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Abstract—Robot-aided locomotor rehabilitation has
proven challenging. To facilitate progress, it is important to
first understand the neuro-mechanical dynamics and con-
trol of unimpaired human locomotion. Our previous studies
found that human gait entrained to periodic torque pulses at
the ankle when the pulse period was close to preferred stride
duration. Moreover, synchronized gait exhibited a constant
phase relation with the pulses so that the robot provided
mechanical assistance. To test the generality of mechan-
ical gait entrainment, this study characterized unimpaired
human subjects’responsesto periodic torque pulses during
overground walking. The intervention was applied by a
hip exoskeleton robot, Samsung GEMS-H. Gait entrainment
was assessed based on the time-course of the phase at
which torque pulses occurred within each stride. Experi-
ments were conducted for two consecutive days to evaluate
whether the second day elicited more entrainment. Whether
entrainment was affected by the difference between pulse
period and preferred stride duration was also assessed.
Results indicated that the intervention evoked gait entrain-
ment that occurred more often when the period of pertur-
bation was closer to subjects’ preferred stride duration, but
the difference between consecutive days was insignificant.
Entrainment was accompanied by convergence of pulse
phase to a similar value across all conditions, where the
robot maximized mechanical assistance. Clear evidence of
motor adaptation indicated the potential of the intervention
for rehabilitation. This study quantified important aspects
of the nonlinear neuro-mechanical dynamics underlying
unimpaired human walking, which will inform the devel-
opment of effective approaches to robot-aided locomotor
rehabilitation, exploiting natural dynamics in a minimally-
encumbering way.

Index Terms— Hip exoskeleton robot, gait entrainment,
locomotor rehabilitation.

Manuscript received September 20, 2021; revised January 14, 2022;
accepted February 9, 2022. Date of publication March 14, 2022; date
of current version March 22, 2022. This work was supported in part
by the Global Research Outreach Program of Samsung Advanced
Institute of Technology and in part by the Eric P. and Evelyn E. Newman
Fund. Jongwoo Lee was supported in part by a Samsung Scholarship.
(Corresponding author: Jongwoo Lee.)

Jongwoo Lee was with the Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: jw127 @mit.edu).

Meghan E. Huber is with the Department of Mechanical and Indus-
trial Engineering, University of Massachusetts Amherst, Amherst,
MA 01003 USA (e-mail: mehuber@umass.edu).

Neville Hogan is with the Department of Mechanical Engineering and
the Department of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail:
neville @ mit.edu).

Digital Object Identifier 10.1109/TNSRE.2022.3155770

This work is licensed under a Creative Commons Attribution 4.0 License.

, Member, IEEE

|. INTRODUCTION

HE incidence of gait and balance disorders is expected

to rise with the aging of the population and conse-
quent increase in neurological injuries and disorders such as
stroke [1]-[4]. Thus, there is a great need for effective methods
to aid and restore human locomotion.

Robot-aided locomotor therapy has emerged as a promising
method to meet the enormous demand, as it allows repetitive,
high-intensity, and task-oriented training in a safe and efficient
manner [5], which is important for successful rehabilitation.
There is evidence to suggest that complementing conventional
gait therapy with robot-aided training can be beneficial [6].
But on its own, robot-aided gait therapy does not outperform
conventional physical therapy in clinical measures (such as
walking speed, step length, and step frequency) [7]. The recent
rise of autonomously powered exoskeleton robots promises
new avenues for delivering therapy in more ecological con-
texts, outside of a formal clinical setting [8]-[10]. However,
to live up to their promise and maximize gait recovery,
we must better understand natural human locomotion and how
humans react to exoskeletal robotic interventions.

Earlier robotic gait rehabilitation approaches have been criti-
cized as they enforced repetition of preprogrammed kinematics
which may have discouraged active engagement of participants
and suppressed the natural rhythmic dynamics of walking
[71, [11], [12]. Our previous studies proposed a novel robotic
intervention to modulate gait frequency—gait entrainment—
that respects the rhythmic dynamic nature of walking [13].
It was shown that applying periodic torque pulses at the
ankle, using an ankle exoskeleton robot, could induce subjects
to increase their cadence to synchronize with the period of
the pulses, when the pulse period was close to but shorter
than subjects’ preferred stride duration. This experimental
observation suggests that a nonlinear neuro-mechanical limit
cycle oscillator is a reasonable description of the dynamics of
human walking. Moreover, subjects adapted their gait so that
plantar-flexion torque pulses from the robot aligned with ankle
push-off, which maximized their mechanical assistance. Sub-
sequent studies showed that entrainment was observed more
often, occurred earlier, and persisted longer during overground
walking compared to treadmill walking [11]. Motivated by
this success with healthy individuals, Ahn ef al. studied the
feasibility of this intervention to treat locomotor deficits of
neurologically-impaired patients and increase their cadence
and walking speed [14].

For more information, see https://creativecommons.org/licenses/by/4.0/
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This paradigm is similar to auditory entrainment but dif-
ferent in that it involves physical interaction and energy
exchange. Gait entrainment to rhythmic, auditory signals is
well-known and has been studied in depth [15]-[18], but
synchronization to other forms of rhythmic stimuli is under-
explored. Since the pioneering work of Ahn and Hogan
that investigated gait entrainment to exoskeletal mechanical
signals [13], there is a growing interest in gait entrainment
to various types of stimuli, including an oscillating treadmill
[19], [20], periodic vertical force [21], and electrical muscle
stimulation [22], [23]. These studies share the motivation that
gait entrainment holds promise for locomotor rehabilitation,
as well as providing a useful experimental paradigm to better
inform neuro-motor control of human walking. However,
results also show that while promising, gait entrainment is
not straightforward to achieve.

The goal of the present study was to test whether humans
also entrain to periodic torque pulses applied at the hip
joints while walking overground. Torque pulses were applied
by an autonomous hip exoskeleton robot, the Samsung Gait
Enhancing and Motivating Systems for Hip (GEMS-H).
We hypothesized that subjects would entrain their gait to
periodic perturbations applied to the hip joint, consistent with
prior results from ankle entrainment studies. A preliminary
study showed that entrainment to hip torque pulses seemed
promising [24]. In the study reported here, experiments were
conducted for two consecutive days to evaluate whether the
second day elicited more entrainment. We also assessed how
increasing the difference between the torque pulse period and
subjects’ preferred stride duration affected human responses.
Assessment of gait entrainment requires accurate and reliable
phase estimation. We developed an off-line stride segmentation
algorithm and applied a phase estimation algorithm developed
in [25], which does not require external sensors such as motion
capture or foot-switches. Finally, we investigated whether
subjects aligned the torque pulses to a specific phase of the
gait cycle; and whether it was related to the mechanical power
or work done by the hip exoskeleton robot, similar to the
behavior observed in prior entrainment studies using an ankle
exoskeleton [11], [26].

Il. METHODS
A. Subjects

A total of fifteen healthy young adults (gender: 4 females,
11 males; mean age: 25.5 £ 5.1 years old) participated in
this study. The total number of subjects was chosen to be
slightly larger than that which yielded statistically significant
results in a related prior study of entrainment to periodic
ankle torques [11]. Subjects were divided into two groups:
group-25ms (N = 7) and group-50ms (N = 8). All subjects
gave informed written consent before the experiment. The
experimental protocol was reviewed and approved by the Insti-
tutional Review Board of the Massachusetts Institute of Tech-
nology (protocol #: 1809534122; approval date: 10/18/2018).

B. Equipment: Samsung GEMS-H Exoskeleton

The Samsung Gait Enhancing and Motivating Systems
for Hip (GEMS-H) developed by Samsung Advanced
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Fig. 1. A The Samsung GEMS-H exoskeleton applied torque pulses
between the two thighs. Subjects were instructed to walk comfortably.
B Subjects were divided into two groups. C Experimental protocol for
each day.

Institute of Technology (Suwon, South Korea) was used in
this study (Fig. 1A; [27]-[30]). This low-mass (2.1 kg) robot
is worn around the waist and fastened to the thighs. A pair
of actuators, one at each hip joint, applies torque in the
sagittal plane (hip flexion and extension). Passive hinges
allow unencumbered hip ab/adduction motion in the frontal
plane. The torque output of each actuator is estimated and
controlled by sensing electrical current in the respective motor.
Encoders embedded in the actuator modules measure hip
joint angles. All electronics, actuators, and power sources
are located onboard the device, allowing for untethered oper-
ation. Unlike laboratory-based tethered exoskeleton testbeds
[31]-[34], this autonomous exoskeleton allows experiments to
be conducted overground, thereby enabling study of the effects
of intervention in more ecological contexts.

C. Experimental Procedure

On two consecutive days, all subjects performed ten walking
trials (two baseline trials followed by eight pulse trials) per
day wearing the GEMS-H exoskeleton (Fig. 1A). Each trial
consisted of 120 strides, and all trials were performed in a
long corridor (approximately 250 m) with low foot traffic to
simulate real-world walking conditions. Throughout the trials,
subjects listened to white noise through wireless, over-the-
ear headphones to mask the sound of the exoskeleton and
environment. Subjects were instructed to walk at their com-
fortable pace, but they were neither informed that the torque
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pulses would be delivered periodically, nor asked to “entrain”
to these perturbations. The experiment lasted approximately
45 minutes on each day.

1) Baseline Trials: In baseline trials, the hip exoskeleton
was unpowered (i.e., zero motor current), and subjects were
instructed to walk at a comfortable pace. On each day, pre-
ferred stride duration (7,) was quantified as the average stride
period from the middle 30 strides in the second baseline trial.

2) Pulse Trials: In the pulse trials, the hip exoskeleton
was unpowered during the first 20 strides, powered during
the subsequent 80 strides, and unpowered for the remaining
20 strides (Fig. 1B). When powered, the exoskeleton delivered
periodic torque pulses to both legs simultaneously. The torque
pulses were trapezoidal in shape with a duration (7y) of
200 ms (Fig. 1A). The magnitude of peak torque (7)) was set
to 0.1 times the subject’s body mass in kg and was constant
across trials for each subject. For safety, the torque magnitude
was upper bounded by 8 Nm (group-25ms: median = 7.2 Nm,
inter-quartile range (IQR) = 1.2 Nm; group-50ms: median =
8 Nm, IQR = 1.4 Nm). Note that the magnitude of torque
applied was only ~10% of the magnitude of the peak hip
moment during natural gait [35].

The torque pulse applied to the right hip (zg) was always
in the flexion direction (negative) and in the extension direc-
tion (positive) for the left hip (77 ). The torques to the left and
right hips were always of the same magnitude but opposite
direction, i.e., tg + 77 = 0 (Fig. 1A). For subjects in group-
25ms, the pulse period (T),) was set to be 25 ms faster than
their preferred stride duration (7, — T), = 25 ms); for subjects
in group-50ms, the pulse period was set to be 50 ms faster than
their preferred stride duration (7, — T, = 50 ms). Subjects
were instructed to walk in whatever way they found most
comfortable. They were aware that the exoskeleton would
alternate between powered and unpowered states during these
trials, but they were not informed how the exoskeleton was
controlled.

D. Hypotheses

To understand whether a nonlinear stable limit cycle
oscillator is a reasonably competent descriptive model of
the neuro-mechanical system controlling human walking,
we assessed how the difference between torque pulse period
and subjects’ preferred stride duration affected entrainment.
We hypothesized that entrainment would be observed more
often when the difference was smaller, i.e., more often in
group-25ms than in group-50ms (hypothesis 1). Synchroniza-
tion itself does not specify the phase at which entrainment
occurs. However, if entrainment occurs due to the dynamic
structure of the human walking controller, a consistent phase
when entrained was expected. Therefore, we hypothesized that
the phase when entrained would be consistent across trials and
subjects, i.e., for all entrained trials the distributions of the
terminal pulse phases would not be different (hypothesis 2).

It is important to assess neural and/or biomechanical contri-
butions. Experiments were conducted for two consecutive days
to evaluate whether the second day elicited more entrainment.
If the central nervous system (CNS) learned the adapted behav-
ior, repeated bouts should evoke more frequent entrainment.

We hypothesized that entrainment would be observed more
often on day 2 than on day 1 (hypothesis 3). Lastly, we tested
whether mechanical energy/work done by the robot had any
relation to entrainment, similar to the behavior observed in
the prior entrainment studies using an ankle exoskeleton.
We hypothesized that the locking phase would be commen-
surate with the phase where the torque pulse could provide
maximal positive power (hypothesis 4).

E. Data Processing

1) Stride Segmentation: Each stride began with maximum
extension (positive) of the left hip angle (1), which approxi-
mately corresponds to left toe-off [36]. Because torque pulses
applied during the pulse trials affected position measurements,
simple peak detection did not reliably separate each stride
from the entire time-series data. To account for the inevitable
relative motion between the exoskeleton and the wearer,
we developed an off-line stride segmentation algorithm,
as described in Appendix I.

2) Phase Estimation: Determining phase variables from
experimental signals is not trivial, especially when the sig-
nals are non-stationary [37], [38]. Previous studies [39], [40]
proposed to compute phase from kinematic observations (kine-
matic phase) to understand neuromechanical control of animal
locomotion subject to mechanical perturbation. Recent work in
the robotics community exploited kinematic phase variables to
design biped walking controllers, and this showed more robust
performance than using a time-based phase variable [41].
Inspired by these previous studies, Gregg and colleagues [25],
[42]-[44] recently proposed reliable and robust methods to
determine a phase variable for human walking, using hip angle.
We adopted this method to estimate the gait phase of human
subjects ¢ from the angular positions measured from the
exoskeleton encoder of the left hip joint (7). The estimated
phase was used to assess entrainment, and to investigate to
which phase of the gait cycle the mechanical perturbations
converged. We briefly present the method in Appendix II, but
readers are referred to the original work for details.

F. Dependent Measures

1) Pulse Phase: Pulse phase ¢p (%) was defined as the
phase at which the onset of the torque pulse occurred within
the gait cycle. The initial pulse phase (¢p,iniriar) of a given
trial refers to the pulse phase of the first pulse and the terminal
pulse phase ( ¢p,rerminal) refers to average pulse phase of the
last 10 pulses in that trial.

2) Pulse Phase Slope: Pulse phase slope (%/#) was defined
as the average change of pulse phase (%) with respect to pulse
number (#). Pulse phase slope was computed over the first
10 pulses (initial pulse phase slope) and the last 10 pulses
(terminal pulse phase slope) of each trial by linear regression
(MATLAB function £itlm).

3) Entrainment Criteria: Each trial was classified as
entrained if the magnitude of the terminal pulse phase slope
was < 0.5 (%/#); otherwise, it was classified as not-entrained.
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4) Period Deviation: Period deviation AT (ms) was defined
as the difference between each stride duration and the torque
pulse period for each respective trial.

5) Pulse Mechanical Energy: Normalized pulse mechanical
energy Ep (J/Nm) passed from the robot to the human was
estimated for each torque pulse by integrating instantaneous
power over time. To normalize the measure, the net energy was
divided by peak commanded torque (zj;) of the corresponding
trial £, ~ i f (rR Or + 11 éL) dt. The joint torques were
estimated from the current sensors. Joint position signals
were filtered to estimate joint velocities off-line using an
FIR filter (order: 50, passband: 20 Hz, stopband: 30 Hz) to
approximate an ideal low-pass filtered differentiator. The group
delay of the filter was used to compensate for the time shift
of the signals due to the filtering process. Signal processing
was performed using MATLAB R2018b (Mathworks, MA;
function: designfilt).

6) Predicted Pulse Phase: Ignoring kinematic variation
induced by the robot perturbation, one can estimate the depen-
dence of pulse mechanical energy on pulse phase. Assuming
an ideal pulse was applied to the wearers with magnitude
(= 7 = —7R), and using the kinematics obtained during
baseline trials, the estimated pulse mechanical energy was
calculated as

~ 1 . R
Ep(pp) ~ o / ty (0L — Or)dt = AOrpL(dp), (1)

where Orgr = 01 — Or, AOrer = OreL(ton(Pp) + Tu) —
OrEL (ton(dp)), and t,, is the pulse onset time corresponding
to ¢ p. Based on hypothesis 4, we predicted the pulse phase qAﬁ P
(%) would maximize the pulse mechanical energy, i.e. <2>p =

argmax, Ep(¢p).

G. Statistical Analyses

Statistical analyses were conducted using the Statistics and
Machine Learning Toolbox of MATLAB R2018b (Mathworks,
MA). For all statistical tests, the significance level was set
to o = 0.05. For each analysis of variance (ANOVA), the
F-statistic and corresponding p-value are reported for all main
effects and interactions.

A 2 (group: 25ms vs. 50ms) x 2 (day: 1 vs 2) ANOVA
on the number of entrained trials was performed to test
whether entrainment occurred more often when the difference
between natural stride duration and pulse period was smaller
(hypothesis 1) and whether the second day elicited more
entrainment (hypothesis 3). Group was a between-subjects
factor and day was a within-subject factor.

A 2 (group: 25ms vs. 50ms) x 2 (day: 1 vs. 2) ANOVA
on terminal pulse phase (¢p, terminar) Of entrained trials tested
whether the terminal pulse phase (i.e., locking phase) was
influenced by the experimental conditions (hypothesis 2).
Group was a between-subjects factor and day was a within-
subject factor.

A residual analysis was conducted to compare the agree-
ment between the actual pulse phase and predicted pulse phase
for maximizing mechanical work ngSP (%) during the last ten
pulses of each trial (hypothesis 4).
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Fig. 2. A Representative entrained trial. B Representative not-entrained
trial. Top: Left hip angle vs. phase, all strides. Black circles denote onsets
of torque pulses. Middle: Pulse phase (¢p) vs. pulse number. Bottom:
Period deviation vs. stride number. Torque pulses were applied during
strides 20-100 (black, solid). Pre- and post-pulse strides are also plotted
(gray, dotted). In the top and middle rows, the initial pulse (green dot) and
the last 10 pulses (red dots) are highlighted.

I1l. RESULTS
A. Representative Trials

Fig. 2 presents two representative trials: entrained (group-
25ms, day 1, subject 1, trial 1) and not-entrained (group-50ms,
day 1, subject 2, trial 1). In the entrained trial (Fig. 2A), the
pulse phase converged by the end of the trial (M: 65.6%, SD:
0.54% in the last 10 pulse phases). The stride duration was
approximately matched to the torque pulse period (i.e., period
deviation close to zero). After the torque pulses ceased, stride
duration slowly returned towards its pre-perturbation value
(stride number 100 - 120). However, in the not-entrained trial
(Fig. 2B), the pulse phase drifted through all phases of the gait
cycle and stride duration was little affected by the intervention
(non-zero period deviation).

B. Group Results

Consistent with hypothesis 1, gait entrainment was
observed more frequently in group-25ms (dayl: 71%, 40 out
of 56 trials; day2: 79%, 44 out of 56 trials) than in group-
50ms (dayl: 39%, 25 out of 64 trials; day2: 45%, 29 out
of 64 trials), and this difference was statistically significant
(F[1,13] = 7.8, p = 0.015). Counter to hypothesis 3,
there was no statistical difference between consecutive days
of experiments (F[1,13] = 0.37,p = 0.55). There was
no statistically significant interaction between groups and
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Fig. 3. Pulse phase (¢p) vs. pulse number for all entrained trials in all
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of entrained trials, for each condition is also presented. Different colors
represent different subjects. The pulse phases are unwrapped such that
the last value of each trial is between 0 % and 100 %. Pulse phase slope
of initial and terminal segments of the entrained trials are also presented.

TABLE |
PERCENTAGE OF ENTRAINED TRIALS PER SUBJECT
Subject | Dayl (%) | Day2 (%) | Total (%)
1 87.50 87.50 87.50
2 75.00 100.00 87.50
3 62.50 87.50 75.00
25ms 4 87.50 100.00 93.75
5 0.00 62.50 31.25
6 100.00 75.00 87.50
7 87.50 37.50 62.50
8 50.00 75.00 62.50
9 0.00 100.00 50.00
10 100.00 37.50 68.75
50ms 11 37.50 25.00 31.25
12 50.00 25.00 37.50
13 0.00 0.00 0.00
14 50.00 75.00 62.50
15 25.00 25.00 25.00

days (F[1,13] = 0.002, p = 0.97). The percentages of the
entrained trials for individual subjects are listed in Table I.
Fig. 3 presents the progression of pulse phase (¢p) vs. pulse
number for all entrained trials for each condition. In entrained
trials, pulse phase converged to an approximately constant
value before the perturbation ceased. Within each trial, the
pulse phases tended to drift in one direction (either increasing
or decreasing). Fig. 3 (bottom) presents the distribution of the
initial pulse phase slopes and the terminal pulse phase slopes

(A) 25ms, Day 1: n = 40 (71.43%)

20 20
i)
Ay
=10 10
(o)
**
0 0
0 50 100 0 50 100
(B) 25ms, Day 2: n = 44 (78.57%)
20 20
i)
8
=10 10
S
** _—_4_‘
0 0
0 50 100 0 50 100
(C) 50ms, Day 1: n = 25 (39.06%)
20 20
i)
Ay
=10 10
(o)
** _._—_—_-_._I_ ‘_-_-_J_‘_.
0 0
0 50 100 0 50 100
(D) 50ms, Day 2: n = 29 (45.31%)
20 20
i)
8
=10 10
S
** A_—_A_-_
0 0
0 50 100 0 50 100
¢P,initial ¢P,terminal
Initial pulse phase (%) Terminal pulse phase (%)
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®pterminal» respectively) for all entrained trials across all conditions.

of the entrained trials. After initial transients, subjects adapted
their gait and reached steady-state motion within 80 strides.

C. Gait Phase Convergence

Fig. 4 presents initial and terminal pulse phases (¢p inirial
and @p serminal, respectively) of the entrained trials across all
conditions. While the ¢p inirias values were distributed widely
across the entire gait cycle, the @p terminar values formed
a unimodal distribution in each condition. Consistent with
hypothesis 2, ¢p serminai Was consistent across all entrained
trials (M = 63.8 %); neither the effect of period difference
(group-25ms vs. group-50ms; F[1, 137] = 0.001, p = 0.97),
day (dayl vs. day2: F[1,137] = 0.08, p = 0.78), nor their
interaction (F[1,137] = 2.96, p = 0.088) were statistically
significant.

D. Mechanical Energy

Fig. 5 compares the normalized pulse mechanical energy
Ep and ¢p values from the last 10 pulses of entrained and
not-entrained trials in all conditions. The histograms of the
entrained trials show that these two quantities were closely
related. The unimodal distribution of the ¢p values from the
terminal pulses (i.e., terminal phase) from all entrained trials
(M = 63.8%,SD = 10.4%) was centered about those at
which subjects could gain the most mechanical benefit from
the exoskeleton robot (M = 65.1%, SD = 1.57%).
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A representative trial exemplifies the similarity between
the actual ¢p serminas and the predicted phase for maximal
work done by the robot q%p (Fig. 6A). The distribution of
the error between predicted and actual locking phase (¢err =
<2>p —@p,rerminal) (Fig. 6B) for all entrained trials was centered
around zero (M = —1.3%,SD = 10.2%). These results
indicate a close relationship between the converged phase
and positive mechanical work done by the robot confirming
hypothesis 4.

E. Stride Period

Fig. 7 presents how the period deviation of entrained tri-
als and not-entrained trials varied in each condition. In all

entrained trials, stride duration adapted to match the torque
pulse period, resulting in a mean period deviation close to
zero. Upon removal of the robotic intervention, stride durations
slowly returned to their pre-perturbation values. Conversely,
stride duration did not converge to the torque pulse period in
not-entrained trials. T-tests indicated that in each condition, the
mean period deviation was not significantly different from zero
during entrained trials (group-25ms x dayl: p = 0.51, group-
25ms x day 2: p = 0.77, group-50ms x dayl: p = 0.61,
group-50ms x day2: p = 0.11), but was significantly different
from zero during not-entrained trials (group-25ms x dayl:
p < 0.001, group-25ms x day 2: p < 0.001, group-50ms x
dayl: p < 0.001, group-50ms x day2: p < 0.001). There was
a constant offset in period deviation for not-entrained trials.
While this offset was smaller on day 2 of not-entrained trials,
in particular of group-25ms, it was larger than that of entrained
trials.

V. DISCUSSION
A. Summary of Results

This study characterized unimpaired human subjects’
responses to periodic torque pulses applied about the hip joints
during overground walking.

We observed that human subjects entrained their gait to the
periodic mechanical torque pulses applied by a hip exoskeleton
robot. During this process, subjects synchronized their stride
duration to match that of the external mechanical perturbation
(Fig. 7). For all groups, by the end of entrained trials, pulse
phase converged to a unimodal distribution centered around
63-65% (Fig. 3 and Fig. 4). Further analysis revealed that
entrainment occurred such that the mechanical energy flow
from the robot to the wearer was maximized (Figs. 5 and 6).

Gait entrainment was observed more often when the pulse
period was closer to subjects’ preferred stride duration, and
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Fig. 7. Period deviation vs. stride number of A entrained trials and B not-entrained trials. Pre-pulse strides and post-pulse strides are distinguished
(cyan). The means and standard deviations of trials for each condition are presented as black; thick lines and red, thin lines, respectively. In computing
means and standard deviations for each stride number, outliers were omitted using MATLAB function rmoutliers with its default setting. 1142 out

of 28,800 total strides (4%) were deemed outliers.

this difference was statistically significant (p 0.015).
However, there was no statistical difference between the two
days of experiments (p 0.55), suggesting that longer
training periods might be required to elicit further changes
in neuro-motor behavior or that the effect size of day was too
small to detect with the number of subjects included in this
study.

B. Limitation: Robot-Embedded Measurements

There are trade-offs between tightly-controlled lab experi-
ments and experiments in real-world conditions. For example,
walking overground enables a study of natural human behav-
iors in more ecological contexts, but the ability to measure
human behavior is limited. On the other hand, walking on a
treadmill in a lab enables reliable collection of various data
(e.g., ground reaction forces using force plates or whole-body
kinematics using a motion capture system). However, walk-
ing on a treadmill is mechanically different from walking
overground. For instance, the treadmill belt speed changes
periodically depending on the gait phase, and may require
motor adaptation to a dynamic environment [45]. The goal
of this study was to investigate entrainment in real-world
conditions, despite the associated limitations.

Entrainment was assessed based on robot-embedded joint
position measurements. Because the exoskeleton robot did not
perfectly conform to each individual, the hip joint angles mea-
sured by the robot-embedded encoders may have differed from
the true human joint angles. The robot actuators transmitted
power and/or torque through a thigh frame and belt assembly
that was tightly coupled to the human subjects. However,
torque transmission may have been imperfect for a myriad of
reasons (e.g., friction in the actuator, elasticity in human tissue

or the thigh frame, and relative motion between the exoskele-
ton robot and the wearer). The difference between torque
estimated from on-board sensors and external force-sensitive
resistor (FSR) sensors was presented in [46]. Nonetheless, our
conclusion that periodic torque pulses at the hip joints induced
gait entrainment is still valid because it relies on the trend
of behavior rather than exact values. Inaccurate kinematic
measurement and inaccurate torque application cannot dismiss
our results.

Measurements based on whole-body kinematics (e.g., stride
length), or stride segmentation based on external sensors
(e.g., foot-mounted sensors) would be useful to confirm and
further illuminate our results. In addition, direct measure-
ments of muscle activity (e.g., surface electromyography,
SEMG) would be useful to further identify neuro-muscular
mechanisms associated with gait entrainment. Measurements
of metabolic cost would also add useful information to
track consequential changes in locomotion economy following
adaptation.

C. Gait Entrainment to Mechanical Perturbations

Periodic torque pulses applied by a hip exoskeleton evoked
gait entrainment, accompanied by convergence of pulse phase
to a constant value across all conditions. Entrainment occurred
more often when the period of perturbation was closer to
subjects’ natural stride duration. The results are consistent with
previous studies that showed entrainment to mechanical per-
turbations [11], [13], [19]-[21], [47]. While a direct, within-
subject comparison of the basin of entrainment for ankle
versus hip torque is still needed, the present results suggest
that the basin of entrainment is smaller with a hip exoskeleton
than with an ankle exoskeleton [11], [13], [47]. For instance,
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the percentage of trials entrained to pulse periods 50ms shorter
was higher for ankle perturbations (92% of overground trials
in [11]) compared to hip perturbations (dayl: 39%, 25 out of
64 trials; day2: 45%, 29 out of 64 trials). Assessment of this
difference, and identification of the underlying cause, remain
areas for future work.

While entrainment itself does not enforce convergence to
a particular constant phase, subjects entrained their gait to
maximize the work done by the hip exoskeleton robot, as illus-
trated in Fig. 5. This result is consistent with previous studies
with different mechanical interventions, in which individuals
adapted to leverage positive power from the devices [48],
aligning the timing of robotic torques from an ankle exoskele-
ton with ankle propulsion [11], [13], [33]. Subjects tended to
get the most mechanical assistance during the gait phase when
the ankle does the most positive work [49].

Adapting gait to maximize mechanical energy supply from
the hip exoskeleton robot has biomechanical advantages. The
hip joints produce 40 - 45% of positive power during walking,
and this is mostly done during the initial- and mid-swing
phases [36]. To get the swing leg out in front requires
substantial effort and power, which is influenced by hip torque.
The converged pulse phase (63 - 65%) roughly corresponds to
when the left leg is extending (from maximum flexion) and the
right leg is flexing (See Fig.2A). At this phase the robot drove
the legs apart, as it always applied flexion torque pulses on the
right and extension on the left, providing assistance to swing
the right leg forward. Moreover, this phase also approximately
coincides with activity bursts of the major hip flexor muscles
of the right leg and hip extensor muscles of the left leg [36].
Additional SEMG measurements would be useful to confirm
this explanation. Assuming a major limitation to walking speed
is the effort required to get the swing leg out in front, assisting
that action may provide some useful therapeutic effect (e.g. for
stroke survivors with hemiparesis).

D. Gait Entrainment: Neural or Mechanical?

Does gait entrainment involve any central neural process,
or was it purely due to peripheral neuro-mechanics? The
potential bio-mechanical benefits discussed in the previous
section seem to suggest that biomechanical mechanisms at
least played a significant role. In fact, a previous modeling
study suggested that gait entrainment may not require any
supra-spinal mechanisms [26]. However, that model could not
reproduce some experimental results (e.g., entrainment to peri-
odic perturbations slower than preferred walking period [11],
[50]), suggesting that some higher-level neural contribution
may be required. Indeed, it is hard to dismiss the role of
supra-spinal control in gait entrainment.

The intervention in this study was designed to either drive
the legs apart or pull them together, depending on the phase
at which the pulse occurred. Since the torque pulse period
was similar to the stride duration not the step duration,
this intervention influenced inter-leg coordination, breaking
symmetry, which might be detected by the CNS as an error to
be corrected [51]. Mechanical perturbations affecting inter-leg
coordination have been shown to evoke locomotor adaptation,

e.g., split-belt treadmill walking [51] and many other studies
involving unilateral perturbation [52]-[54]. Conversely, our
companion study [55] showed that an intervention that did
not affect symmetry did not evoke motor adaptation.

Moreover, the timing of locomotor patterns is thought to be
mediated at the spinal level (e.g., central pattern generators)
but under supraspinal control (e.g., motor cortex, via brainstem
centers) and afferent sensory feedback [56]-[59]. While audi-
tory signals cannot directly influence inter-leg coordination,
substantial studies have shown that the rhythmic adaptation
observed in auditory-motor synchronization involves central
neural mechanisms (e.g. cortical areas, basal ganglia and the
cerebellum) [18]. There is also evidence that neuro-motor
adaptation to a mechanical perturbation was predominantly
due to descending drive from supra-spinal levels [60]. For
example, an intact cerebellum and motor cortex appear to be
critical for motor adaptation [61].

In sum, it seems reasonable to suggest that both high-level
(supra-spinal) control and low-level peripheral neuromechani-
cal structures contributed to the observed gait entrainment to
mechanical perturbation at the hip joints.

E. A Nonlinear Limit-Cycle Oscillator as a Descriptive
Model of Human Walking

When exposed to external periodic forcing, a nonlinear limit
cycle oscillator is entrained and synchronizes its frequency
with that of the stimulus [62]. This synchronization only
occurs when the frequency and strength of the stimuli are in
a finite region called the basin of entrainment!; outside this
region in parameter space, entrainment does not occur.

The experiments reported here were designed based on
a working hypothesis that a nonlinear, stable limit cycle
oscillator is a reasonable descriptive model of human walking.
The experimental observations of this study can be sum-
marized by two characteristics: phase-locking to a unimodal
phase distribution; and a finite basin of entrainment (more
entrainment in group-25ms than in group-50ms). Inevitable
noise in biological systems was also observed, e.g., in stride
durations or pulse phase distributions. Despite the unquestion-
able complexity of the human neuromotor system, there is
considerable practical value to describing human walking with
an exoskeleton robot by a simplified mathematical model: a
nonlinear limit-cycle oscillator with periodic forcing, subject
to the presence of stochasticity. Note that a linear model
(e.g. a second-order mass-spring-damper system) cannot
exhibit a finite basin of entrainment. Despite the evident power
of linear analysis, some phenomena require nonlinearity. Sto-
chasticity is also required, though deterministic chaos may not
be necessary [63].

This simple theoretical model provides useful insights to
predict and interpret complicated experimental observations.
First, the finite basin of entrainment is determined by two para-
meters: the period of perturbation and the coupling strength.
From this point of view, it is natural to observe less entrain-
ment in group-50ms than in group-25ms. When the parameters

Ut is also said that the system exhibits the Arnold’s tongue structure, due
to the shape of the basin of entrainment.
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are outside the basin of entrainment, entrainment will not
occur and the pulse phase will drift. However, when the
parameters are close to the boundary, the pulse phase will
drift slowly when it is near the converged phase (critical
slowing [64]). In that case, stochasticity may ‘push’ the system
into the basin of entrainment. We believe this is what we
observed in some trials in Fig. 3.

Second, this simple theoretical model might potentially
be useful to quantify individuals with a small number of
parameters. For example, the model presented in [62] only
requires three parameters: the convergence rate of the limit
cycle (this may be a characteristic of individual subjects), the
relative frequency between the stimulus (pulse period T),) and
the oscillator (subjects’ preferred stride duration 7,), and the
coupling strength (which may be related to pulse magnitude
7, or pulse duration Ty or both). A model of this kind may
serve to customize treatment protocols to individual patients.

F. Gait Entrainment: Clinical Implications

Mechanical gait entrainment may serve as a novel per-
missive locomotor rehabilitation therapy that does not disrupt
the limit-cycle behavior underlying locomotion. Similar to the
auditory gait entrainment which has shown promising thera-
peutic effects [17], mechanically entraining gait to increase
cadence may result in increased walking speed [15], [65] or
stride length [17], which might be important functional out-
comes for post-stroke survivors [66], [67]. Moreover, walking
in recovering stroke patients (and in some healthy elders)
looks a lot like a sporadic slow sequence of individual steps.
Mechanical entrainment may promote more natural (rhythmic)
action and hence be beneficial as demonstrated in [14].

To maximize the potential therapeutic effects of mechanical
gait entrainment, different torque pulse profiles (including
continuous rhythmic torque patterns) and performance-based
protocols for gradual improvement [14], [47], [68] should
be investigated. To understand underlying neuro-mechanical
mechanisms of entrainment, a competent model would be
insightful [69]. Once the most effective method has been
established, studies with patient populations should follow to
evaluate whether neuromotor adaptation in healthy subjects
translates to neuro-recovery in clinical settings. These matters
are left for future studies.

APPENDIX |
OFF-LINE STRIDE SEGMENTATION

For each pulse trial, the time-series of left hip angle 61,
was post-processed to detect the peaks using a peak detection
algorithm (MATLAB findpeaks). The indices of the peaks
were stored ipx € Zpg and served as an initial seed for
optimization for stride segmentation (Fig. 8A). The indices of
the onset and offset pair of each torque pulse r; were stored
as tuples: (ion, ioff) € Zon—orF. If a peak index i, was
within any pair of indices [ion, ioff], the corresponding stride
segmentation was deemed affected by the torque pulse. Those
peaks were removed from Zpg and stored as decision variables
to be updated, Zpy (See Algorithm 1).

Algorithm 1 Off-Line Stride Segmentation Initialization

1: Given left hip angle peak indices Zpg, torque pulse
onset-offset index tuples Zoy—oFF

2: Initialize decision variable Zpy

3: for ipr € Ipg do

4 if 3(on, iofr) € Zon—0FF St ipk € lion, iofs] then
5 idy < ipk

6: Append Zpy with iy,

7 Remove i, from Zpg

8 end if

9: end for

Algorithm 2 Inter-Stride Variability
1: procedure INTER-STRIDE VAR(Or,0r, Zpk,Zpv, N)

2:  Initialize V < 0

3 Initialize stride segments S

4 Sort Zg = Zpx U Zpy in ascending order

5. for s-th index iy € Zg do

6 6% (Owlis],Olis + 11, , Orlis1])

7 0y < (Orlis], Orlis + 11, -, Orlis+1])

8 0" « interpl((s, - ,ist1),0%, (1, -, N))
9 0%)«-interplqg,u.,g+4L0;%(1,..,N»

10: Store 03), 01(;) in S
11:  end for _ _
12:  Compute ensemble average: f; and Og
13:  for 02”,0;;) €S do

14: Ve V40 =001+ 1103 — g
15:  end for

16:  return V

17: end procedure

Assuming human subjects exhibited similarity across dif-
ferent strides within each trial, the decision variables were
updated so as to minimize inter-stride variability V. To com-
pute inter-stride variability V, the time-series of left 4 and
right O hip angle were first segmented using Zpx U Zpy.
Each stride segment was interpolated and time-normalized as
a length N vector (MATLAB interpl). The inter-stride
variability was calculated as the sum of squared errors of each
stride and the ensemble average; see Algorithm 2.

In this work, the genetic algorithm (MATLAB function ga)
was used to find the integer-valued decision variables Zpy
that globally minimized V. Other methods may be developed
for computational efficiency. To avoid over-correction, each of
the corrected peak indices (i4,) was bounded in time by £7y
(= =£ 200 ms) from its initial value (i,x). The optimal stride
segments S were used to calculate dependent measures in this
study.

The effect of the developed stride segmentation algorithm
is clearly demonstrated in Fig. 8. When motion artifacts were
significant as in this study (due to relative motion between
the exoskeleton robot and the wearers), this method outper-
formed the ndive peak detection algorithm to segment strides
from long time-series data (e.g., MATLAB findpeaks).
Of course, using external sensors such as a motion capture
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Fig. 8. Stride segmentation using naive peak detection algorithm (A) and using the improved algorithm (B). Each segment of the data between

squares (top, right of each panel) corresponds to a stride.
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pulses. Green dot indicates the initial pulse. Red dots indicate the onsets
of ten terminal pulses.

system or a force plate to detect gait events would be more
accurate, but may not be compatible with human studies
outside the lab.

APPENDIX Il
PHASE ESTIMATION ALGORITHM

The phase estimation algorithm was adopted from [25],
[43], [44]. For the s-th stride 8" € S from Appendix 1, the
angle and its integral were shifted and scaled to obtain two
signals sl(,,s) and s}s).

N
1
sp =0y =~ >0, li] @)

i=1

k
571 =" sl (3)
i=1
(s) o (8)
maxs, — mins
g = OB *
max§;’ — mins;
s = g8 Q)
The two signals s;f) and s;s) construct a closed orbit on the

phase plane. The phase of each data point for each stride was
computed as the angle of the data point on the phase plane as
shown in Fig. 9.

s; 1]

sl

o9l = %atan ) € [0, 1]. (6)
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