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Latent Characteristics and Neural Manifold
of Brain Functional Network

Under Acupuncture
Kai Li, Jiang Wang , Member, IEEE, Shanshan Li, Bin Deng , Senior Member, IEEE, and Haitao Yu

Abstract— Acupuncture can regulate the cognition of
brain system, and different manipulations are the keys of
realizing the curative effect of acupuncture on human body.
Therefore, it is crucial to distinguish and monitor the differ-
ent acupuncture manipulations automatically. In this brief,
in order to enhance the robustness of electroencephalo-
gram (EEG) detection against noise and interference, we
propose an acupuncture manipulation detecting framework
based on supervised ISOMAP and recurrent neural network
(RNN). Primarily, the low-dimensional embedding neural
manifold of brain dynamical functional network is extracted
via the reconstructed geodetic distance. It is found that
there exhibits stronger acupuncture-specific reconfigura-
tion of brain network. Besides, we show that the distance
travel along this manifold correlates strongly with changes
of acupuncture manipulations. The low-dimensional brain
topological structure of all subjects shows crescent-like
feature when acupuncturingat Zusanli acupoints, and fixed-
points are varying under diverse manipulation methods.
Moreover, Takagi-Sugeno-Kang (TSK) classifier is adopted
to identify acupuncture manipulations according to the
nonlinear characteristics of neural manifolds. Compared
with different classifier, TSK can further improve the accu-
racy of manipulation identification at 96.71%. The results
demonstrate the effectiveness of our model in detecting
the acupuncture manipulations, which may provide neural
biomarkers for acupuncture physicians.

Index Terms— Acupuncture, EEG, RNN, neural manifold.

I. INTRODUCTION

ACUPUNCTURE is an essential treatment of traditional
Chinese medicine, and its efficacy on various diseases

has been confirmed by long-term clinical practice all over
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the world [1]–[3]. In the theory of traditional Chinese medi-
cine, the basic role of acupuncture is to modulate the brain
system, which plays an important role in the treatment of
insomnia, stroke, and Alzheimer’s disease [4], [5]. Apart
from the functional treatment, acupuncture has multi-factor
intervention, such as different manipulation methods: consists
of twirling-rotating (TR) and lifting-thrusting (LT) of the
needle. These methods can improve the stimulating effect of
acupuncture on acupoints during the treatment procedure of
acupuncture [6], [7]. Kim et al. [8] find that formalin-induced
pain is significantly reduced in acupunctured by TR group
and acupunctured by LT methods group, while TR is more
effective than LT method. Furthermore, different acupunc-
ture produces various influences on the blood perfusion with
reinforcing LT or TR manipulation [9]. However, due to the
complexity of physical operation, it is hard to monitor the
acupuncture manipulations during the treatment procedure,
and the acupuncture manipulations now mainly depend on
physician’s experience. There are few scientific evidences for
the therapeutic effects of acupuncture manipulations. If the
acupuncture manipulations cannot be quantified, the detailed
effects of acupuncture manipulations are hard to be elucidated,
which becomes an important shackle for the investigation of
the treatment effect of acupuncture [10]. Therefore, it is urgent
to develop an automatic acupuncture manipulations detection
system, which can provide real-time manipulations detection.

In previous works, the acupuncture manipulations have
been widely quantified via statistical table analysis or tactile
detection [11], [12]. On this basis, in order to clarify the time-
efficiency of acupuncture on brain activity, some researchers
use nontraumatic brain imaging techniques for acupuncture
decoding. In recent years, EEG is applied to investigate effects
of acupuncture by recording neurophysiological signals in
different brain regions [13]. Using nonlinear and multivariate
statistics, Qi et al. [14] finds that acupuncture can activate
brain regions except for the occipital lobes from EEG view.
Yi et al. [15] finds that acupuncture may control and regulate
information routing among brain regions from synchronous
functional network. Due to high time-frequency characteristics
of EEG, the signal can be used to detect the brain features in
real time. However, Because of the existence of environmental
noise, the robustness of decoding efficiency is affected. In this
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case, it is urgent to adopt a new EEG method to infer the
latent states of brain circuits, which can detect the acupuncture
manipulations more precisely. In this manner, we will abstract
the brain as a dynamical functional network, and describe
features of brain activity from low dimension view.

A significant limitation which has prevented the ubiquitous
application of acupuncture detection is the morphological
variability of the EEG signal. This makes it difficult to consis-
tently extract the time-varying features of brain network [16].
At present, manifold learning allows us to extract latent neural
states in the complex human brain activities, which is the
key to realize the distinction and quantification of acupunc-
ture [17]–[20]. Specifically, manifold is the sub-region which
captures behavior in each task [21], [22]. Recent advances
in neuroscience have demonstrated that neural manifold is
present across brain regions, which provides idea for decoding
brain activity [23]. Aoi et al. [24] finds that the rotation time-
features of relevant task variables can be decoded according to
the manifold geometry. Giszter et al. [25] finds that the desired
behavior can be achieved by controlling a small number of
independent latent factors. In this manner, the time-varying
characteristics and stability of a single experiment can be
analyzed from low-dimensional manifold. Therefore, from the
perspective of manifold, it is possible to investigate the latent
features of brain network and realize the quantification of
acupuncture manipulations against noise and interference.

Recent advances in neuroscience have demonstrated that it
is possible to study neural population activity using dimension
reduction technique [26], [27]. Some dimensionality reduction
techniques are used to find the low-dimensional manifold, such
as principal component analysis (PCA) and multi-dimensional
Scaling (MDS) [28]–[30]. Besides, nonlinear methods are used
for learning manifolds with nonlinear characteristic, such as
local linear mapping (LLE) and Isometric Feature Mapping
(ISOMAP) [31], [32]. However, LLE requires that the mani-
fold should not be closed. The method is sensitive to the value
of the nearest neighbor sample number, and the sample set
should be dense [33]. ISOMAP fails to make full use of fault
sample information due to the unsupervised feature extraction
way [34]. To obtain an accurate estimate of displacement along
the manifold, the improved ISOMAP is used in this paper.
Furthermore, recurrent neural network (RNN) is established to
build a refactoring network [35], [36]. The historical features
of low-dimensional manifolds are fed into RNN and are used
to predict the current manifold features. Based on the actual
and predicted manifolds geometry, the distance travelled by
the signal along the manifold may be used to infer changes
of latent brain characteristics under acupuncture, which can
draw the differences between acupuncture manipulations more
precisely.

By extracting neural manifold, we can decode latent infor-
mation from complex EEG signals and quantify features
which is more significant, especially with the development
of machine learning method [37]. However, traditional learn-
ing methods cannot catch the accurate results when the
system is with complex nonlinear features. Nevertheless,
Takagi-Sugeno-Kang (TSK) classifier has performance inter-
pretability in multiple features classification task [38], [39].

The advantage of such method is that the interpretability and
accuracy of judgment can be synchronously taken [40]. In this
manner, with the historical and predicted manifold features, the
application of TSK can better explain the nonlinear features of
brain system, and obtain a better quantification of acupuncture
characteristics. Based on the manifold learning and TSK
classification methods, we can extract the low-dimensional
feature of EEG signals, which can improve the detection
accuracy of manipulations.

II. MATHEMATICAL MODEL AND METHODS

A. Datasets

Acupuncture is an important treatment method in Tradi-
tional Chinese Medicine (TCM), which inserts needle into
patient’s acupoints at a certain angle. The acupuncture applied
on the patient is located at ‘Zusanli’ (ST36, right side)
acupoint, which is at the outside of the lower leg, three
inches below the knee joint [41]. This experiment is raised
by Tangshan Gongren Hospital, and some experiments are
conducted in First Teaching Hospital of Tianjin University of
Traditional Chinese Medicine. The experiment is conducted in
accordance with the Declaration of Helsinki.

In this acupuncture experiment, the needles are performed
by a professional acupuncturist. 25 healthy volunteers aged
from 20 to 25 (13 females and 12 males), who have no
prior knowledge of acupuncture and are not clear about the
sequences, are involved in this study. Before the experiment,
the test environment is set to be clean, comfortable, and quiet.
Other ratio waves (such as mobile phones) are turned off
during the experiment. The operating equipment should be
disinfected before use. In the experiment, the healthy subjects
are sitting in a quiet room for 5 minutes, keeping awake
with their eyes closed. Subsequently, the doctor begins by
rubbing the skin on acupoints, and push the needle into the
skin with a depth of 2-3 mm. The subjects will feel acid during
the stimulation procedure. In addition, a kind of acupuncture
manipulation (LT or TR methods with a rotation frequency)
is used at “Zusanli” acupoints for 2 minutes. Under the action
of TR method, the right twist is mainly used and the silver
needle is rotated from left to right. LT method is mainly needle
lifting, slowly entering and quickly exiting the needle (Fig. 1).

For EEG signal, we choose 2 minutes in order to attain
a more obvious stimulation effect. All EEG recordings are
collected by an EEG amplifier from the 19 Ag-AgCl scalp
electrodes for each subject. Placement is achieved by using an
international standard 10-20 system. To eliminate the power
line interference, all EEG recordings are first filtered from
0.5Hz to 50Hz by a band-passed finite impulse digital filter
during preprocessing. Then the mean value of all channel
signals is calculated as the reference potential. Ocular artifacts
and muscle shaking are eliminated via independent component
analysis (ICA). The time domain EEG signal is converted to
frequency domain signal by fast Fourier transform:

Z(k)=
N∑

n=1

z(n)e− j ( 2π
N )nk (1)
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Fig. 1. Schematic diagram of acupuncture. Electroencephalographic
signals evoked by manual acupuncture at “Zusanli” acupoint of healthy
human subjects are directly recorded. The manipulations include TR and
LT methods.

where Z(k) denotes the Fourier transformation of kth sample
point. Furthermore, the frequency domain signal is filtered by
rectangular window, and converted back to the time domain
signal through inverse fast Fourier transform, such as:

z(n) = 1

N

N∑
k=1

Z(k)e j ( 2π
N )nk (2)

B. Graph Theory Analysis

Phase lag index (PLI) is applied to describe the phase
synchronization between two signals in different brain regions
(Z(t)). The PLI is obtained by calculating the asymmetry
of instantaneous signal phase difference distribution between
two brain regions, which reflects the degree of synchronous
oscillation between the signal pairs. PLI is calculated as:

P L I = |〈sign[�φ(Z(tk))]〉| , k = 1, 2, . . . . . . , N (3)

where �φ is the phase difference at time point tk between
two signals Z(tk). The value of PLI ranges from 0 to 1.
0 values indicates that there is no coupling between two
timeseries. By calculating PLI for all time points in each epoch
in all channels, we can obtain the strength of synchronization
connection among brain regions. Based on the PLI adjacency
matrix, dynamical functional brain networks (M) are recon-
structed by setting a threshold. For graph theory parameters
analysis, the clustering coefficient Ci of node i is defined as:

C = 1

N

N∑
i=1

2Ei/[ki (ki − 1)] (4)

where Ei is the actual number of edges between neighboring
nodes of node i, and N is the number of nodes within network.
Global efficiency can be defined as:

Eglobal = 1

N(N − 1)

N∑
i, j,i �= j

1

di j
(5)

Local efficiency of network is the average of local efficiency
of all nodes, which can be calculated to measure the segrega-
tion property of network. It is shown as:

Elobal(k) = 1

N NGk (NGk − 1)

N∑
k=1

N∑
i, j,i �= j

1

di j
(6)

Small world network (SWN) index can be defined as:
S = Eglobal

Erand
· C

Crand
(7)

The SWN index is calculated by an average of 1000 random
network implementations. Compared with random network,
SWN is more sensitive to information routing among
nodes.

C. Neural Manifold Estimation

The method of manifold extraction is improved Isometric
Feature Mapping (I-ISOMAP). The low-dimensional eigen
structures of high-dimensional data centers are calculated via
global manifold feature extraction. In this manuscript, the
above brain dynamical functional network vectors (M) are
taken as input space and mapped to adjacent points by means
of graph theory (Fig. 2). All columns in the lower triangle
of dynamic functional network (M) are concatenated as a
correlation vector (H), which represents the time-dependent
connection of dynamic functional network. Furthermore, the
vectors (H) are composed into a manifold G in the input space
X, and the manifold of EEG is calculated. First of all, the
average value of each feature in acupuncture manipulation
category is taken as the center vector (l). The relationship
between the eigenvalue j of i-th sample point (zi, j ) and
the eigenvalue sample point of center vector is sim j (i, k),
such as:

sim j (i, k) =

√∣∣∣z2
i, j − l2

k, j

∣∣∣
2

(8)

Meanwhile, the fuzzy entropy is used to describe the fuzzy
degree of acupuncture sample points to categories. We assume
that there are m features, the sum of fuzzy entropy of all
features of sample point X to class I is defined as:

H (x, i) = −
m∑

j=1

[sim j (i, k) × ln(sim j (i, k))

+(1 − sim j (i, k)) × ln(1 − sim j (i, k))] (9)

We take the membership degree of sample point X to class i
as:

L(z, i) = e−H(z,i) (10)

The more likely the sample points are belonging to
this class when the degree of membership is greater.
In addition, the sample reliability is calculated to infer the
degree of characterization of data from different sample
points:

K (z) = −
c∑

k=1

L(z, i) ln(L(z, i)) (11)
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Fig. 2. The framework for extraction of neural manifold and classification of acupuncture states. EEG is coded in the functional network, and is sent
to the ISOMAP method to extract the manifold geometry features and distance features. Besides, the historical manifold features are sent to RNN
to get the current manifold features. Both actual and predicted manifold are fed into classification for the quantification of acupuncture states.

Furthermore, the geodesic distance matrix is defined as:

D(xi , x j ) =
⎧⎨
⎩

√
1 − exp(−√

Ki K j d(zi , z j )/β), yi = y j√
exp(

√
Ki K j d(zi , z j )/β) − α, yi �= y j

(12)

β =
∑

d(zi , z j )

N
i, j = 1, 2, . . . , N (13)

K is the sample reliability, d(zi , z j ) is the Euclidean distance
between sample data zi and z j . y is the category label of z.
β is used to prevent D(zi , z j ) from growing too fast with
d(zi , z j ). α is used to control the distance between samples.

Furthermore, Floyd algorithm is adopted to measure the
shortest path. Classical MDS algorithm is used to construct the
embedded coordinate representation of data in D-dimensional
space Y, and any two embedded coordinate vectors yi and y j

are selected to minimize the cost function:

min φ(Y ) =
N∑

i=1

N∑
j=1

(DG
ij − ∥∥yi − y j

∥∥)2 (14)

Meanwhile, plane coefficient is used to measure the geom-
etry features of neural manifold (m, o, p). Using the least
squares method, we set the correlation among network nodes
as p = a1m+a2o+a3, and calculate the relative plane degree:

S =
∑

(pi j − �
pi j )

2
/Smean . (15)

Besides, the node clustering coefficient (4) is
used to measure the low-dimensional manifold
clustering features. The distances of nodes: R =√

(m1 − m2)2 + (o1 − o2)2 + (p1 − p2)2/2, and the relative
radius is measured as the norm approximate of largest
distances between nodes.

In this manner, I-ISOMAP is built on the basis of MDS
and retains the essential geometric structure of nonlinear data,
namely the geodesic distance between point pairs. Because
the vector represents the changes of dynamic functional net-
work over time, the mapped low-dimensional manifold can
indicate the intrinsic characteristics of different brain regions

under acupuncture stimulation. From low-dimensional analy-
sis, we can extract the main neural characteristics which is
related to acupuncture manipulations. Therefore, we can raise
the robustness of detection against noise and interference,
which can be used to detect the acupuncture manipulations
precisely.

D. Manifold Feature Prediction Based on RNN

In order to get more accurate quantification, we use the
manifold (G) at historical moment to predict the manifold
feature (xt ) of current moment via RNN. The architecture is:

ft = σ(W f [ht−1, xt ] + b f ) (16)

i̇t = σ(Wi [ht−1, xt ] + bi) (17)

C̃t = tanh(Wc[ht−1, xt ] + bc) (18)

Ct = σ( ft × Ci−1 + it × C̃t ) (19)

ot = σ(Wi [ht−1, xi ] + bo) (20)

ht = ot × tanh(Ct ) (21)

where W represents the weight matrix of each gate, and b
represents the bias. Finally, the hidden state ht is the final
output. For training, the historical manifold features are fed
into RNN as input, and the current manifold features are taken
as output. Under testing procedure, the current features will be
predicted by the historical manifold sequences. Differences of
acupuncture manipulations will be detected by comparing the
features of actual neural manifolds and constructed manifolds.
The differences between testing and prediction are evaluated
by mean absolute percentage error (MAPE):

M AP E = 1

n

n∑
i=1

|ht − hreal |
hreal

(22)

E. Takagi-Sugeno-Kang (TSK) Fuzzy Model

Given manifold G input dataset X = {x1, x2, . . . , xn} ∈ Rd

and the corresponding class label set Y = {y1, y2, . . . , yn},
where yi , i = 1, 2, . . . , N represent the corresponding class,
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the k th fuzzy inference rules are often defined as

Rk : IF x1 is Ak
1 ∧ x2 isAk

2 ∧ . . . ∧ xd isAk
d ,

THEN fk (x) = βk
0 + βk

1 x1 + . . . + βk
d xd , k = 1, . . . , K

where x = [x1, x2, . . . , xd ]T is input vector of each rule, K is
the number of fuzzy rules, Ak

i are Gaussian antecedent fuzzy
sets subscribed by the input variable xi of Rule k, ∧ is a fuzzy
conjunction operator, fk (x) is a linear function of the inputs,
and βk

i are linear parameters. With each rule is premised on
the sample vector x the output of a TSK fuzzy system can be
expressed as:

ỹ =
K∑

k=1

μk (x) fk (x)∑K
k′=1 μk′ (x)

=
K∑

k=1

μ̃k (x) fk (x) (23)

where

μk (x) =
d∏

i=1

μAk
i
(xi) (24)

μ̃k (x) = μk (x) /
∑K

k′=1
μk′ (x) (25)

are the fuzzy membership function and the normalized fuzzy
membership function of the antecedent parameters of the kth
fuzzy rule. While μAk

i
(xi ) is Gaussian membership function

for fuzzy set Ak
i that can be expressed as

μAk
i
(xi ) = exp

(
−

(
xi − ck

i

)2
/δk

i

)
(26)

where ck
i is kth cluster center parameters that is obtained by

the classical fuzzy c-means (FCM) clustering algorithm:

ck
i =

N∑
j=1

u jkx j i/

N∑
j=1

u jk (27)

and the width parameter δk
i can be estimated by

δk
i = h ·

N∑
j=1

u jk

(
x j i − ck

i

)2
/

N∑
j=1

u jk (28)

where the element u jk ∈ [0, 1] denotes the fuzzy mem-
bership of the n-th input sample xn to the k th cluster
(k = 1, 2, . . . , K ), h is a constant called the scale parameter.

For an input sample xn , let

xn,e =
(

1, xT
n

)T

x̃k
n = μ̃k (xn) xe

ρ (xn) =
((

x̃1
n

)T
,
(

x̃2
n

)T
, . . . ,

(
x̃K

n

)T
)T

∈ RK (d+1)

βk =
(
βk

0 , βk
1 , . . . , βk

d

)T

βg =
((

β1
)T

,
(
β2

)T
, . . . ,

(
βK

)T
)T

(29)

then the output value ỹn of a TSK fuzzy classifier is:
ỹn = βT

g ρ (xn) (30)

III. NUMERICAL RESULTS

A. Analysis of Brain Functional Controllability

Primarily, the controllability of brain network under dif-
ferent acupuncture manipulations during cognitive process is
investigated via dynamical functional network analysis. The
controllability is referred as integration and separation of
brain functional network. Dynamic functional network can
reflect the process of dynamic information transmission among
different brain regions over a period, which reflects the con-
trollability of acupuncture. In this paper, the sliding window
method is adopted, and each time window is regarded as a
Time Point (TP) in the dynamical network.

Based on dynamical functional network (DFN), we extract
network features such as time clustering coefficient (C),
local efficiency (L), global efficiency (G) and small world
index (SWI) to analyze the controllability of DFN under differ-
ent acupuncture stimulation and time windows. Primarily, the
effect of time window is investigated. In order to choose the
appropriate window length, the sliding window length of 0.5s,
1s, 2s, 3s, 4s, 6s and 10s are selected respectively to analyze
the fluctuation of brain dynamical synchronous network. The
size of windows ensures that the EEG signals with the length
of 2 min would not cause fragment loss when applying the
sliding window. Rank-sum statistical test is used to investigate
the influence of different window lengths on the stability of
brain time-varying features under different manipulations.

Under the same time scale, the clustering coefficient and
local efficiency of TR is higher than that of LT and resting
states, which indicates that the average clustering effect of all
brain network nodes increase under the manipulation of TR
methods. Meanwhile, the global efficiency and small world
index of TR is higher, which shows good integration of
brain regions and good ability of information transmission
when manipulating TR method. Furthermore, time-varying
features of network controllability is conducted via dynamical
complex network analysis. High value of global efficiency
indicates high controllability of TR method, which shows that
acupuncture has more control effect in the neural information
transmission of brain network. It indicates that brain functional
controllability increases with the TR method. Meanwhile,
the functional controllability of LT method is higher than
resting state, which shows that acupuncture can modulate the
functional integration and controllability, while TR method
is better than that of LT method. Besides, we can draw the
conclusion that acupuncture can modulation the controllability
of brain states, and different manipulations have various effect.

Moreover, it is shown that the neural interactions between
different brain regions of all subjects are less affected by time
when the time length is short. With the increase of time length,
the clustering coefficient tends to be stable after 3s. It is found
that the differences of time clustering coefficient and local effi-
ciency among subjects gradually decreases with the increase
of time scale. Especially, with the increase of time scale, the
global efficiency and small world index among groups show
a trend of increasing, and the maximum value appears at the
time length of 3s. Besides, the temporal attribute of network
is gradually manifested, and the ability of local functional
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Fig. 3. The dynamical neural network analysis according to the different
brain states of acupuncture: before acupuncture (BA), TR and LT. The
blue curve, red curve and yellow curve represent the information of
subjects in the resting state (before acupuncture), TR state and LT state,
respectively.

Fig. 4. Analysis of cerebral neural manifold under acupuncture.
(4A-4C): From left to right, the three-dimensional topological structure of
resting state, LT state, and TR state. Fig. 4D is the flatness degree of the
three-dimensional manifold; Fig. 4E is the three-dimensional manifold
clustering coefficient; Fig. 4F shows the relative radius of the two-
dimensional manifold.

integration of brain changes over time. These results indicate
that the dynamic functional network of brain is affected by
time length, and provide support for the latent controllability
analysis of different acupuncture stimulation manipulations.
Therefore, the time scale for dynamical functional network
will be chosen at 3s in the latent manifold analysis.

B. Analysis of Brain Manifold Topology Under Different
Acupuncture Manipulations

Based on the controllability analysis of dynamical func-
tional network, the low-dimensional manifold structural fea-
tures of different acupuncture states (including resting, LT and
TR state) are extracted to distinguish the latent neural features
of different acupuncture effects (Fig. 4).

Primarily, the planar diagram of three-dimensional manifold
structure of resting state is taken from the dynamical functional

network (Fig. 4A). The distribution of dynamical functional
structure is relatively concentrated without fixed shape. The
manifold state under LT and TR acupuncture methods is
extracted. Compared with resting state, the three-dimensional
topology manifold of brain under acupuncture tends to be
a single plane, while the network forms a regular crescent
structure. Under LT method, the three-dimensional topology of
manifold connection is more divergent, and the central bulge
of plane forms a peak-like shape, which is in obvious contrast
with the resting state topology before acupuncture (Fig. 4B).
Under TR method, the three-dimensional topology of manifold
connection is more compact. The structure of shortest distance
between topological points is more prominent and the shape
of crescent is more appropriate (Fig. 4C).

To be more specific, the dynamical manifold structure is
quantified by clustering coefficient and plane degree among
resting, LT and TR states. Primarily, the plane coefficient is
obtained (Fig. 4D). Using the least squares methods, we calcu-
late the flat flatness error as the relative plane degree of neural
manifold under acupuncture. It is found that the manifold
plane degree of human brain in resting state is low. On the con-
trast, the plane degree of brain in LT and TR state increases,
and the plane of TR manifold is more consistent. However, the
plane degree of manifold structure under LT methods is less
flat than that of TR methods, but it is flatter than the resting
manifold structure. The node clustering coefficient is used
to calculate the low-dimensional manifold clustering features
(Fig. 4E). It is found that the relative clustering coefficient of
neural manifold structure in the resting state is 0.4, which is
lower than that of LT and TR states. In addition, changes in
relative radius of three-dimensional manifolds under different
states are shown in Fig. 4F, which is consistent with the results
reflected by the manifold clustering coefficient.

These results indicate that acupuncture at ‘Zusanli’ acu-
points has the ability to regulate brain function and improve
the dynamic behavioral characteristics of brain. The three-
dimensional manifold structure under acupuncture is more
concentrated, which is coherent with the controllability analy-
sis of brain network. From the perspective of low-dimensional
manifolds, it can be found that the effects of different acupunc-
ture have obvious differences: the neural manifolds under TR
method are more concentrated, and the clustering coefficient
of manifolds is larger. Under LT method, the mapping plane of
low-dimensional manifolds is sparse, the clustering coefficient
of manifolds is small, but the curvature radius of manifolds is
large. It is shown that three-dimensional manifold plane struc-
ture of brain is more compact under TR manipulation, which
shows TR has better regulation effect. Besides, by combining
sample reliability and sample label information, the improved
ISOMAP algorithm redefines the geodesic distance matrix of
traditional ISOMAP method. To illustrate the effectiveness
of the proposed algorithms, the low-dimensional manifold
structures under different dimension-reduction methods are
calculated, and the average interclass separability parameter
are taken as evaluation criterion. The results are shown in
Table I.

It is shown that the proposed method improves the tradi-
tional ISOMAP methods: the intra-class distance gets reduced
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TABLE I
INTERCLASS SEPARABILITY OF EACH

MANIFOLD-EXTRACTION METHOD

Fig. 5. Effect of manifold prediction by RNN. Fig. 5A: Testing error with
the training batches; Fig. 5B: Noise error with the network size; Fig. 5C:
MAPE with the network size; Fig. 5D: MAPE with the time step.

and the inter-class distance gets increased by considering
the reliability of samples and labels of different acupuncture
manipulations. Therefore, the neural manifold under various
acupuncture manipulations can be better adopted.

Furthermore, the manifold prediction is evaluated by RNN
(Fig. 5). The testing error is calculated with the evolution
of training bathes. With the increase of training batches, the
testing error decreases dramatically and becomes stable when
the batch is over 400 (Fig. 5A). In addition, the robustness
of RNN when predicting the current manifold is evaluated
(Fig. 5B). It is shown that the noise error decreases with the
enhancement of network size, which indicates that the number
of hidden neurons can affect the learning ability of model
network. This result is proved by MAPE in Fig. 5C. MAPE
increases with the network size, and the peak is achieved when
the network size is 130. It means that the testing effect is best
when the network size is 130 and it would get worse when the
network size increases continually. As for the batch size of data
input, it controls the frequency of updating weight. In order to
analyze the influence of input batch size on model prediction
accuracy, the time step of input is set from 0-30. The MAPE
increases with the enhancement of timestep without obvious
changes, which means that the time step of input sequences
will not affect the precision of prediction.

C. Analysis of Brain Time-Varying Features Based on
Neural Manifold Under Different Acupuncture
Frequencies

The neural time-varying features of different acupuncture
methods can be distinguished by low-dimensional manifold.

Furthermore, the dynamical evolution process of mani-
fold under different acupuncture frequencies (50, 100, and
150 times/min) are investigated. Apart from the intrinsic neural
manifold, the distance travelled along the manifold can be
used to infer the time-varying changes of brain network
under acupuncture manipulations. The change effect of three-
dimensional manifold of brain under TR method are shown in
Fig 6A-6C. As can be seen from Fig. 6A, in the process of
acupuncture, the neural manifold of human brain presents a
crescent shape, and the changes of brain dynamical functional
network evolve along the time-frequency trajectory of neural
manifold from the end to the middle, reflecting the rotary
tuning features of acupuncture.

With the continuous increase of acupuncture frequency, the
relative rotation radius of manifold structure increases. It is
shown that the relative rotation radius of three-dimensional
manifold structure is the largest when the acupuncture fre-
quency is 150 times per minute. With the increase of stim-
ulus frequency, the structural density of three-dimensional
neural manifold will decrease. Meanwhile, the planar structure
characteristics of brain dynamic manifolds under stimulation
frequencies are shown in Fig 6D-6F. Under different acupunc-
ture stimulation frequencies, convergence points appear in the
central region of three-dimensional manifold structure. With
the decrease of stimulation frequency, the planar structure of
manifold becomes more concentrated when the stimulation
frequency is 50 times per minute, while the planar structure of
neural manifold becomes more discrete when the stimulation
frequency is 150 times per minute. It is found that the TR
manipulation at ‘Zusanli’ acupoint has a significant effect of
modulating functional activities of brain when the stimulation
frequency is at 50 times per minute. It can be explained by the
fast response speed of brain time-varying points along neural
manifold.

Besides, the manifold characteristics of LT method under
different stimulation frequencies are shown in Fig 6G-6I. It is
shown that the neural manifold structure of brain is crescent
under LT method, and the rotational radius of neural manifold
increases with the enhancement of stimulation frequency from
geometry view. Especially, the rotational radius of neural
manifold is the largest when the acupuncture frequency is
150 times per minute. Under the effect of same stimulation
frequency, the rotation radius of neural manifold structure
of brain under the action of LT is larger than that of TR
method, while the radius of manifold structure and relative
density are lower. These results indicate that the dynamical
functional network structure of brain is relatively sparse under
LT method. The plane of manifold structure under LT method
is shown in Fig. 6J-6L, and it is found that there are two con-
vergence points in the center of manifold structure under LT
method. In this manner, the faster response speed of dynamical
functional trajectory and better effect of acupuncture will be
achieved when the frequency of acupuncture stimulation is
smaller.

More specifically, the shortest distance statistics of neural
manifold structure under TR method are shown in Fig. 7A.
The shortest distance indicates the evolution process of the
dynamical functional network during acupuncture procedure.
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Fig. 6. Analysis of neural manifold structure of brain under different acupuncture manipulations and different acupuncture frequencies. From left to
right, and from top to bottom, the brain three-dimensional manifold topology analysis is performed under the action of acupuncture frequency of 50,
100 and 150 times per minute, respectively, in the state of acupuncture TR and LT.

Fig. 7. Statistical analysis of the euclidian distance between adjacent
points in the neural manifold of brain under different acupuncture manip-
ulations and different acupuncture frequencies. (7A) TR method (7B) LT
method.

With the shortest distance between nodes decreases, the evolu-
tion speed of functional network increases. It is found that the
shortest distance of manifold is smaller when the stimulation
frequency is smaller under TR method. The manifold distance
from the center point is about 1, which shows the characteristic
of normal distribution. Neural manifold distance increases with
the enhancement of stimulation frequency. Count density is
also growing meanwhile, which suggests that the distribution
of neural manifolds will get more spread out when the
acupuncture stimulation frequency is larger.

Compared with TR method, the statistics of shortest dis-
tance of three-dimensional neural manifold structure of brain
under LT method is shown in Fig. 7B. Under corresponding
stimulus frequencies, the manifold distance between adja-
cent points of three-dimensional manifold increases when

the LT method is applied. Similarly, with the enhancement
of stimulus frequency, the count of larger manifold distance
points increases. However, compared with TR method, the
rotation density of neural manifold decreases with the same of
stimulus frequency under LT method. Particularly, when the
frequency of acupuncture stimulation is 50 times per minute,
the shortest distance between the points of three-dimensional
neural manifold is the smallest, and the neural manifold is
relatively concentrated. It is shown that the shortest distance
between points of LT manifold is larger and neural manifold
is more dispersed under the same stimulation frequency.

Furthermore, the latent time-varying characteristics along
two-dimensional manifold under different stimulation frequen-
cies are analyzed based on the original manifold characteris-
tics. The trajectory characteristics of two-dimensional neural
manifold changes in brain under TR method is shown in
Fig. 8. The two-dimensional manifold topology of brain under
TR method presents a regular crescent shape and fluctuates
around the only fixed point in the centre. With the implemen-
tation of different manipulations, the brain time-varying fea-
tures under acupuncture stimulation moves different crescent
directions towards fixed point along the manifold.

To determine the differences of brain time-varying features
under acupuncture manipulations, we begin by visualizing the
trends in the manifold. Gradation in neural manifold along the
X-axis of resulting manifold can indicate the latent factors of
the manifold and brain time-varying features under acupunc-
ture can be estimated with manifold mapping. In Fig 8A,
it can be conducted the neural manifold is dense at the
middle, while it shows sparse in the two ends of manifold.
We set the middle point of neural manifold as fixed point.
With the increase of acupuncture frequency, the radius of
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Fig. 8. Time-varying characteristics along manifolds under TR manipula-
tion. Fig. 8A shows the manifold corresponding to different acupuncture
frequencies; Fig. 8B-8D represent the average degree of functional
network corresponding to the manifold near and far from the stability
point, respectively.

manifold structure becomes larger. When the frequency of
acupuncture reaches 150 times per minute, the radius of neural
manifold has reached the maximum, which indicates that
neural manifold is aggregated at fixed point in the crescent
shape under TR method. Meanwhile, with the enhancement
of acupuncture frequency, the distance between the fixed point
and other points along the manifold increases, while the state
of fixed point will migrate. The radius of two-dimensional
manifold increases, indicating that the evolution speed of two-
dimensional manifold trajectory of brain is different under
stimulation frequencies. However, when the stimulation fre-
quency is 50 times per minute, the acupuncture effect can
be realized quickly and the stability is strong. Therefore, the
modulation effect of brain system is better when stimulation
frequency is low under TR method.

For the time-evolution features along the manifold, the
variation of scatted features of manifold near the fixed point
is investigated (Fig. 8B- Fig. 8D). At each manifold point, the
average degree of each channel is calculated, which represents
the interaction features of network. It shows that the degree
of functional network corresponding to the frontal region
of brain is larger, while the degree of other brain regions
is smaller. It indicates that brain regions involved in the
acupuncture is mainly the frontal region, and the acupuncture
is related to tactile and conscious perception. Meanwhile, it is
found that the average degree of dynamical functional network
corresponding to the same manifold point decreases with the
increase of stimulation frequency (Fig. 8B), which means that
acupuncture has the best effect when the stimulation frequency
of acupuncture is 50 times per minute. The trajectory far from
the fixed point is investigated. It is found that the characteristic
values of dynamical functional network near the stability
point are relatively high, while decreases with the increasing
distance between selected parameter points and stability point
(Fig. 8C-8D). It is shown that the time-varying features of

Fig. 9. Time-varying characteristics of manifolds under LT manipulation.
Fig. 9A shows the manifolds corresponding to acupuncture frequencies.
Fig. 9B-9D represent the characteristics values of functional network
corresponding to the manifold near and far from the stability point,
respectively.

acupuncture stimulation manifold reaches fixed point from
original point, and then gradually fluctuates along the direction
of inward diffusion of the fixed point. The trajectory shown
by low-dimensional trajectory of manifold is consistent with
the structure of manifold. This result is also related to the
gradual migration of fixed point of manifold with the increase
of stimulus frequency.

Manifold time-varying features under LT method are
investigated with different acupuncture frequencies. The tra-
jectory along the neural manifold under LT method is obvi-
ously clustered into two parts, and the two-part manifold
time-varying features fluctuates around the two fixed points
(Fig. 9A). For LT methods, brain dynamic under acupuncture
stimulation switches between two fixed points, indicating that
brain dynamically forms two neural state characteristics under
LT method. With the increase of stimulation frequency, the
radius of neural manifold expands and the degree of dispersion
of manifold aggregation points increases. Two-dimensional
manifold scatted points with different distances from the fixed
point are selected on one side.

The average degrees of dynamical functional network near
the fixed point of trajectory are reflected (Fig. 9B). It is found
that the average degrees of frontal lobe are larger, which
shows that acupuncture effects on brain areas mainly at the
frontal area, while it is associated with tactile awareness and
consciousness. Meanwhile, with the increase of stimulation
frequency, the average degrees of manifolds corresponding
to dynamical functional network points gradually decreases,
which has the same effect as the TR method. Compared
with Fig. 9C-9D, the average degree of dynamical functional
network corresponding to the manifold points near stability
point are relatively high, while the average degree of functional
network corresponding to the manifold points decrease with
the increase of stability distance. The results show that neural
activities are gradually diffused outward from the fixed point
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TABLE II
CLASSIFICATION RESULTS BASED ON DIFFERENT

MANIFOLD FEATURES

along the manifold structure, and the structure forms a fixed
point-half crescent shape. From the manifold geometry and
time-varying features view, it can be concluded that the
acupuncture manipulations of LT are quite different from that
of TR methods, and the distance along the neural manifold can
be used to distinguish and monitor the variation of acupuncture
stimulation frequencies.

D. Quantification of Acupuncture EEG Manifold

Based on the geometry and time-varying features of
neural manifold analysis, the manifold features extracted by
I-ISOMAP and RNN are used as the input of TSK quantifica-
tion. The training set (including data collection and label set)
is randomly divided into 10 subsets. In that case, one feature
and combined feature are chosen in TSK training. The optimal
input vector and classification results are shown in Table II.
It can be concluded that for the actual manifold feature, adding
the predicted manifold feature as common inputs can improve
the classification results. With the combination of actual and
predicted feature, the accuracy, sensitivity, and specificity get
increased dramatically, which is better than taking single
manifold signal as input. In this way, it is crucial to choose an
appropriate input features combination via machine learning.

Meanwhile, for the original EEG data, the accuracy achieves
77.22% when taking actual and RNN predicted signals as
TSK inputs. It is found that the combination of actual and
RNN predicted signal can take better accuracy results when
compared with single signals. Moreover, the accuracy can be
enhanced with the use of manifold characteristics. Under the
combination of manifold and RNN predicted signals, the accu-
racy can be reached at 96.71%. In addition, TSK algorithm
is compared with the other four traditional Linear methods
commonly used in machine identification, including SVM,
Linear Discriminant Analysis (LDA), Naive Bayesian (NB)
and K-Nearest Neighbor (KNN) algorithm. The combined
manifold features are selected as input for various classifiers
simultaneously, and the recognition results are in Table III.

It can be observed from the table that for manifold features,
linear classifier in the NB method is the optimal classification,
and identification accuracy can reach 92.18%. Besides, the
TSK classifier can show better classification effect than the
linear classifier. The decoding of neural manifold is better than
that of original EEG signals. To test the processing pipeline in
the presence of noise, we build the synthetic datasets (while

TABLE III
CLASSIFICATION RESULTS BASED ON DIFFERENT CLASSIFIER

METHODS

noise signal is added, and the effective mean value of the noise
signal is between 0 ∼ 0.2 times of origin EEG signal). The
acupuncture manipulation method proposed perform better
than original decoding methods mentioned in the presence of
noise, and the ground truth for the signal is verified. Our result
is a comprehensive analysis of the intrinsic manifold of brain
while stimulated by acupuncture, which can be applied for the
decoding of manifold and the design of acupuncture BCI.

IV. CONCLUSION AND DISCUSSIONS

In this paper, in order to enhance the robustness of
EEG detection against noise and interference, we propose
an acupuncture manipulation detection method based on the
combination of I-ISOMAP and RNN. Primarily, the features
of brain dynamical functional network are investigated under
acupuncture manipulations. It is found that brain network
shows high integration function and controllability under TR
method. In addition, the low-dimensional manifold of brain
functional network under different acupuncture manipulations
is extracted based on the model. From the geometry view, low
dimensional structure of manifold under acupuncture shows
crescent-shaped characteristics, and the radius enlarges with
the increase of acupuncture frequencies. It is found that the
trajectory along neural manifold under LT method is obviously
clustered into two parts, while the trajectory under TR method
is from end to middle along neural manifold. Based on the
manifold features, TSK can further improve the quantifica-
tion accuracy of acupuncture manipulation at 96.71%. These
results indicate the robustness of this model in detecting the
acupuncture manipulation automatically, which may provide a
novel neural biomarker for acupuncture physicians.

For network controllability analysis, investigation of the
control properties of complex networks can provide insights
into how they can be promoted to achieve desired behav-
iors [42]. Cai et al [43] use functional controllability to
investigate the dynamic causal brain circuits during working
memory. Scheid et al [44] investigate the controllability of
effective connectivity network during seizure progression for
the determination of optimal personalized stimulation parame-
ters. In the paper, the trajectory of brain functional network
under acupuncture are used to measure the controllability of
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acupuncture. Higher global efficiency reflects better network
controllability, which means lower average control energy
needed to drive networks from a given set of nodes. In this
work, we find that the differences of clustering coefficient
and local efficiency among the groups of subjects gradually
decreases with the increase of time scale. For the same time
scale, the clustering coefficient and local efficiency of TR is
higher than that of LT and normal states, which shows that
the average clustering effect of all nodes increases with the
manipulation of TR method. Besides, the global efficiency
and small world index among groups increase with the time
scale. This result emphasizes the cognitive context-dependent
controllability under acupuncture, which may provide new
insight into how acupuncture works with brain circuit.

Furthermore, the analysis of neural manifolds has con-
sistently uncovered the latent features of brain network,
which captures a significant fraction of neural variabil-
ity [20], [45], [46]. It is indicated that, although the rela-
tionship between activity pattern and acupuncture content
changes over time, the representational geometry could remain
relatively constant. In this work, we define the theoretical
framework based on the combination of I-ISOMAP and
RNN to investigate the low-dimensional manifold during
acupuncture task. Compared with original ISOMAP method,
we improve the original model by introducing the concept
of sample reliability, and the geodesic distance matrix is
redefined by combing the sample reliability and the sample
category label. The intra-class distances are reduced, while
the inter-class distances are increased and the sample sepa-
rability is accelerated. With the combination of actual and
RNN-predicted manifold features, the manifold features of dif-
ferent acupuncture manipulations can get better distinguished.
Among structural characteristics of low-dimensional manifold,
there is one fixed point in TR manifold, while two fixed point
in LT manifold. It indicates that TR manipulation has features
of convergence and stability, which makes brain network more
concentrated. The LT method has divergent effect and poor sta-
bility, where brain latent geometry is more discrete, reflecting
the characteristics of acupuncture controllability techniques.
These results can have further implications which transcend
acupuncture manipulation estimated by EEG signals. In other
words, the observation of consistent low-dimensional manifold
structure in in EEG signal suggest that the brain activity has
low intrinsic dimensionality despite their appearance in high-
dimensional space. Therefore, the geometry and time-varying
features along manifold can be used to motor and quantify the
modulation effect of acupuncture on brain against noise and
interference.

In this paper, the decoding model combining manifold
dimensionality reduction approaches with machine learning
is designed. With the reduction of model parameters, it can
be easier to improve the decoding efficiency of acupunc-
ture manipulations. Compared with different classifier, TSK
method has higher interpretability by integrating the advan-
tages of nonlinear rules and membership functions [47]. Par-
ticularly, via extracting the intrinsic manifold of brain network
under acupuncture stimulation, the robustness of the model
against noise and interference gets raised. Consequently, our

results provide a model framework to monitor the brain time-
varying evolution procedure under acupuncture automatically.
It will be of great significance to decode the brain charac-
teristics under acupuncture stimulation, and provide neural
biomarker of acupuncture manipulations. There are still some
limitations in our research. The analysis of EEG depends
on the sensor level, which restricts the interpretation of the
findings. Future works may focus on designing more accurate
algorithms to extract neural manifold with higher decoding
accuracy.
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