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Feature and Classification Analysis for Detection
and Classification of Tongue Movements From
Single-Trial Pre-Movement EEG

Rasmus L. Kaeseler™, Tim Warburg Johansson, Lotte N. S. Andreasen Struijk™, and Mads Jochumsen

Abstract—Individuals with severe tetraplegia can ben-
efit from brain-computer interfaces (BCls). While most
movement-related BCl systems focus on right/left hand
and/or foot movements, very few studies have considered
tongue movements to construct a multiclass BCI. The aim
of this study was to decode four movement directions of
the tongue (left, right, up, and down) from single-trial pre-
movement EEG and provide a feature and classifier inves-
tigation. In offline analyses (from ten individuals without
a disability) detection and classification were performed
using temporal, spectral, entropy, and template features
classified using either a linear discriminative analysis, sup-
port vector machine, random forest or multilayer perceptron
classifiers. Besides the 4-class classification scenario, all
possible 3-, and 2-class scenarios were tested to find the
most discriminable movement type. The linear discriminant
analysis achieved on average, higher classification accu-
racies for both movement detection and classification. The
right- and down tongue movements provided the highest
and lowest detection accuracy (95.3+4.3% and 91.7+4.8%),
respectively. The 4-class classification achieved an accu-
racy of 62.6+7.2%, while the best 3-class classification
(using left, right, and up movements) and 2-class classifica-
tion (using left and right movements) achieved an accuracy
of 75.6+8.4% and 87.7+8.0%, respectively. Using only a
combination of the temporal and template feature groups
provided further classification accuracy improvements. Pre-
sumably, this is because these feature groups utilize the
movement-related cortical potentials, which are noticeably
different on the left- versus right brain hemisphere for the
different movements. This study shows that the cortical
representation of the tongue is useful for extracting control
signals for multi-class movement detection BCls.
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|. INTRODUCTION

NDIVIDUALS with tetraplegia, such as individuals with

a spinal cord injury (SCI), amyotrophic lateral sclerosis
(ALS), or multiple sclerosis, are often dependent on caregivers
for simple daily tasks, and the lack of functionality has been
shown to cause depression and low quality of life [1]-[5].

Assistive technologies, such as an electric wheelchair or
a robotic arm, can give individuals with tetraplegia indepen-
dence and possibly improve their quality of life. However,
controlling such technologies requires a very high-performing
interface [6] with access to a high number of control com-
mands with high input recognition and low latency; e.g.,
14 control commands are required for manual control of a
seven degrees of freedom robotic arm. This is a challenge
to provide individuals with severe disabilities. Individuals
with tetraplegia who still have motor functionality above
the neck, such as individuals with SCI or early spinal-onset
ALS, can use some control options such as lip-sip-suck
control [7], [8], eye-tracking [9]-[11], or electrooculography
(EOG) or facial electromyography (EMG) [12], or tongue
control [13]-[20]. However, if the cranial nerves are also
affected the individual may be in a locked-in state (LIS)
and can then only use a brain-computer interface (BCI) as
a control option. A BCI, measures and classifies brain activity
to determine the user’s control intent independently of any
physical movement [21]. Electroencephalography (EEG) is
popularly used to measure brain activity for BCI systems
as it provides a decent signal quality with high temporal
resolution while remaining non-invasive. The best perform-
ing BCI systems rely on stimuli (typically visual such as
P300 [22], steady-state visually evoked potentials (SSVEP)
[23] or code visually evoked potentials (C-VEP) [24] as they
allow a high number of classes that can be detected with high
accuracy. However, they require attention to the stimuli which
may reduce the overall control of a robotic arm as the users
have reduced attention to the robot. Furthermore, the stimuli
might cause fatigue and/or require eye-gaze which some LIS
patients do not have. As an alternative to stimuli-based BCI,
Nam er al. utilized the glossokinetic potentials (GKP), which
are elicited when the tip of the tongue makes contact with
tissue inside the mouth [13], [18]—[20], to successfully control
a robotic wheelchair through EEG measurements [18]. While
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it showed a new control option, it requires physical tongue
movements similar to other proposed tongue control interfaces
that achieve a higher performance [16], [17], [25], [26]. Fur-
thermore, individuals with LIS will require a different system
as these individuals have limited to no tongue movement. For
these individuals we consider BCI systems utilizing signals
generated not only by performing a movement, but also
by attempting and/or imagining one; specifically Movement-
Related Cortical Potentials (MRCP), Event-Related Synchro-
nization (ERS), and Event-Related Desynchronization (ERD)
[27]-[29]. Most typically hand and foot movements have
been investigated, and typically tongue movements are only
included as a single class (such as the 4™ class in a BCI using
the left- and right hand, either of the feet, and the tongue
as different classes) [30]-[32]. To implement more and/or
alternative classes, studies have investigated the possibility
of distinguishing between different movement types for a
single muscle group, specifically different hand movements
as the hand has a large cortical representation (compared
with the foot) [33]-[35]. The muscle group of the tongue
has a high cortical representation, as it exists on both the
left- and right hemispheres (near lateral sulcus, at the far
lateral positions of the primary motor cortex). Still, tongue
movement types and classification of such have not yet been
studied. Until now tongue movements have been treated as
undesirable artifacts [36], or a single muscle group (class) [30],
or with a focus on GKP [20]. In a feasibility study, we showed
the possibility of classifying different tongue-movement types
(left, right, up, and down movement) using only EEG signals
generated before the actual movement [37].

In summary, there is a gap in the current literature on
constructing a stimulus-independent multiclass BCI based on
tongue movements that could be used for increasing the
number of classes in a BCI for control of robots requiring
a high number of control commands. Therefore, the aims of
this study were to detect and classify four different tongue
movement types using single-trial pre-movement EEG and
perform a feature and classifier investigation of commonly
used BCI techniques to create a reference point for future
investgations regarding decoding of these novel (in a BCI
context) movement types. Moreover, it was investigated what
movement types to use if a 3- or 2-class system should be
used instead of a 4-class system.

Il. METHODS
A. Participants

Ten individuals without a disability participants (8 men,
2 women, age 26.71+2.9 years) were recruited for this exper-
iment. Before the experiment, the participants provided their
written informed consent. All procedures were approved by the
local ethical committee of Region North Jutland (N-20130081)
and followed the Helsinki Declaration.

B. Experimental Setup

The experimental data were collected in collaboration with
a master student as part of teaching activities at the Biomedical
Engineering and Informatics education [38].
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Fig. 1. Schematic overview of the experimental design. (a) The timing

schedule for executing the cued movement, gathering idle EEG and
having short breaks during the experiments. (b) The cueing presentation,
exemplified with a “upwards” cue. Each movement type was cued a total
of 100 times.

Fig. 2. Schematic overview of four types of tongue movements;
(a) the downwards movement, (b) the upwards movement, (c) the right
movement, and (d) the left movement.

The participants were seated in a comfortable chair in an
electrically shielded room and were instructed to perform four
different cued movement types of the tongue: left, right, up,
and down. Fig. 1(a) illustrates the experimental design with
the cue scheduling being illustrated in Fig. 1(b). Fig. 2 illus-
trates the four instructed tongue movements. The instructions
to perform the movements were to touch the lower left or right
hard palate or the floor of the mouth with the tip of the tongue
when performing the left or right movements, respectively. For
the up and down movements, the participants were asked to
touch the front upper or lower teeth with the tip of the tongue,
respectively.

The experiment was divided into 10 blocks; within each
block, each movement type was cued 2 x 5 times distributed
over two rounds with a 1-minute break in-between. The two
rounds were followed by a 3-minute period during which idle
activity was recorded and the participants were instructed to
fixate on a point on a wall two meters away. The movements
were visually cued and randomized by a custom-made Python
script. The participants were presented with the movement
type they were about to perform eight seconds before the
movement onset. A counter was counting down from 8 seconds
to 0 seconds, with O seconds being the instant where the
participants should initiate the movement. After the initiation
of the movement, they were asked to maintain the tongue
in the desired position for two seconds. The participants
were instructed to sit as still as possible and avoid blinking
and activating facial muscles from three seconds before until
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Fig. 3. Pre-processing of trial and resting EEG.

two seconds after the movement onset. At the beginning of
each new trial, the custom-made python script sent a trigger
to the EEG amplifier for synchronizing the EEG with the
visual cues. In total, 400 tongue movements were performed:
100 movements up, down, left, and right.

C. Signal Acquisition and Pre-Processing

Continuous EEG data were recorded from 64 active
electrodes according to the 10-10 EEG electrode system
(g.GAMMAcap, G.Tec, Austria) and sampled at 512 Hz with
a G.Hlamp amplifier (G.Tec, Austria). The amplifier was
connected to a PC running the g.Recorder software (G.Tec,
Austria). The impedance of the electrodes was kept below
30 kQ throughout the experiment. Electrodes were grounded
and referenced to AFz and the left earlobe, respectively.

Fig. 3 shows the steps made to pre-process the raw EEG
before the feature extraction. Initially, the continuous EEG
was notch filtered at 50Hz to remove powerline noise using
a 2" order Butterworth zero-phase filter, and then bandpass
filtered between 0.1-45 Hz to remove the DC offset, drift, and
the major components of potential EMG activity using a 4™
order Butterworth zero-phase bandpass filter. The electrodes
were then re-referenced to the average between left- and right
earlobe.

Bad electrodes and corrupted trials, in which noise and/or
disturbances were excessively high, were identified by evaluat-
ing the peak-to-peak amplitude from two seconds before cue-
onset until one second after. Electrodes that had a peak-to-peak
amplitude above 150 ¢V in more than 25% of the trials were
identified as bad; these were replaced by linear interpolation
of the four nearest good electrodes as conducted in other
literature [39] (Datafile S1 shows the removed electrodes for
each subject).

A participant-specific delay between movement- and cue-
onset was estimated and adjusted using an average MRCP
measurement. The average MRCP was calculated for each
participant, using data from one second before cue onset
until one second after. First, all trials with a peak-to-peak
amplitude above 150 ¢V in any electrode were identified as
a bad trial and removed to avoid major undesirable artefacts
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Fig.4. The mean MRCP over all good trials and all electrodes in the FCx,
Cx, CPx bands (in accordance with the 10-10 EEG electrode system),
for each of the ten participants. The approximate movement onset was
chosen at its minimum and marked with a dot. Cue-onset was set at 0s.

(such as blinking or swallowing). Second, the average MRCP
was estimated by averaging over electrodes in the primary
motor cortex (FC7-FC8, C7-C8, and CP7-CP8) over all the
included trials. The average movement-onset (aMQO) was esti-
mated as the peak negativity of the average MRCP; Fig. 4
shows the average MRCP for each participant, along with
the aMO and the cue-onset. On average, the delay was
0.07 seconds for the ten subjects, with a maximum delay of
0.42 seconds (Datafile S1 shows the aMO for each subject).
Trial epochs were then extracted from 2 seconds before aMO
until aMO to avoid classifying EMG and GKP artefacts gen-
erated from actual movement. Resting epochs were extracted
from the 10 blocks of 3-minute idle activity at random
timestamps and sorted into separate folds (for 10-fold cross-
validation) to ensure that overlapping windows would not be
used for both training and test data. The maximum peak-
to-peak amplitude over all electrodes was calculated for all
epochs, and epochs with a maximum peak-to-peak amplitude
above 150 4V were removed. Across the ten participants,
an average of 7.07% of the trials was removed during this
step (Datafile S1 shows the number of removed trials for
each subject). Lastly, to balance the classification analyses,
random resting epochs were removed until the number of
resting epochs equaled that of the trial epochs.

D. Feature Extraction

To capture the pre-movement EEG activity, MRCP and
SMR, four feature groups was were investigated as done in
previous work [40]. Several feature types were extracted for
each feature group to account for the inherent inter-subject
variability and unexplored movement type.

A total of 50 feature types were extracted from each
electrode channel individually; 25 feature types were extracted
from a 2s-window while the remaining 25 were similarly
extracted but from a 0.5s window, i.e., from either 2s or 0.5s
until aMO. All features were standardized (subtracting the
mean and scaling to unit variance) against the training data
before being used for classification.

1) Temporal Features (T): A total of six temporal feature
types were extracted from each window. The feature types
were the mean value (1), the minimum peak (2), the maximum
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peak (3), the peak-to-peak value (4), the slope (5), and the
intersection (6) of a linear regression within the full and
reduced window.

2) Template Features (X): A total of ten template feature
types were extracted from each window. Four template signals
were calculated for each of the cued movements, as the
average of all training trials belonging to the respective
cue. A fifth template signal was calculated as the average
across all the training trials. Feature types were calculated
as both the Pearson Correlation between the trial and the
right- (1), up- (2), left- (3), down- (4)-, or combined movement
template (5); and the maximum cross-correlation between
the trial and the right- (6), up- (7), left- (8), down- (9)-,
or combined movement template (10).

3) Spectral Features (S): A total of five spectral feature
types were extracted from each window. Welch’s power spec-
tral density estimate was calculated using a Hann window
with a 50% overlap of the segments. The mean power was
calculated for the [0-4Hz] delta- (1), [4-8Hz] theta- (2),
[8-13Hz] alpha/mu- (3), [13-30Hz] beta- (4), and [30-45Hz]
gamma bands (5) for the full window and the reduced window.

4) Entropy Features (E): A total of four entropy feature
types were extracted from each window. Approximate entropy,
permutation entropy, sample entropy, and constrained entropy.
An embedding dimension of m = 2 was used. The tolerance
was calculated as 20% of the standard deviation of the epoch
for all except the constrained entropy method, which instead
used the 20% of the standard deviation of a “noise” epoch
extracted from three seconds before aMO until the start of the
extraction window.

E. Feature Reduction

To reduce the number of features used for the classification,
two algorithms were used: (1) Sequential Forward Selection
(SFS) [34] and (2) Principal component analysis (PCA).

1) Sequential Forward Selection: To utilize only useful fea-
tures SFS was used on each feature group (temporal, template,
spectral, and entropy) to estimate which of the feature types
(i.e. mean value, minimum peak etc. for the temporal feature
group) within the group provided a classification accuracy
improvement. The algorithm has two steps: (1) ranking the
feature types and (2) evaluating each feature type to determine
if it should be saved for future classifications. To rank the
feature types, the classification accuracy was estimated for
each feature type within the investigated group. The feature
types were then ranked from highest to lowest achieved
accuracy; the highest ranked feature type was saved for
classification of the test data. The lower ranked feature types
were then sequentially evaluated (from highest to lowest rank)
by estimating the classification accuracy (using the training
data) when including both the feature type and the already
saved feature types: if the accuracy improved, the investigated
feature type was also saved for classification of the test data,
otherwise it was excluded. For each feature type, classifier,
and subject the percentage of folds where a feature type was
included, for movement detection and classification is shown
in Datafile S2 and S3, respectively.

2) Principal Component Analysis: PCA was used for each
feature type to extract only the principal component of the
investigated class over the electrodes. Using the training data,
the principal components were calculated for each of the
included feature types as the components which explained
99% of the variance over the electrodes. The principal com-
ponents for all features were then concatenated and used
for classification. The summation of the absolute principal
component weights indicates which electrodes provide most
important information for each movement type. The supple-
mentary Fig. S1 show the absolute sum of weights, normalized
and then averaged over all participants, for each feature type
and movement type.

F. Classification

Four classifiers were compared in this study: A linear
discriminative analysis (LDA), a support vector machine
(SVM), a random forest classifier (RF), and a Multilayer
Perception classifier (MLP). The classifiers available from the
scikit-learn python library package were used [https://scikit-
learn.org/stable/]. The LDA was implemented with an eigen-
value decomposition solver and automatic shrinkage using
the Ledoit-Wolf lemma for the classifications. The SVM was
implemented with a radial basis function kernel with a C =
10.0 and the reciprocal of the number of features as the
kernel coefficient. The RF was implemented with 400 trees,
using the Gini impurity as a quality measure for each split.
The MLP was designed with one hidden layer with 2N + 1
neurons, where N is the number of features included in the
classification. 10-fold cross-validation was used to estimate
the accuracy of the training data; classifiers were compared
using the same folds. All classifications were made as one-
versus-rest classification with a maximum probability as the
decision function. The classification was separated into two
analyses: (1) detection of tongue movement and (2) classi-
fication of the tongue movement type. In the detection of
movements, all movement types were pooled as the same class
and classified against the idle class in a 2-class classification
scenario. To investigate the detection accuracy of the indi-
vidual movement type, a 2-class classification between each
movement type and the idle class was made for each of the
four movement types. For the classification of movement type,
each of the movement types was pooled as individual classes
in a 4-class classifier. Also, a classification of all combinations
of a 3-class and 2-class classification scenario was performed.
All classes were balanced throughout the analysis.

G. Statistics

Statistical analysis was carried out using the IBM SPSS
Statistics 27 software. For both detection and classification
of movements, one-way repeated measures analysis of vari-
ance (rmANOVA) tests were used to investigate if there was a
difference between the classification scenarios. For movement
detection, there were four levels (Up, Right, Down, and Left).
The classification accuracies for each classifier were pooled for
the estimation of each movement type vs the idle activity. For
movement classification, there were four and six levels for the
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Fig. 5. Grand averages across participants of the MRCP during tongue movements with the approximate movement onset on t = Os, here presented
from five evenly spaced electrodes on the motor band: T7, C3, Cz, C4 and T8. The shaded area indicates the standard error.
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of each combination of movement types. Moreover, two
rmANOVAs were performed to test if there was a difference
between the classification methods for movement detection
and classification. The analysis of the classification method
was designed with four levels (LDA, SVM, RF, and MLP).
The calculated accuracies were pooled from the accuracy esti-
mations using all feature types. For movement detection, the
accuracies were pooled for the estimation of idle versus each
movement type and versus all movement types combined. For
movement classification, the accuracies for each classification
scenario were pooled. Significant tests were assumed when p
< 0.05. Significant test statistics were followed up with post
hoc analysis using Bonferroni correction.

I1l. RESULTS

The grand average MRCP signal for each of the cued
movements is shown in Fig. 5 for electrodes on the primary
motor cortex. The left movement had a low MRCP peak
negativity amplitude on T7 but the highest peak-negativity
amplitude on T8 and vice-versa for the right movements.
Downwards movements generally resulted in lower peak nega-
tivity amplitude, while upwards movements generally resulted
in high peak negativity amplitudes.

A. Classification Methods and Scenarios

The classification accuracy was found for each classi-
fier using all features. Different classification scenarios were

Accuracy of the different classifier types using a Linear Discriminative
Analysis (LDA), Support Vector Machine (SVM), Random Forrest classifier
(RF), or Multilayer Perceptron (MLP) classifier with all features. Abbreviations:
Left movement (L), right movement (R), up movement (U), down movement (D).
Highlighted with bold text the highest accuracy within each scenario

investigated; a 4-class, 3-class, and 2-class scenario were
investigated to provide information on the movement type
classification. Table I shows the accuracies for the different
combinations of movements using an LDA, SVM, or RF clas-
sifier. The movement detection and classification accuracies
for each subject are included in Datafile S4 and Datafile S5,
respectively.

1) Movement Detection: From Table I it is observed that all
classifiers achieved the highest mean accuracy when detecting
right tongue movements (90-95%), while downwards move-
ments achieved the lowest (86-92%). The LDA achieved
the highest accuracy for all movement detection scenarios
(92-95%), while SVM achieved the lowest (86-90%). A box-
plot of the pooled accuracy estimations, concerning classifier
type for the movement detection is shown in Fig. 7(a). The
rmANOVA indicated a significant difference between the
classifier-groups (F(2.0, 99.6) = 48.54, p < 0.001), and the
post hoc analysis showed that LDA achieved significantly
higher accuracies compared to the three other classifiers.
Furthermore, the RF and MLP also performed significantly
better than the SVM.
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Fig. 7. The pooled accuracy estimations from all participants (N =

10) using all electrodes and all features. (a) Movement detection- and
(b) movement classification accuracy estimations pooled for each clas-
sifier. (c) Movement detection accuracy pooled for each individual move-
ment type. (d-e) Movement classification accuracy pooled for movement
type composition in a 3-class and a 2-class classification scenario,
respectively. Abbreviations: Left movement (L), right movement (R),
up movement (U), down movement (D), linear discriminative analysis
(LDA), support vector machine (SVM), random forest classifier (RF), and
multilayer perceptron (MLP).

Fig. 7(b) shows boxplots of the pooled accuracy estimations
concerning the individual movement types used for movement
detection. The rmANOVA showed a significant difference
between the groups for the movement detection of the individ-
ual movement types (F(1.9, 74.8) = 14.93, p < 0.001) with
post hoc showing that the down movement had a significantly
lower detection accuracy compared with both the left and
right movement. The right movement type also achieved a
significantly higher detection accuracy compared to the left
movements.

2) Movement Classification: From Table I it is observed that
the LDA and RF achieved the highest 4-class classification
accuracy (63%) when using all four movement groups. With
the 3-class and 2-class classifications, the LDA achieved
the highest accuracies with the Right-Up-Left (76£8%) and
the Right-Left (88+8%) scenarios. A boxplot of the pooled
accuracy estimations concerning classifier type is shown in
Fig. 7(c). The rmANOVA indicated a significant difference
between the classifier-groups (F(2.3,252.3) = 34.01, p <
0.001) with the post hoc analysis showing that the SVM
achieved significantly lower accuracies compared to all other
classifiers.. Figure 7(d) and Fig. 7(e) show the combination
of movement types for a 3-class and 2-class system, respec-
tively. The rmANOVA showed a significant difference within
both the 3-class classification scenarios (F(2.4, 92.6) = 9.84,
p < 0.001) and 2-class classification scenarios (F(2.3,87.7) =
10.65, p < 0.001). For the 3-class movement classification,
the post hoc analysis indicated that the Right-Up-Left clas-
sification scenario achieved a significantly higher accuracy

compared all other scenarios. For the 2-class classification sce-
narios, the post hoc analysis showed that both the Right-Left
and Right-Up classification scenarios achieved significantly
higher accuracies compared to the Right-Down, Left-Down
and Up-Down scenarios.

B. Feature Analysis

To analyse which combination of feature group would
provide the highest accuracy, both the movement detection
accuracy and movement classification accuracy were estimated
using each of the 15 possible combinations of the four feature
groups.

1) Movement Detection: Fig. 8(a) shows the estimated
detection accuracy of all four movement types for each clas-
sifier. Datafile S6 includes the estimated detection accuracies
for each individual subject. Using the LDA with all feature
groups achieved the highest mean movement detection accu-
racy (9444%) across all classifiers and feature types. The other
classifiers also achieved the highest mean accuracy using all
feature groups(90-93%).

The entropy feature group (E) achieved the lowest accuracy
for all classifiers (78-80%). When using only one feature
group, the temporal feature types (T) achieved the highest
accuracy for all classifiers (87-89%).

2) Movement Classification: Fig. 8(b) shows the estimated
classification accuracy for each 4-class classifier. Datafile
S7 includes the estimated detection accuracies for each
individual subject. Using the MLP classifier with the
Temporal4Template (T+X) combination achieved the highest
accuracy for movement classification (644+6%). The SVM
also achieved the highest accuracy using this combination
of feature groups (6347), while the LDA and RF achieved
the highest accuracy using the Temporal4-Spectral4+Template
(T 4+ S + X) combination (63£+7% and 641+6%, respectively).
The spectral and entropy features alone (S and E) and in
combination (S4E) achieved much lower accuracies compared
with all other combinations (25-33%across the four classi-
fiers). When using only one feature group, SVM achieved the
highest accuracy using the template feature group (61£7%),
while LDA, RF, and MLP achieved the highest accuracy using
the temporal feature group (62%).

IV. DISCUSSION

In this study, it was shown that different tongue movement
types could be detected with accuracies in the range of 92-95%
with LDA which was significantly higher than the three other
classifiers. The LDA also achieved the highest accuracies
for classification of the different movement types, with an
accuracy of 64%, 76%, and 88% for a 4, 3, and 2-class
classification scenario, respectively. However, it was not shown
to be significantly better than the RF or MLP for movement
type classification.

A. Movement Detection

On average, a classification accuracy of 86-95% between
pre-movement and idle activity was obtained. These findings
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Fig. 8. Boxplots with a horizontal black line indicating the median for the movement detection accuracy (a) and movement classification accuracy
(b) of all four movement types using combinations of either Temporal (T), Spectral (S), Entropy (E) and/or Template (X) features with wither an LDA,

SVM, RF or MLP classifier.

are in line with the detection performance that has been
reported in previous studies for the detection of upper and
lower limb movements based on pre-movement EEG activity.
It should be noted that different metrics, such as true positive
rate and number of false-positive detections per minute, have
been used and that some of the studies simulate an online
BCI contrary to the simple 2-class classification paradigm
in this study. The true positive rates and classification accu-
racies have been reported to be in the range of ~70-95%
for the lower limbs [40]-[49] and 75-95% for the upper
limbs [34], [41], [50]-[54]. Different classifiers have been
used in these studies, and LDA, SVM, RFE, and MLP have
all been reported to classify movement-related and idle activity
well. In this study, the classification accuracies associated with
each classifier were all significantly higher than the chance
level (60% for 90 trials/class with a significance level of
o = 5%) [55]. The LDA performed significantly better than
the other classifiers which are beneficial for future online
implementation of a BCI based on tongue movement-related
activity due to the simplicity of the classifier. The differ-
ent movement types were all detected well and there was
no difference between the detection performance. This was
also expected after observing the morphology of the MRCPs
associated with the different tongue movements and the idle
activity in Fig. 5, in which there was a clear difference in
the peak of maximum negativity for the movement-related
activity compared with the idle activity. The feature analysis
revealed that all feature types could be used for detection of
the tongue movement-related activity, but that the temporal,
spectral, and template features were the most important ones,
which is consistent with the existing literature within the
detection of pre-movement EEG activity. The features types
express some of the same discriminative information, but they
also carry some complementary information which is indicated
by higher detection performance when combining the feature
types. This is also supported by the two neurophysiological

phenomena movement-related cortical potentials and senso-
rimotor rhythms, which are different physiological signals
associated with movement-related activity [27]. Combining
temporal and spectral features has been conducted in several
studies (see, e.g., [34], [49], [50]) as well as the combination
of temporal, spectral, and template features for which good
performance has been reported [56]. However, it should be
noted that in this study there is a large standard deviation
across the participants for the classification with the different
feature combinations indicating that individualized features
would be important for maximizing the detection performance.

B. Movement Classification

In this study, it was shown that different movement types of
the same muscle group could be detected with relatively high
classification accuracies. The decoding of different tongue
movements shows similar classification accuracies as other
studies in which movements from the same muscle group
or limb have been performed. The classification accuracies
for a 2-class system were in the range of 75-88% which
is comparable to studies in which classification accuracies
between 65-84% have been obtained for extracting different
kinetic parameters[40], [41], [56]-[59], 72-79% for different
hand movement types [34], [52], [60], 83% for gait direc-
tion [47], and 73-83% for different 2-class combinations of
right hand, left hand, foot, or tongue movement [61]. With the
2-class scenarios, the Right-Left scenario achieved the highest
mean accuracy across all classifiers. This is also indicated in
Fig. 5 in which the peak of maximal negativity is smaller
in T7 (left hemisphere) for left tongue movements and right
tongue movements are smaller in T8 (right hemisphere). This
indicates that tongue muscles can be divided into left and right
subgroups acting similarly to left- and right-hand movements.
For the 3-class classification scenarios, accuracies between
65-76% were obtained. In similar 3-class classification sce-
narios, 63-65% of hand movements [34], [62] and 60-78%
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of lower limb movement [46], [47] were correctly classified.
For the 4-class classification scenario, 64% were correctly
classified with RF. Similar 4-class classification scenarios have
reported accuracies in the range of 40-84% for extracting
movement kinetics from hand and foot movements [40], [41],
[56], [63], 76-% for extracting movement direction [64], [65],
and 66% for different hand movement types [52]. As for
the movement detection, the 2-, 3-, and 4-class classification
accuracies were above chance level (60, 40, 30% for the
2-class, 3-class and 4-class scenario with 90 trials/class and
a significance level of a = 5%) [55] for the four classifiers,
but RF, MLP, and LDA performed better than SVM. For the
feature analysis, it was shown that temporal and template
features were the most important ones compared with spectral
and entropy features and that these feature types did not
provide much additional discriminative information to the
classification.

Like the movement detection, there was a noticeable stan-
dard deviation across participants for the classification using
different features which again indicates that individualizing
features to the specific user would be important to maxi-
mize the BCI performance. Data-driven approaches without
a-priori feature extraction could potentially improve the clas-
sification accuracies further. Convolutional Neural Network,
Morphological Neural Networks, or Spiking Neuronal Net-
work have previously been shown to improve classification
performance [61], [63], [66].

C. Limitations

The focus of this paper was to detect and classify differ-
ent movement types to be used for a multi-class BCI, but
the offline analysis was performed with epochs were being
extracted with a priori knowledge of when the movement
occurred, and bad epochs were rejected from the analysis.
However, the offline accuracies were high, so it is expected
that good online BCI performance can be obtained although
the online performance is most likely lower than the offline
analysis. Also, the signal processing, feature extraction, and
classification techniques used in this study can easily be trans-
ferred to an online BCI system. It could also be considered
to use spatial filtering or other denoising techniques such
as independent component analysis to make the detection of
the movement intentions more robust [40], [42]. Moreover,
64 EEG channels were recorded and used in the analysis which
is not practical for daily use in an online BCI. Therefore, the
number of channels should be reduced. It has been shown
that it is possible to use a single electrode for detecting
movement intentions, but the decoding of kinetic profiles was
moderate [56]. In another study, it was shown that the decoding
of five different functional upper limb tasks could be decoded
with an accuracy of 94% using 64 electrodes, but the accuracy
dropped to 70% when using the ten best channels [67]. Thus,
it would be possible to decrease the number of electrodes
from 64 to a lower number while maintaining a decent BCI
performance.

Another limitation of the study was that the data were col-
lected from able-bodied participants contrary to the intended

end-users who are individuals with severe motor impair-
ments. However, in several studies it has been shown that
movement-related activity can be detected and in some cases
classify different movement parameters from people with
motor impairments after, e.g., stroke [40], [56], cerebral
palsy [48], spinal cord injury [68], and ALS [53], [54], [58].
Also, it is a possibility that individuals with spinal cord injury
or ALS who have lost all voluntary muscle control below
the neck may have a larger/more distinct cortical presentation
of the tongue which potentially can lead to stronger control
signals.

D. Implications

With the detection and classification of multiple tongue
movement types, it would be possible to construct a multi-class
BCI for control or communication applications. If manual
control of a robotic arm with seven degrees of freedom should
be obtained, 14 control commands must be available [69].
To obtain this it would be possible to combine a 2-, 3- or
4-class BCI system with a state machine [70] in which each
state can be controlled with the classification of different
tongue movements. As the cortical representation of the tongue
is located near the ear, it could be a possibility to use mini-
malistic EEG headsets with few electrodes near the ear; thus,
providing a hidden and/or aesthetic headset for users [71].
Also, it will be possible to avoid hair wash after each use
if the electrodes are placed on the skin above/behind the ear
which may be a desired feature for permanent BCI users.

V. CONCLUSION

In this study, it was shown that different tongue movements
can be detected and classified from single-trial pre-movement
EEG and potentially be used as an alternative approach to
constructing a multi-class BCI based on movement-related
brain activity. The detection and classification were possible
with the different classifiers that were tested, but the best
classifier was LDA. For movement detection, all tested feature
types carried discriminative information, while the temporal
and template feature types were the best for the classification
of the different movement types. Until now, the detection and
classification of different tongue movements from single-trial
EEG have not been thoroughly investigated in the literature.
In future studies, it should be investigated if decoding of these
signals can be used as control signals in online BCI systems
for controlling external devices and if such BCI systems can
be operated by individuals with severe motor impairments.
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