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Gait Classification With Gait Inherent Attribute
Identification From Ankle’s Kinematics
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Abstract— The human ankle joint interacts with the envi-
ronment during ambulation to provide mobility and maintain
stability. This association changes depending on the differ-
ent gait patterns of day-to-day life. In this study, we inves-
tigated this interaction and extracted kinematic information
to classify human walking mode into upstairs, downstairs,
treadmill, overground and stationary in real-time using a
single-DoF IMU axis. The proposed algorithm’s uniqueness
is twofold - it encompasses components of the ankle’s bio-
mechanics and subject-specificity through the extraction of
inherent walking attributes and user calibration. The perfor-
mance analysis with forty healthy participants (mean age:
26.8± 5.6 years yielded an accuracy of 89.57% and 87.55% in
the left and right sensors, respectively. The study, also, por-
trays the implementation of heuristics to combine predic-
tions from sensors at both feet to yield a single conclusive
decision with better performance measures. The simplicity
yet reliability of the algorithm in healthy participants and
the observation of inherent multimodal walking features,
similar to young adults, in elderly participants through a
case study, demonstrate our proposed algorithm’s potential
as a high-level automatic switching framework in robotic
gait interventions for multimodal walking.

Index Terms— Ankle kinematics, multimodal walking, gait
classification.

I. INTRODUCTION

THE improvement and restoration of the gait perfor-
mance while ambulating in daily living conditions, which

involves activities of ascending/descending stairs and over-
ground walking, has been an important aspect of the robotic
rehabilitation community [1]–[3]. Walking in a controlled lab-
oratory setting does not represent a realistic scenario of the real
world where users involve multiple walking modes [1], [2].
Walking in multimodal conditions with the trivial interventions
of aerobic exercises, strength training, and treadmill walking,
stroke, older adults (aged 71 years and above) and Parkinson’s
Disease patients have shown generalizability and transference
effects of gait training into unsupervised walking [4], [5].
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There are abundant gait studies that have shown successful
robotic gait interventions in neuromuscular disorder patient
groups in single walking mode involving treadmill [6]–[8],
overground [9]–[11], or stairs walking [12]–[14]. In these
interventions, an important decision process of determining the
duration, magnitude, and activation instance of the externally
applied assistive forces requires elements of subject-specificity
and gait adaptability. To achieve these intervention objec-
tives, different kinds of adaptive and data-driven algorithms
have been developed utilizing single [15], [16] or multiple
sensors [17], [18].

In multimodal walking, each mode has a specific biome-
chanical requirement, and the same intervention cannot be
applied across all walking modes. In Kang et al. [1], differ-
ent walking mode-specific hip-joint moment trajectories were
implemented to design multimodal gait interventions with the
controller manually switching its intervention type. Ankle-
joint moment trajectory being different in each walking mode,
a ground reaction-based model for the ankle moment control
strategy was designed for multimodal gait intervention [2].
For effective and successful implementation of multimodal
interventions in activities of daily living, there is a need to
automatically switch from one walking mode to another for
specific gait intervention.

The current modalities of classifying multimodal walking
use a data-driven approach of gait models or machine learning
techniques [18]–[28]. The classification algorithms based on
support vector machine [19], [21], [22], neural networks [21],
[23], fuzzy logic [24], [25], k-nearest neighbors [18], [20],
decision tree [21], Bayesian networks [26], [27], and Gaussian
Mixture Model [28] have been developed providing accuracies
from 77.3% to 97.6%. These methods rely on a large dataset
for training the model offline, post-processing algorithms,
or utilizing multiple sensorial inputs for walking mode clas-
sification, which have been identified to add computation
load and processing speed constraints [2], [27]. Further, such
approaches have been projected as black box models [27],
where the biomechanical significance of different walking
modes remains unknown. Therefore, there is a need for
developing classification algorithms with gait adaptability and
subject specificity that promotes smooth real-time intervention
applications while transitioning between different modes of
daily living activities.

Walking is the outcome of interlimb coordination and syn-
chronized joint movements [29]. During multimodal walking,
the multi-limb movements are altered to meet the need for spe-
cific walking mode. The rhythmic flow and the repetitiveness
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of walking is one of the striking inherent and common
features across walking modes [30]. In this work, we aim to
exploit the kinematic repetitiveness of lower limb movements
to develop algorithms for multimodal walking classification.
Further, we investigate the repetitive nature of the ankle
kinematics to extract inherent attributes specific to different
modes of multimodal walking.

In this study, a single sensor and single-DoF input-based
real-time classification algorithm is developed to detect walk-
ing modes of upstairs, downstairs, treadmill, overground, and
stationary. As the shank and the foot segments are connected
with the ankle joint, the shank was chosen to place the inertial
sensor to acquire repetitive gyroscopic angular velocity in
different walking modes. The algorithm was evaluated with
performance measures in multimodal locomotion testing with
forty healthy individuals. We hypothesized that (i) investi-
gating ankle joint motion in different walking modes will
elicit inherent features to classify the states of multimodal
locomotion; and (ii) with key feature identification, a single-
DoF repetitive signal acquisition will yield high-performance
measures. A case study with two elderly participants was
conducted to demonstrate the applicability of the proposed
classification algorithm for future utilization in targeted pop-
ulation groups.

II. METHOD

A. Subject Participation and Experimental Protocol

Forty healthy subjects volunteered to take part in the
study. Participants were informed about the research procedure
and signed a written consent approved by the Indian Insti-
tute of Technology Gandhinagar Ethics Committee (Identifier
Number: IEC/2019-20/4/VV/036). None of the participants
reported any gait disorder and could walk comfortably with-
out any assistance. Research assistants obtained information
about the demographic variables of the participants (mean
age: 26.8 ± 5.6 years; height: 168.5 ± 15.7 cm; weight:
76.8 ± 10.2 kgs; 32 right footed and 8 left footed; 26 males
and 14 females). Exclusion criteria for the study involved
ambulation inability due to neuromuscular disorder.

The validity of the classifier algorithm was tested by
experimenting with 40 healthy participants. The experimental
paradigm was designed to contain all five walking modes –
upstairs, downstairs, treadmill, overground and stationary - in
one session. The participants wore the sensor units that were
connected to the smartphone application over WiFi. The
experiment comprised of two phases – the calibration and the
trial phase. The calibration was done prior to the trial phase for
20 seconds during which the participants walked overground
at a comfortable speed. The initiation of both phases was
controlled by the smartphone application. The participant
followed experimental protocol in the order - upstairs (US,
5 stairs), downstairs (DS, 5 stairs), US (5 stairs), overground
(OG, ≈ 100m) and treadmill (TM, 1 minute) with 10 sec
of stationary (S) in between two walking states except when
transitioning from US to OG, as shown in Fig. 1A. The trial
took an average of 176.47 ± 8.91 seconds to complete for a
single participant. The research assistants walked alongside the

participant to guide them through the walking passage back
to the laboratory.

B. Sensor System Overview
1) Hardware: A sensor system with portable and wearable

capabilities was designed for this study as shown in Fig. 1A-B.
The current system contains two shank units, one for each
foot, and a smartphone application for providing real-time
feedback of the predicted walking state and user’s other gait
characteristics. Each shank unit contains a raspberry pi 3A+
single-board computer, 9-axis inertial measurement unit (IMU,
SparkFun 9-DoF Razor M0), and a 3800 mAh Li-ion battery
to power the unit. The range of IMU’s accelerometer and
the gyroscope axes were configured at ± 2g and ± 2000◦/s,
respectively.

2) Unit Placement: The components of each sensor unit
were mounted on an elastic velcro brace with a 3D printed
housing on top. The assembled unit was worn as an ankle
bracelet around the lower end of the shank closer to the ankle
joint. The positive local Z-axis of the IMU was adjusted to
point outwards from the body in the left-to-right direction
(approximately aligning with the mediolateral walking axis),
Fig. 1B. The alignment of IMU’s X and Y axes to any
biomechanical walking axis does not bear significance as these
DoFs were not used in the algorithm. However, to be consis-
tent in the protocol, the X-axis was approximately aligned
perpendicularly to the tibia and the Y-axis along the shank’s
longitudinal axis.

3) Communication Protocol: The IMU communicates with
raspberry pi 3A+ using a Universal Asynchronous Receiver-
Transmitter (UART) protocol. The IMU data acquisition and
the gait classification and characterization were performed
at 100 Hz. The smartphone and the shank units were connected
to the same hosted network over WiFi, Fig. 1B. The smart-
phone was configured as a server and the shank units as clients.
A Transmission Control Protocol (TCP) socket was created
at a pre-defined idle port number to facilitate communication
between the server and the clients. To start using the system,
the smartphone application sent separate triggers to both the
shank units simultaneously via TCP packets over WiFi for
calibrating algorithm parameters and starting the experiment.
The clients, then, respond with the necessary gait data of
fixed byte length for streaming. The streaming rate on the
smartphone application was configured at 100 Hz.

4) Smartphone Application: An user-interactive application
was developed using the Python-based Kivy platform. The
application utilizes the host smartphone’s WiFi to create a
server and connects with the client shank units for wireless
data transfer using the TCP socket framework. The applica-
tion streams the classified walking mode states, IMU’s local
z-axis gyroscope values, events in a walking cycle, walking
frequency, and time elapsed from both the shank units. It also
provides controls to start the calibration and the actual trial.

C. Gait Classification

The finite state machine diagram in Fig. 2 depicts the infor-
mation flow of various parameters to classify walking modes.
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Fig. 1. A) Image illustrating experimental protocol adopted for testing the classifier algorithm: upstairs (10 steps)→ downstairs (10 steps)→ upstairs
(10 steps)→ overground (≈100m with two left turns)→ treadmill walking (60s). The participant depicted agreed to the use of their image. B) Both
the shank sensor systems are shown that predicts walking states in real-time. The sensors connect with the smartphone over the same hosted
WiFi network and provide feedback onto a custom designed smartphone application using transmission control protocol (TCP). C) Representation
of FCk, λk, LCk, and MSk events in the four walking states of (i) overground (OG), treadmill (TM), (ii) upstairs (US), and (iii) downstairs (DS). FCk
corresponds to heel-strike in OG and TM states whereas LCk refers to toe-off in OG and TM. For normal walking on stairs, LCk may correspond to
toe-off. λk event occurs between FCk and LCk when the contralateral foot is swinging.

Fig. 2. A) The results of events detection algorithm for the different walking modes are depicted. All the walking modes show unique features
represented in the pink enclosed box. The events of foot contact (FC), last contact (LC), classifier decision peak (λ), and mid-swing (MS) remains
prominent among all walking modes. C1 is a sensor calibrated constant used for differentiating FC valley from the LC valley. B) The state machine
diagram for the gait classification implemented at each sensor unit. (i) The mediolateral gyroscope values, ω, are accessed from the IMU each
iteration at 100 Hz and are fed to the event detection algorithm that outputs the four walking events every kth walking cycle. (ii) The calibration
algorithm computes two calibrated parameters, αcal and βcal over the overground walking. (iii) The classifier algorithm, Algorithm 2, is invoked once
every walking cycle at λk-peak that predicts {ζ, T, S} walking modes. Until the detection of the next λk-peak event, the previous state of the classifier
is maintained.

It involves three layers of algorithm which are processed at
different frequency rate - (a) the event detection algorithm,
Fig. 2B(i), runs at 100 Hz and give outputs once every walking

cycle (at the user’s walking frequency), (b) the calibration
algorithm, Fig. 2B(ii), runs once at the end of 20s over-
ground calibration prior to the experimental trial, and (c) the
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classification algorithm for the walking states (ζ := US, DS,
TM, OG), runs at the user’s walking frequency, Fig. 2B(iii).
All three layers of the algorithm work on the single-DoF, local
z-axis, gyroscope values and its operated derivatives, refer
Fig. 2B, thereby reducing processing complexity and power
consumption.

1) Walking Event Detection: The event detection algorithm
recognizes major events in every kth walking cycle - First
Contact (FCk), Last Contact (LCk), and Mid-Swing (M Sk ) for
different walking patterns in ζ , refer Fig. 1C. Another critical
event, λk -peak, is detected that invokes the gait classification
algorithm.

The FCk is defined as the event when the foot makes
contact with the ground to initiate the kth walking cycle.
It corresponds to Heel-Strikes (HSs) when in OG or TM
walking, as shown in Fig. 1C(i). The LCk is the event at
which the foot lifts-off the ground providing propulsion to
move forward. The LCk events are the Toe-Offs (TOs) in
OG and TM walking, refer Fig. 1C(i). For normal walking
on stairs, the LCks may also correspond to TOs as the body
has a tendency to move forward during walking and shifts
the body weight to the leading foot via trailing foot’s TO,
refer Fig. 1C(ii, iii). The M Sk is defined as the event when
the swinging leg passes the contralateral leg in stance phase
with both legs side-by-side as depicted in Fig. 1C(i-iii). The
λk-peak is defined as the event that occurs between FCk and
LCk as a peak of the gyroscope’s mediolateral axis waveform,
ω, and the contralateral leg is swinging as shown Fig. 1C(i-iii).
Therefore, the sequence of event detection is FCk (valley),
λk (peak), LCk (valley), and M Sk (peak) from ω waveform.
To ensure that the two valleys are differentiated accurately, the
former valley (FCk) occurs after M Sk−1 when the ω profile
has crossed a positive sensor calibrated value, (C1), twice as
in line 6 Algorithm 1. The latter valley (LCk) occurs after
λk-peak as in line 13 of Algorithm 1. Similarly, the two peaks
(λk and M Sk ) are distinguished with a sequential search of
these events. The value of C1 was set through a pilot test phase
where the ω waveform nature in swing phase was observed
for a comfortable walking speed range of 1.5 to 3 kmph. The
C1 magnitude 90.123◦/sec is the minimum angular velocity
that the shank surpasses twice in the swing phase - the first
time while the ankle is plantarflexed (ω waveform going up)
and the second time when the ankle is dorsiflexed (ω waveform
coming down), see Fig. 2A. The decimal number of C1 is kept
to three places to ensure the equality condition never hold in
line 4 of Algorithm 1 considering that the ω signal acquired
from the gyroscope is upto two decimal places.

2) Calibration: The walking style of every individual is
unique resulting in different parametric nature of key events in
a walking cycle. The calibration phase provides two important
features for real-time assessment in gait classification, thus,
preserves the subject-specific component of the algorithm. The
calibration trial requires the participant to walk overground at a
comfortable speed for 20 seconds once before the experimental
trial. At the end of 20 seconds, the algorithm computes the
participant-specific baseline values denoted by αcal and βcal .
Let N be the number of gait cycles in the calibration phase
then μ and σ denote the mean and standard deviation of ωFCk

Algorithm 1: Event Detection

1 Initialization:
C1 ← 90.123 � Sensor calibrated value
fs ← 100 � Sampling frequency (Hz)
μ1, μ2 ← 0.4, 0.66 � Waveform constants
ωFCk , ωλk , ωLCk , ωM Sk ← NaN CFC ← 0
while ωi ← GyroscopeZ−axis do

2 A[1:20]← ωi , ωi−1, …ωi−19 � Stack buffer A
function detectEvent()

3 if (ωi − C1)(ωi−1 − C1) < 0 then
4 CFC++;
5 if CFC == 2 then
6 if valleyFound() < 0 then
7 FCk detected; CFC ← 0;
8 if μ1ωFC ≤ ωi ≤ C1 then
9 if peakFound() < 0 && FCk �= {} then

10 λk-peak detected;
11 if ωi ≤ μ2 then
12 if valleyFound() < 0 && λk �= {} then
13 LCk detected;
14 if peakFound() > 0 && LCk �= {} then
15 M Sk detected;

Algorithm 2: Gait Classification

1 Initialization:
C2 ← 3 C S ← OG � default OG state
function stateClassify()

2 if λk �= {} then
3 if ωλk > 0 then
4 C Sk ← US � US detected
5 if βk > βcal then
6 C Sk ← DS � DS detected
7 if ωFCk > α && C Sk−1 �= T M then
8 C Sk ← T � T detected
9 if ωFCk > α && C Sk−1 �= (DS 	 US) then

10 C Sk ← TM � TM detected
11 if ωFCk ≤ α then
12 C Sk ← OG � OG detected
13 if abs(Amax − Amin) < C2 then
14 C Sk ← S � S detected

with k = 1, 2, . . . N, respectively, see Fig. 2B(ii). The αcal

is statistically defined as two standard deviations above the
mean, μ+ 2σ , which is the upper limit of the 95.45% normal
distribution of ωFCk , refer Fig. 2B(ii). βcal is the mean of
the number of data points between M Sk−1 and FCk - an
indicator to the slope of the ω waveform between the two
events, refer Fig. 2B(ii).

3) Classification: The distinguishing features of the ω wave-
form among ζ states used in the current work for healthy
gait are highlighted in Fig. 2A. In US, there is a clear
distinction from other walking states. The algorithm classifies
US when the λk-peak takes positive ω values, as in line 4
Algorithm 2. The DS is predicted when the slope of ω



SINGH AND VASHISTA: GAIT CLASSIFICATION WITH GAIT INHERENT ATTRIBUTE IDENTIFICATION FROM ANKLE’S KINEMATICS 837

Fig. 3. The plot shows the result of the proposed walking mode classification algorithm in real-time for a representative participant on both the
sensor units - left (A) and right (B) shanks. The sensor calibrated value, C1, and participant calibrated parameter, αcal, are also depicted for the
representative participant. The real-time detection of walking events - first contact (FCk), λk-peak, last contact (LCk), and mid-swing (MSk) are shown
on each sensor’s gyroscope waveform along local z-axis. The actual (predicted) states are depicted in red plots whereas the reference (ground truth)
state is shown in alternated blue- and yellow-shaded regions with a [.]R.

waveform between the M Sk−1 and FCk events decreases
gradually compared to other walking states where the decline
is steep, coded in line 6 Algorithm 2. OG is declared whenever
ωFCk value goes below the calibrated αcal as in line 12 of
Algorithm 2 whereas in TM, the ωFCk lies above αcal ,
accounted in line 10 Algorithm 2. The defining features of US
and DS are mutually exclusive, thereby, an intrinsic feature of
these states. However, the differentiating feature of OG/TM
is not mutually exclusive with US and DS, i.e., the ωFCk in
US and DS may be above αcal . Therefore, the classification
algorithm is structured in an if-statement ladder such that it
searches for the US and DS first before exploring the TM and
OG states, refer Algorithm 2. Additionally, the algorithm uses
a holding state, referred as the Transition (T) state, to improve
its reliability. The S state is determined outside the if-statement
structure by examining the peak-to-peak ω values in the
(A1×20) buffer to be within C2 range indicating a flattened ω
waveform as in line 14 of Algorithm 2. The buffer size 20 of A
was decided through pilot testing with the objective to keep the
computation cost low from storing previous values of ω signal.
Keeping the size to be as minimum as one-fifth of the sample
acquisition frequency (fs = 100 Hz) ensures that the S state is
detected without comprising the computation load. Overall, the
algorithm classifies the walking modes into {ζ , T, S} predicted
states at the λk -peak once every walking cycle. The λk -peak
event is used as a triggering event to activate the classification
algorithm, Algorithm 1, as depicted the algorithm architecture
in Fig. 2B.

III. PERFORMANCE EVALUATION AND RESULTS

The real-time classified walking mode states were stored
and extracted successfully for performance evaluation.
Figure 3 shows a real-time gait classification made by the

algorithm (red plots) for both feet (left, Fig. 3A, and right,
Fig. 3B) for a representative participant. The red plot varies
between the {ζ , T, S} predicted states. The reference state for
each timeline is shown in [x]R subscripted labels in alternating
blue- and yellow-colored bands; where x ∈ {ζ , S}. The sensor
constant C1 and each foot calibrated αcal values are depicted
in Fig. 3.

A. Evaluation Metrics

The performance evaluation was done by constructing the
confusion matrix and estimating precision, recall, F-measure,
and accuracy parameters. The ground truth (reference) and
predicted (actual) classified states during walking were exam-
ined at the λk-peak. To compare the stationary part of the
experimental trial, S events were defined at one-second inter-
vals. The set containing both the λk-peak and S events is
referred to as E (evaluation) events. The ground truth states
at E events were computed at the λk -peak event as the
predictions of {ζ , T, S} states were also performed at the
same event, keeping the number of samples equal in predicted
and ground truth conditions. The ground truth states were
specified in post-processing as per the experimental protocol.
The actual classified state from the algorithm was taken from
the real-time classification performed by the sensor units.
Although the classification algorithm also predicts a transition
(T) state during the experiment, as discussed in Section II-3,
there is no corresponding reference state to compare the
predicted T state.

Consequently, a 5 × 5 Confusion Matrix (CM) was gen-
erated considering all E events, as shown in Table I - CM
column. CM is a table with actual and predicted states
appearing as rows and columns, respectively. Each (i, j) value
cross-references the instances of j th predicted state with its i th
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TABLE I
CONFUSION MATRIX (CM, LEFT COLUMN) AND PERFORMANCE MATRIX (PM, RIGHT COLUMN) OF 30 PARTICIPANTS FOR DIFFERENT CASES OF

(i) LEFT SENSOR (LS), (ii) RIGHT SENSOR (RS), (iii) HEURISTIC-1 (φH1 ), AND (iv) HEURISTIC-2 (φH1) SHOWN BELOW

reference state. Therefore, the diagonal of CM is the instances
of predicted states in agreement with the ground truth. The
performance parameters of precision, recall, and F1-Score [31]
for an ‘X’ state of walking mode and overall accuracy were
determined from the CM as shown below. TP, FP, and FN
denote the True Positive, False Positive, and False Negative,
respectively.

PrecisionX = TPX

TPX + FPX
(1)

RecallX = TPX

TPX + FNX
(2)

F1-ScoreX = 2 ∗ PrecisionX ∗ RecallX

PrecisionX + RecallX
(3)

Accuracy =
∑

TPX

Total Samples
(4)

The holding state, T, has been appended as an additional
column in CM to represent incorrect estimation with respect
to the ground truth. Thereby, while computing performance
measures from CM, the number of predicted T states was
accounted for in the computation of recall and accuracy.
By definition, the precision of individual states does not
consider the instances of T state predictions.

B. Gait Classification Heuristics

As per the implemented scheme, both sensor units predicted
the walking state independently during the experimental trial.
Let φL and φR denote the independent classified walking mode
states from the left and right sensor units respectively, such
that, φL(n), φR(n) ∈ {ζ , T, S} at nth instance of E events.
As both units are used for classification, it is reasonable to
combine the decision and provide a single conclusive classified
state. Therefore, various heuristics can be developed to this
effect. In this work, we considered two straightforward heuris-
tics. The rules of the heuristics were applied in the offline
post-processing analysis and they were defined as below.

Heuristic 1 (φH1): was defined as the retention of the state
in case of same predictions by both sensor units otherwise T
state was assigned. Therefore:

φH1(n) =
{

φ(n), if φL(n) = φR(n) = φ(n)

T, otherwise
(5)

Heuristic 2 (φH2): was defined as the assignment of the
previous classified state in case of different decisions by the
sensor units otherwise the same state was retained.

φH2(n) =
{

φ(n), if φL(n) = φR(n)

φ(n − 1), otherwise
(6)
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In the above heuristics, the classified states φL and φR were
compared at the E events of the two sensor units. Due to the
temporal shift in the occurrence of the E events depending
upon the gait initiating foot, the selection of φ(n) and φ(n−1)
was randomized between the two sensor units to prevent bias
due to selection order.

C. Results
Figure 3 shows both sensors’ evolution of ω waveform

during the experimental protocol with real-time predicted
classified states (red plot) for a representative participant. The
algorithm retains or changes the predicted state value at the
λk-peak event. The ground truth label is assigned at each
λk-peak in post-data processing. There is a temporal shift
in the λk-peak between the two sensors depending upon the
gait initiating foot, thereby, a phase shift in the prediction of
new walking states. The T state is observed to be predicted
during gait changes from US to OG, OG to S (i1 encircled
regions) and left turn in right sensor (i2) whereas incorrect
state prediction occurs in the i3 region.

The algorithm’s performance analysis in the Left Sen-
sor (LS) and Right Sensor (RS), shown in Table I(i-ii) PM,
yielded high accuracy of 89.57% and 87.55%, respectively.
LS and RS had similar precision in S, OG, and TM states
with 94.65%L S and 95.25%RS in S, 95.94%L S and 96.06%RS

in OG, and 95.29%L S and 97.11%RS in TM. The S, OG, and
TM states showed similar recall measures in LS and RS having
98.39%L S and 97.98%RS in S, 82.54%L S and 80.08%RS in
OG, and 90.48%L S and 91.43%RS in TM. However, LS had
a higher recall in both US and DS compared to RS yielding
82.41%L S and 70.54%RS in US, and 70.85%L S and 50.00%RS

in DS. Consequently, LS and RS showed similar F1-Score
values of 96.48L S and 96.60RS in S, 88.73L S and 87.34RS

in OG, and 92.82L S and 94.19RS in TM. The difference in
F1-Score between LS and RS was large with higher values in
LS - 86.77L S and 77.78RS in US and 74.80L S and 59.69RS

in DS.
The application of heuristic–1 showed an accuracy of

77.44% - a decrease in accuracy compared to 89.57% and
87.55% in LS and RS, respectively, refer Table I(iii) - PM col-
umn. The precision achieved was 94.53%, 81.05%, 83.53%,
97.40%, and 98.19% in S, US, DS, OG, and TM states,
respectively, being fairly similar to LS and RS. However, the
recall obtained was 88.64%, 51.94%, 36.60%, 68.55%, and
84.06% in S, US, DS, OG, and TM states, respectively, which
was reduced compared to LS and RS scores discussed above.
It is expected as H1 declares a T state when both sensors
differ in their predictions. Therefore, the T state column in
Table I(iii) - CM has high values compared to LS and RS.
With similar precision but poor recall, the H1 has reduced
F1- Score values of 91.49 in S, 63.31 in US, 50.90 in DS,
80.47 in OG, and 90.58 in TM compared to LS and RS as
shown in Table I(i-iii).

The performance results of implementing heuristic-2 are
shown in Table I(iv) - PM column. The accuracy obtained is
90.13% which was a slight increment from LS (89.57%) and
RS (87.55%). The precision was 92.78%, 85.29%, 80.73%,
95.93%, and 95.72% in S, US, DS, OG, and TM states,

respectively, which is either an intermediate value or closer
to the minimum value between LS and RS precision scores.
The recall improved for the DS and OG states at 79.90% and
84.50%, respectively, with an in-between or improved recall
for the S, US, and TM compared to LS and RS at 97.31%,
82.43%, and 90.48%, respectively. The H2 implementation
retains the best of both LS and RS predictions with improve-
ment in the recall measures. Consequently, the F1-measure
was improved for the DS and OG states at 80.31 and 89.85,
respectively, and similar scores in S, US, and TM with 94.99,
83.84, and 93.03, respectively. The T state column entries in
CM for H2 were also the lowest among the ζ states compared
to LS, RS, and H1. The diagonal entries for the US, DS,
and OG states in CM were highest among all cases indicating
the highest true positive value, i.e., instances of reference and
prediction states coinciding for H2.

IV. DISCUSSION AND CONCLUSION

The problem of identifying multimodal walking intention
carries significant value in the field of rehabilitation through
robotic interventions. Human movements have a greater degree
of redundancy and dexterity to ambulate, resulting in variations
in their gait characteristics to maintain stability and mobil-
ity [32], [33]. An important contributor to this flexibility in
locomotion can be attributed to the human ankle joint which
regularly interacts with the environment [32]. In this study,
we showcased the ability of the ankle’s kinematics to success-
fully classify human walking modes into stationary, upstairs,
downstairs, treadmill, and overground walking patterns using
a single-DoF gyroscope axis in real-time.

The proposed classification algorithm, independently,
in each sensor unit has shown its efficacy to classify
forty healthy human walking modes with reasonably high-
performance measures. With the single-DoF gyroscope axis,
the algorithm was able to give high accuracy of 89.57% and
87.55% in the left and right sensors, respectively. These results
are noteworthy compared to other existing gait classification
studies. Many studies have shown better classification accu-
racy but with more sensor inputs and feature selection [18],
[22], [34]. Studies with a single sensor have also presented
walking mode classification using random forest (accuracy
of 76.1% and 86.29% with machine learning and subject-
based model, respectively) [35], k-nearest neighbor [20], fuzzy
logic [25], decision tree with signal processing [36] for differ-
ent patterns of level walking, ascending and descending stairs
with sit and stand activities. In contrast, the current study
employs a single sensor to extract unique features intrinsic to
the walking states that greatly reduced the reliance on multiple
feature extraction models using signal processing techniques
compared to existing works. This makes the proposed classi-
fication algorithm compatible to use for the real-time robotic
interventions in multimodal walking where externally applied
assistive forces need to adapt to the walking mode.

Moreover, this novel contribution forms a white box
approach to incorrect classification rationale by promoting col-
laboration between the algorithm and biomechanical aspects
of walking which has been projected as a useful autonomous
and reliable framework for assistive gait intervention [27].
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For instance, the dataset reveals a significant difference in
the recall measure of left and right sensor units primarily as
a consequence of high transition predictions in right sensor
during upstairs, downstairs, and overground states. Further
inspection revealed that left turns in the paradigm induced
more transitions in right sensors in overground suggesting the
tendency of the left foot to initiate the turn naturally with the
lagging contralateral right foot coming along later to complete
the turning trajectory. This difference in the two sensor units
showcases the foot specificness of the algorithm which could
be useful for rehabilitation purposes.

The current work demonstrates the implications of imple-
menting heuristics to enhance the algorithm’s performance
by holistically combining individual sensor decisions. Further,
there is merit to developing more heuristics to optimize the
algorithm’s performance depending upon its application and
the participant group. Among the applied heuristics 1 and 2,
the latter combined the best of both sensor units’ performance
to yield an accuracy of 90.13%. Moreover, although a single
sensor can be used independently for healthy individuals,
incorporating heuristics for a patient group can show signifi-
cantly improved performance by combining the classification
states empirically from both the sensor units.

The central aspect of this work has been to capture the
ankle’s kinematics using a single sensor for gait classification.
Therefore, the placement is critical to gather the ankle’s
biomechanics with the single sensor and was deliberately
chosen at the lower shank above the ankle joint. The IMU
being mounted on the shank senses the ankle’s rollover
kinematics in the stance phase of gait. Using this sensor
placement approach, it enabled the classification of walking
states using inherent feature identification with a single-DoF
gyroscope axis. With other studies, the gait classification
required more feature selection, sensors or multi-DoF IMU,
temporal gait information at first contact, last contact and gait
phase [20], [25], [35], [36]. The placement of IMU on the
foot segment would miss the ankle kinematics in the stance
phase due to flat foot condition, though, such placement has
found applications in pedestrian localization and spatial gait
measurements [37], [38], [40]–[45].

The classifier decision peak, λk-peak, plays a crucial role in
the algorithm’s structure as a trigger event to predict a walking
state once every gait cycle. The λk -peak was specifically
chosen because of its distinct characteristics. The sign of
the ω waveform at the λk -peak is an important identifier for
the upstairs walking mode. At λk-peak, all sufficient input
conditions for the prediction are available to be fed into the
classification algorithm. Moreover, the λk-peak is observed
when the gyroscope sensor is attached to the shank as in this
current study and not when placed on the foot [46], [47].

From the adopted approach of placing the sensor at the
shank, the upstairs and downstairs states depicted their inher-
ent features as mutually exclusive to other walking states.
During upstairs progression, the shank rocks forward after
the first contact and then backward post heel-off about the
ankle joint in stance phase resulting in both dorsiflexion and
plantarflexion. This is in contrast to other walking states
where the shank rotates only forward about the ankle in

stance causing dorsiflexion [32], [33]. In downstairs, the sensor
gathers the downslope inclination of the stairs that causes the
first contact to occur at lower ground level than the previous
first contact. It results in a gradual decrease in the ω waveform
after mid-swing making this behavior unique compared to
flat overground walking, treadmill or upstairs. The significant
moment is produced in dorsiflexors with similar ankle joint
power in overground than treadmill walking during the loading
response [48]. The presented work utilized this fact kinemati-
cally, which meant smaller angular velocity at first contact in
overground than the treadmill at comfortable walking speed.

The approach adopted, in this work, is subject-specific algo-
rithm development. In contrast to machine learning models
where training model needs access to the large dataset for
reliable performance, the proposed algorithm uses calibration
phase to tune itself to specific participants. The walking
attributes shown in this work are intrinsic to a particular state,
however, the calibrated parameters for state decision-making
are subject-specific. In the current work, the experiment trial
was conducted in immediate subsequent to the calibration
phase that estimated two unique statistical parameters of
shank angular velocity at first contact and its slope between
mid-swing and first contact.

The study has certain limitations. The current experimental
protocol did not include the targeted speed variation range like
slow or fast ambulating speed across walking modes - par-
ticipants were advised to walk at their preferred comfortable
speed. Future studies can test multiple aspects of the proposed
algorithm such as inter-rater reliability, scattered walking
patterns, multi-day study for home use. In future work, new
classification states of slope walking and sit-to-stand activities
can also be added.

The intended application of this work is for use in rehabili-
tation for the patient groups involving daily walking activities
on flat surfaces. Classification of walking modes is essential
for the effective administration of intervention through robotic
devices. Together with the gait temporal data from key walking
events, the proposed classification algorithm can help clin-
icians observe gait changes and be informed of users’ gait
performance under different walking modes. It could, further,
be potentially useful in identifying subjects exhibiting variable
or deviated gait characteristics from healthy population groups.
Our approach to formulating holding T state could be effective
in providing adaptive ways for the robotic controller to tune
its parameter during transitioning gait periods to optimize
performance in subsequent phases.

A. Case Study
A study was conducted with two healthy older adults (65

and 69 years). The participants wore the sensors on both
shanks and performed the calibration protocol followed by
locomotion tasks of overground walking (OG ≈ 90 m), down-
stairs (DS, 24 steps), upstairs (US, 24 steps), and stationary
(S) for 10 seconds. The values of C1 and buffer size of A array
were kept the same as with the young adult participants. The
testing protocol was performed on a daily commute route with
left and right turns, a flat walking surface for overground and
a staircase for stairs walking, and no treadmill walking mode.
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Fig. 4. The plot shows the ω waveform for a representative elderly
participant from both sensors. The real-time walking mode classification
is depicted in the figure with a red line plot, and the ground truth is
shown with the yellow and blue alternating shaded region denoted by
[.]R. The walking events of First Contact, λ-peak, Toe-Off, and Mid-Swing
are detected by the algorithm in the ω waveform variation in a walking
cycle.

For the first elderly participant, the classification algorithm
correctly predicted 21 out of 24 DS states, 20 out of 24
US states, 81 out of 86 OG states, 9 out of 11 S states,
and 9 transition states. The prediction for the second elderly
participant was 20 out of 24 DS states, 22 out of 24 US states,
84 out of 93 OG states, 10 out of 12 S states, and 11 transition
states. Fig. 4 shows the plot of the real-time walking mode
classification of a representative elderly participant for the OG,
DS, and US states.

The results from the case study convey the importance and
the future applicability of our proposed algorithm. Walking
is a rhythmic and coordinated interlimb movement contain-
ing inherent features that occurs repetitively. In multimodal
walking, the distinct inherent features separating each walking
mode in young adults are also prevalent in elderly adults
because the identified inherent feature relates to the biome-
chanics requirement of the particular walking mode. Irrespec-
tive of the young or older adults, both groups show similar
repetitive behavior of the ω waveform nature under multimodal
walking. In future work, testing with more older adults and
other targeted population groups can be performed to make our
proposed algorithm beneficial for their robotic gait intervention
as an automatic switching framework in daily living activities
of multimodal walking.
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