification was not possible
under the DT method. The patterns of error intervals under the
SVM and RF methods were similar. The interval derived from
CI was significantly shorter that that derived from CIII. Under
the KNN method, the the error intervals derived from CI and
CII were significantly shorter than the interval derived from
CIII. All the error intervals under the DT and NB methods
were wide.

B. Sensor-Specific Classification Among Three Groups
The essential information derived from the sensor data

varied with task design. The classification performance based
on sensor data is discussed as follows. All of the features
derived from CI were input.

1) TT: Fig. 11 (a)–(b) presents the average classification
accuracy for each sensor worn during the TT for the CI feature
type.

When the essential features derived from CI were used, the
classification accuracy for most of the sensors was comparable
under the KNN, SVM, and RF methods [Fig. 11 (a)]. The
features derived from the data collected by sensors 1 and

Fig. 11. Average accuracy of each sensor on TT in CI (a) all individuals,
(b) individuals without stroke, (c) patients with BS5, and (d) patients
with BS4.

2 provided valuable information for differentiation between
participants. The average accuracy obtained under the KNN
method was higher than those obtained under other methods
for most sensor data. When sensors 6, 10, and 16 were
excluded, the average accuracy was >0.7.

Fig. 11 (b) presents the average accuracy obtained using
the CI features for individuals without stroke. The highest
average accuracy was again derived from the features extracted
from data collected by sensors 1 and 2. The KNN method
used features from sensor 1 data, and the SVM method used
features from sensor 2 data. As for the features obtained
from the data of most sensors, the KNN method had higher
classification power than other methods. The performance of
the SVM, RF, and NB methods was comparable for data
collected by sensors other than sensors 1 and 2.

The results related to average accuracy in classifying
patients with BS5 are detailed in Fig. 11 (c). Data from sen-
sor 2 provided more information than those from other sensors
for identifying individuals in this group under the KNN and
SVM methods. In contrast to the results for individuals without
stroke, under the SVM method, features were derived from
sensor 15 data. For the remaining sensor data, the performance
of the KNN, SVM, and RF methods was comparable.

The performance of the methods varied considerably in
classifying patients with BS4. For sensors 1, 2, 5, 8, 10,
and 15, the RF method outperformed the other methods, and
the average accuracy exceeded 0.95. For sensors 1, 2, 5, 6,
and 8, the SVM method also yielded an average accuracy of
>0.9. However, when sensor 12 data were used, differentiation
between participants was not possible under the SVM and
RF methods. When data from sensors 1, 3, 4, and 5 were
used, the average accuracy obtained under the KNN method
was >0.85. Finally, the NB method yielded a slightly higher
average accuracy when data from sensors 4, 5, and 7 were
used.

The average accuracy for each group for CII and CIII
had similar patterns but was lower than the overall average
accuracy (data not shown).
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Fig. 12. Average accuracy of each sensor for the GT in CI for (a) all
participants, (b) individuals without stroke, (c) patients with BS5, and
(d) patients with BS4.

2) GT: Fig. 12 (a) presents the average accuracy for CI on
the GT. Most of the sensor data provided sufficient information
for the SVM method to differentiate between the participants.
Almost all the sensor data had an average accuracy of >0.8.
The performance of the KNN and RF methods was compara-
ble, and the average accuracy slightly exceeded 0.75.

The results related to the average accuracy in classi-
fying individuals without stroke, patients with BS5, and
patients with BS4 (using the CI features) are presented in
Fig. 12 (b), (c), and (d), respectively.

The KNN and SVM methods identified individuals without
stroke with high accuracy, as indicated in Fig 12 (b). The
average classification accuracy under the KNN method was
slightly higher, and features derived from sensor 2 data had the
highest average classification accuracy. The highest average
accuracy under the SVM method was achieved using features
derived from sensor 14 data. The average accuracy under
the RF method was 5% lower than that under the SVM
method.

Patients with BS5 were identified under the SVM method
at an average accuracy of >0.85 [Fig. 12 (c)]. The features
derived from data from sensors 9 and 14 provided sufficient
information for classification. When the features derived from
sensors 2, 5, 8, 11, and 12 were used, the KNN method
had an average accuracy slightly exceeding 0.8. The average
accuracy under the RF method slightly exceeded 0.7. The
average accuracy under the DT method ranged from 0.4 to 0.6.

The classification of patients with BS4 differed from that
of the individuals without stroke, as indicated in Fig. 12 (d).
When most of the sensor data were used, the highest average
accuracy was achieved under the RF method; the average
accuracy achieved was 1 when data from sensors 1 and
10 were used. The second highest average accuracy was
obtained under the SVM method; the average accuracy was
> 0.9 when features derived from sensors 1, 5, 11, and 13–15
were used. When features derived from sensor 1 data were
used, the NB method had an average accuracy of 0.9. Under
the DT method, the average accuracy was <0.5.

IV. DISCUSSION

The approach of smoothing bases through regres-
sion (smoothing) splines and Fourier bases (series) was used to
extract features from accelerometer and gyroscope data. The
hand function of patients with stroke was evaluated using the
TT and GT. According to the results, to differentiate between
individuals without stroke, patients with BS4, and patients with
BS5, CI coefficient estimates can be applied to either the TT or
GT. For the TT, the coefficient estimates related to smoothing
splines derived from sensors 1 and 2 were fairly accurate; for
the GT, the corresponding estimates derived from sensor 14
data had the highest accuracy, followed by those derived from
data from sensors 1, 5, and 9–11.

Model performance was estimated using a fivefold cross-
validation scheme and customized tuning grids. Furthermore,
all processes were repeated 30 times to ensure the reliabil-
ity of the classification result. For the TT, the KNN and
SVM methods provided good classification accuracy when the
essential features from CI were input. The KNN method had
a slighter higher accuracy in identifying individuals without
stroke, whereas the SVM method had higher accuracy in
identifying patients With BS4. For the GT, the SVM method
outperformed the other methods in terms of classification when
essential CI features were used. In addition, although only
eight recordings of patients with BS4 were included in this
study, classification accuracy remained satisfactory under the
SVM and RF methods. However, the DT method was not
appropriate for use with imbalanced data.

Although participants were asked to perform the task
repeatedly, some time gaps remained between repetitions. The
cyclical characteristics of sample data remained somewhat
unclear. Consequently, the lowest classification accuracy was
achieved when CIII features were used. Thus, for similar
experiments, the extraction of features for each cycle is
advised. Furthermore, the CI and CII features were derived
by computing the average coefficient estimates for ten cycles.
Since the data trajectories of patients with BS4 or BS5 was not
as regular as that of individuals without stroke, the variability
levels in coefficient estimates for ten cycles can be treated as
potential features for classification in addition to averages for
summarizing features.

The number of degrees of freedom selected for functional
form was restricted because the number of variables already
considerably exceeded the number of participants. If a larger
sample size is employed, the model accuracy can be improved
using a more complex functional form. The functional form
of our accelerometer and gyroscope data was nonperiodic.
Because a Fourier series was designed to model the cyclical
data, a wavelet series may also be applicable for these data.

Table III details the methods used in [16], [18], [25], [26]
and the current method for comparison. In [16], the researchers
directly extracted features from the movement characteristics
of each participant. By contrast, [18] computed summary
statistics in terms of centrality and variability in each cycle
to extract raw data from each task. To reduce the number
of features, an independent-samples t-test and PCA were
performed, and the features derived from the PCA were
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TABLE III
DETAILS OF PREVIOUS METHODS AND THE PROPOSED

METHOD FOR COMPARISON

linear combinations of summary statistics of centrality and
variability. Notably, the summary statistics, especially those
for variability, were highly sensitive to outliers. [25] and [26]
have extracted motion periodic motion parameters as features
and then used statistical methods, such as the Kruskal–Wallis
test, for feature selection. Under these methods, features with
repeated effects may be selected, which in turn affects the
prediction effect of the classifier. However, in the proposed
method, a functional form was fitted to the trajectory of each
cycle in each task. The features, which are coefficient esti-
mates, represent the direct characteristics of functional forms.
Furthermore, generalized crossvalidation was conducted to
determine the number of parameters that in turn determined the
smoothness of data trajectories. Unlike the summary statistics
computed from all sample data, the proposed method used the
coefficients of the smoothed curve and hence the outliers had
a negligible influence on the features.

As discussed in [18] and as determined through variable
loading in the PCA, the most critical sensor position was
indirect, and only features obtained from the TT could dis-
tinguish between patients with BS5 and BS4. However, the
proposed method of constructing features was effective at
classifying patients’ BS and identifying the important position

TABLE IV
ACCURACY UNDER VARIOUS CLASSIFICATION METHODS ON TT AND

THE GT

of sensors on the data glove. Table IV presents a summary,
for each sensor in each task, of the number of classification
methods under which the average group accuracy was higher
than 0.85 and between 0.8 and 0.85 when CI features were
used. For the TT, the information provided by sensor 2 was
the most useful for classification, followed by the information
provided by sensors 5, 1, 8, and 15. When the thumb was
pressing a button, sensors 1 and 2 captured larger movements,
sensor 15 captured muscle movements, and sensor 5 generated
a signal upon impact or contact with the thumb. Determined
according to physical principles, the order of inference effects
is as follows: sensor 1 > sensor 2 > sensor 15 > sensor 5.
Sensor 1 was positioned at the fingertips and was therefore
easily affected by the sliding of a glove and by the reaction
force generated from pressing a button. Moreover, the amount
of noise was relatively large, meaning that the related effect
may have been reduced. In the GT, differentiation between
groups was possible under most of classification methods
when features derived from sensors 1, 5, 8, 10, and 11 were
used. Sensor 16 was designed as a reference for computing
another measurement and was demonstrated to be unimportant.
Per physical principles, inference effects were expected to
be strongest under sensors 1, 3, 6, 9, and 12, which were
positioned on the fingertips. However, a similar problem as
that encountered with the TT occurred: the fingertip sensors
were susceptible to sliding of gloves and the reaction force
generated by gripping. Furthermore, the amount of noise
was relatively large, meaning that the effect may have been
reduced. Sensor 1 captured a larger range of motion during
the GT, meaning that it was the most effective sensor overall,
followed by sensors 5, 8, 11, and 14, which were positioned
at the base of the fingers. The position in sensor 1 in the
rankings was pushed back once more because the movement
of the little finger was too small.

Owing to the design of the data grove, the current study
can only be used to evaluate patients with minor motor
impairment, such as patients with BS4 to BS6. For patients
with severe motor impairment, the priority of rehabilitation
should be focused on movements of the entire upper limbs.
Other device designs might be required. Furthermore, because
of the inconsistent number of recordings in the TT and GT,
the data for the TT and GT could not be merged. In future
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studies, the number of recordings for each task should be set to
be consistent such that multitask integration can be performed.

V. CONCLUSION

In accordance with the results of this study, functional
analysis can be used to model the trajectory of data colllected
by IMU sensors, and the corresponding coefficients can be
treated as features for evaluating hand function. The GT task
provided more sophisticated features to distinguish the extent
of the hand function determined by BS. When the GT was
used, the features had average accuracies of over 0.9 under the
SVM method. When only data from sensors 1, 5, 8, 10, and
11 were used, the average accuracy was also over 0.91. Thus,
in future data glove systems, only six sensors can be used, and
a functional analysis model can be used to extract the features
for evaluating hand function and formulating rehabilitation
plans.
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