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Clinical Validation of BCI-Controlled Wheelchairs
in Subjects With Severe Spinal Cord Injury
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Abstract— Brain-controlled wheelchairs are one of the
most promising applications that can help people gain
mobility after their normal interaction pathways have been
compromised by neuromuscular diseases. The feasibility of
using brain signals to control wheelchairs has been well
demonstrated by healthy people in previous studies. How-
ever, most potential users of brain-controlled wheelchairs
are people suffering from severe physical disabilities or who
are in a “locked-in” state. To further validate the clinical
practicability of our previously proposed P300-based brain-
controlled wheelchair, in this study, 10 subjects with severe
spinal cord injuries participated in three experiments and
completed ten predefined tasks in each experiment. The
average accuracy and information transfer rate (ITR) were
94.8% and 4.2 bits/min, respectively. Moreover, we evalu-
ated the physiological and cognitive burdens experienced
by these individuals before and after the experiments.
There were no significant changes in vital signs during
the experiment, indicating minimal physiological and cogni-
tive burden. The patients’ average systolic blood pressure
before and after the experiment was 113±13.7 mmHg and
114±11.9 mmHg, respectively (P = 0.122). The patients’
average heart rates before and after the experiment were
79±8.4/min and 79±8.2/min, respectively (P = 0.147). The
average task load, measured by the National Aeronautics
and Space Administration task load index, ranged from
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10.0 to 25.5. The results suggest that the proposed P300-
based brain-controlled wheelchair is safe and reliable; addi-
tionally, it does not significantly increase the patient’s
physical and mental task burden, demonstrating its poten-
tial value in clinical applications. Our study promotes the
developmentof a more practicalbrain-controlledwheelchair
system.

Index Terms— Brain computer interface, brain-controlled
wheelchair, cognitive burden, P300.

I. INTRODUCTION

PARAPLEGIA caused by disease or physical injury, such
as amyotrophic lateral sclerosis or spinal cord injury, is a

considerable burden on patients’ lives [1], [2]. The habitual
behaviors of normal people, such as drinking water, are
even extremely difficult for people with paraplegia [2], [3].
Brain computer interfaces (BCIs) provide a direct pathway
between the user’s brain and external devices without the
participation of peripheral nerves and muscles; therefore, BCIs
provide options for communication and control for people
with neuromuscular disorders. Electroencephalogram (EEG)
signals are widely used for implementing BCI systems in
practical applications due to their noninvasive nature, ease
of operation, and relatively low cost. Brain-controlled wheel-
chairs (BCWs) are a promising type of such application. Since
Tanaka et al. developed the first EEG-based BCW system [4],
many protocols have been proposed to develop a BCW [5]–
[7]; these protocols have made great progress toward extending
the applications of BCWs. Previous BCW systems have been
extensively tested on healthy subjects in a laboratory condi-
tion [8]; however, most potential users of BCWs are people
suffering from severe physical disabilities or who are in a
“locked-in” state; thus, it is unclear whether these individuals
could operate a BCW with brain signals as easily as healthy
people. Therefore, validation of the clinical practicability of
BCWs is important.

A practical BCW system should achieve its goals with less
user involvement, especially when used by people with disor-
ders, because they are more prone to fatigue. For most current
BCWs, users had to control each movement of the BCWs. For
example, if a user wants to take a bottle of water in a room,
the user should first plan an appropriate path in mind and then
control the wheelchair to move along the planned path. If there
are many obstacles in the current environment, path planning
is difficult. Additionally, controlling each movement of the
wheelchair is burdensome and inefficient. In recent years,
researchers have employed shared control techniques [9], [10]
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to provide convenient and efficient strategies for controlling
wheelchairs. In our previous study [11], we developed a prac-
tical BCW combining a BCI, an automatic navigation module
and a computer vision (CV) module. The CV automatically
perceives a dynamic environment, the user issues commands
using a BCI, and the navigation module automatically controls
the wheelchair to the destination. Furthermore, we installed
a robotic arm on the wheelchair. If the users are interested
in a target in the environment, they can select the target in
the interaction interface. Next, our wheelchair automatically
reaches the target and grasps the target with the robotic arm.
Users do not need to spend time and energy on wheelchair
navigation, which greatly improves the interaction efficiency
and reduces the users’ mental workload [12]–[14].

Workload could be an important issue for devices meant
to be used by patients because they may exhibit a decreased
capability to carry out tasks due to excessive workload
required by BCIs. This, however, was only scarcely discussed
in previous literature regarding BCWs. In our study, we used
the National Aeronautics and Space Administration_Task Load
Index (NASA-TLX) scales to measure the task workload
before and after the experiment; this approach has been
used in previous BCI studies [15], [16]. The NASA-TLX is
divided into 6 subscales: mental demand, physical demand,
temporal demand, performance, effort and frustration [17].
Each subscale has a range from 0 to 100 with a step length
of 5, in which higher values indicate more workload and less
user satisfaction in the specific area.

To further validate the clinical practicability of this pre-
viously proposed BCW, 10 subjects with severe spinal cord
injuries were recruited for the study. The experimental results
preliminarily showed the feasibility of our BCW in sup-
plementing the motor function of patients with spinal cord
injury. This experiment expanded the application of brain-
computer interfaces in clinical scenarios and promoted cross-
talk between neurorehabilitation and BCI research.

The rest of the paper is organized as follows. Section II
describes the subjects, the structure of the BCW, the exper-
imental procedure, and the EEG recording and decoding
algorithm. Sections III and IV describe and discuss the exper-
imental results, respectively. Finally, section V concludes our
work.

II. METHODS AND MATERIALS

A. Patients

This study was approved by the Ethics Committee of
Xiangya Hospital, Central South University. All processes of
the study complied with the Declaration of Helsinki in 1964.
The experiment was conducted at Xiangya Bo’ai Rehabili-
tation Hospital in Hunan Province, China. Ten patients with
severe spinal cord injuries were recruited for the study. Each
patient was asked to complete three experiments within one
week. All patients provided signed informed consent docu-
ments. The inclusion and exclusion criteria were as described
below.

The inclusion criteria were as follows: (1) age 18∼70 years
old; (2) muscle strength of the upper extremities lower than

TABLE I
BASIC INFORMATION OF SUBJECTS PARTICIPATING IN THE STUDY

level 2 and that of the lower extremities lower than level 3,
secondary to various etiologies (such as trauma, stroke, and
spinal injury), the definition of level 2 muscle strength refers
to limb movement possible only with gravity eliminated, and
level 3 refers to limb movement possible against gravity but
not against resistance [18]; (3) intact consciousness (Glasgow
coma scale score of 15) and reasonable cognitive function
indicated by a Mini-Mental State Examination (MMSE) score
>17 points for uneducated patients, >20 points for patients
who only completed elementary education of fewer than
6 years, >22 points for patients who finished middle school
and > 23 points for patients who finished college; also,
patients should be able to comprehend the operating process
of the BCW [19], [20]. (4) Finally, patients should provide
signed informed consent to participate in the study (including
follow-ups).

The exclusion criteria were as follows: (1) intracranial
metal implants that interfere with the data acquisition of
electroencephalograms; (2) history of visual defects (such as
uncorrected myopia, hyperopia or astigmatism) or injury to the
visual system that interferes with normal experimental process;
(3) history of epilepsy; (4) unstable vital signs, including respi-
ratory rate not within 10∼24/min, systolic blood pressure not
within 90∼140 mmHg or pulse rate not within 60∼100/min;
(5) allergy to the conductive paste (GT10 medical conductive
paste, GREENTEK Technological Co. ltd., Wuhan); (6) skull
deformities that prevented the electrode caps from being worn
continuously; (7) an unhealed wound, hemorrhage, exudation
or infection of scalp; (8) pregnant women; (9) sitting position
intolerance; and (10) other conditions that deemed the indi-
vidual unsuitable to participate in the study.

The basic information of the patients included in the study is
summarized in Table I. Eight patients were male and two were
female. The average age was 45±12.7 years old. Patients suf-
fered from spinal cord injury with the locations of the injured
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Fig. 1. The architecture of the BCW proposed in this study.

segments ranging from C4 to C7; these injuries resulted in
decreased muscle strength of peripheral limbs, ranging from
level 2 to level 3. The MMSE cognitive test results ranged
from 22 to 29.

To ensure subject safety, vital signs, including blood pres-
sure, heart rate and respiratory rate, were examined and
recorded before and after the experiment. Before an experi-
ment started, subject vital signs were examined and recorded,
and after confirmation that these measurements were in the
normal range, the experiment was initiated. After the experi-
ment ended, the individuals’ vital signs were examined again.
Subjects with vital signs that were out of the normal range
(indicating issues such as tachycardia or tachypnea) would
receive immediate medical care provided by a doctor who
accompanied the subjects.

Subjects’ workloads when completing the experiment
were recorded after each experiment using a self-
accomplished questionnaire, the National Aeronautics
and Space Administration_-Task Load Index (NASA-TLX),
which contains 6 subscales, with higher values indicating
higher workloads and less satisfaction. A more detailed
description of NASA_TLX can be found in the introduction
section. This approach has been used in previous BCI studies.
The NASA-TLX is divided into 6 subscales: mental demand,
physical demand, temporal demand, performance, effort and
frustration. Each subscale has a range from 0 to 100 with
a step length of 5, in which higher values indicate more
workload and less user satisfaction in the specific area.

B. System Structure

The length, width, and height of our BCW were approx-
imately 1.0 meters, 1.1 meters, and 1.5 meters, respectively.
As shown in Fig. 1, our BCW consisted of three modules:

the signal processing module, the computer vision module,
and the wheelchair navigation module. A local area network
(LAN) and the transmission control protocol (TCP) were used
for communication between modules.

(a) The signal processing module consisted of two submod-
ules. The first was an amplifier (actiCHamp, Brain Products,
Germany), which amplified and preprocessed the EEG signals
recorded from a patient’s scalp. The second was a BCI2000
platform [21] implemented on a laptop (Hasee, Hasee Com-
puter Company, China), which extracted the P300 features and
decoded the user’s commands.

(b) We used a depth sensor (Kinect XBOX360, Microsoft,
USA) to detect the environment in real time. The depth sensor
simultaneously collected the RGB video and point cloud data.
In this study, we used the YOLOv3 platform [22] to detect
the environmental objects in the RGB video and then encoded
the objects as the options in our BCW interface. The feature
extraction network of YOLOv3 contains 53 convolutional
layers and uses convolution kernels of different sizes to extract
features from each frame of the captured video. The computer
vision module obtained the depth information of the environ-
mental objects from the point cloud data. The computer vision
module sent the category and position of each environmental
object to the wheelchair navigation module.

(c) The mecanum wheel allows translation and rotation in
any direction, which is suitable for narrow indoor environ-
ments and has been widely used in BCW studies [23]. We used
a chassis with four mecanum wheels to control wheelchair
movement. The Kinova robotic arm (Kinova Jaco2, Kinova
Robotics, Canada) had six joints and two fingers, providing
it with a grasping function and six degrees of freedom [24].
The Kinova robotic arm could simulate human arms. The user
interface was a computer screen with a size of approximately
1920 pixels × 1080 pixels, which showed the BCW options,
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Fig. 2. User interfaces for automatic mode and manual mode. All the
patients recruited in this study were Chinese, so the options in the user
interface were Chinese characters.

the stimuli used to evoke the user’s P300 signals, and the
decoding results. The wheelchair navigation module received
environmental information from the computer vision module
and received decoding results from the signal processing
module. When a user selected a target, a route to the target
would be automatically planned, and the BCW could go to
the destination and grasp the target with the robotic arm.

The BCW we developed had two modes: automatic mode
and manual mode. The subjects could change modes with a
switch fixed on our BCW. In automatic mode, all BCW options
were environmental objects detected by the computer vision
module. Fig. 2 (A) shows the user interface for automatic
mode, in which there were three options: “1 bottle”, “2
bottles”, and “0 target”. We used a red box to mark the
current target, i.e., the option “0 target”. The users could
select any targets in the user interface, and then the wheelchair
would automatically go to the destination and grasp the target
with the robotic arm. Generally, our BCW was developed for
an orderly environment because paraplegic patients usually
moved in such environments. If there were too many objects
(set as >5) in the current environment, to avoid distracting
the users’ attention, the user interface only showed five of
them. These five options were the five objects closest to the
BCW. Fig. 2 (B) shows the user interface of the manual mode.
There were five options in the user interface: “0 forward”,
“1 turn left”, “2 move left”, “3 turn right”, and “4 move
right”. The current target was “0 forward”. In this mode, the
users could control each movement of the wheelchair. The
interaction speed in automatic mode was high because users
only needed to select targets, and the system could complete
the other operations. The manual mode was useful when the
users just wanted to control wheelchair movement but did not
want to select any targets. With automatic mode and manual
mode, our BCW might be feasible for most paraplegic patients.

C. Control Strategy for the Wheelchair And the Robotic
Arm

The purpose of this study was to test the performance of
our BCW in rehabilitation assistance tasks. As a preliminary
case study, our control strategy was relatively simple. In this
study, the BCW could detect the environment within four
meters ahead. After finding the target, the wheelchair would
move directly toward the target. If an obstacle was detected
on the way, the wheelchair could move left and right or
rotate to avoid the obstacle (the path might not be optimal).

Fig. 3. The time courses of each task. In the offline stage, each stimulus
flashed four times. In the online stage, each stimulus could flash four,
eight, or twelve times, and the “N” was four, eight, or twelve. In the offline
stage, the time courses of each task contained 4 steps: choosing mode,
cue, flash, and feedback. In the online stage, the time courses contained
one more step: execution.

When the wheelchair reached an area within 0.5 meters of
the target, the wheelchair stopped and grasped the target
with the robotic arm. Before the experiment, we needed to
determine the grasping posture of the robotic arm for each
target. The specific method was to manually control the robotic
arm to grasp a target and then record the position of the
end-effector of the robotic arm in the depth picture. The BCW
would automatically build a Cartesian space, and the point in
which we fixed the robotic arm was regarded as the origin
of the Cartesian space. Next, the BCW system calculated the
appropriate parameters to determine the grasping posture of
the robotic arm for each target [9]. In the experiment, we could
not interfere with the robotic arm; for example, we could not
block a target when the robotic arm was grasping it.

D. Experimental Procedures

The experimental environment was a room that was approxi-
mately 8.0 meters × 9.0 meters in size. In the room, there were
several human beings, bottles, chairs, and desks. For safety, the
room was closed during the experiments, and no one could
stay in the room except the subjects and researchers.

Each paraplegic patient participated in 3 experiments within
a week. Before each experiment, subjects were told about the
purposes and procedure of our experiment. We taught subjects
to use our BCW and allowed subjects to try using the system
until they completely understood how it worked. For safety
concerns, participants’ vital signs, such as blood pressure, were
monitored during the experiments. Each experiment contained
two stages, i.e., the offline stage and the online stage.

1) Offline Stage: In the offline stage, we needed to collect
enough EEG signal data to determine the optimal parameters
for the classifier. Fig. 3 shows the time courses of each
task. First, the subjects were asked to select the current
mode within five seconds. Then, the system displayed the
corresponding user interface and reminded the subjects of the
current target. Two seconds later, the user interface showed
the stimuli that would evoke the subjects’ P300 signals.
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According to the oddball paradigm [25], the stimuli flashed
with a stimulus onset asynchrony (SOA) of 400 ms, i.e., each
stimulus appeared for 200 ms and disappeared for another
200 ms. In the offline stage, each stimulus flashed four
times. After flashing, the classifier decoded the current result
within two seconds. The BCW did not execute the decoding
results but directly fed back the decoding results to the
subjects through the user interface. In this study, we used the
stepwise linear discriminant analysis (SWLDA) classification
algorithm [26], [27]. In the offline stage, each subject had
to choose 30 targets, which were divided into three blocks
with ten targets in each block. To reduce the subject’s mental
fatigue, each subject was allowed to relax for 2 minutes after
finishing each block.

2) Online Stage: In the online stage, the candidate tasks
included (a) choosing bottles, chairs, people, and tables in
automatic mode and (b) controlling the movement of the
wheelchair in manual mode by performing forward, left turn,
right turn, left translation, and right translation maneuvers.
The linear velocity and angular velocity of our wheelchair are
0.08 m/s and 3.5 rad/s, respectively. For the candidate tasks
in manual mode, the specific distance the forward/transaltions
(cm) or turns (degrees) were decided by each subject. When
a subject wanted to stop the current movement, he or she had
to tell us orally, and we would stop the wheelchair. A subject
could choose any candidate task, when a subject decided the
task he or she wanted to do, the subject needed to tell us
orally, and we would immediately record the current task. Each
subject had to complete a total of ten candidate tasks in the
online stage.

Here, we propose an example of how a subject could
complete ten tasks. In the first task, subject X wanted to get
close to a person, but the BCW did not detect the person, and
subject X could not directly choose the person. Under this
condition, subject X first turned left the BCW in manual mode
until the BCW detected the person. Next, subject X chose the
person in the automatic mode. In this study, when the BCW
did not detect the target that the subject wanted to choose,
the subject had to change the BCW position (by rotation or
translation) before selection. Regardless of how many times
the subject rotated/translated the BCW before selection, this
condition was only regarded as one task. Afterward, in task 2,
the subject commanded the wheelchair to turn left in manual
mode, in which 13 seconds were required for decoding and
10 seconds were required to execute the turn, for a total of
23 seconds. Next, the subject moved forward in manual mode
(task 3), chose a chair in automatic mode (task 4), grasped two
bottles one after another with the robotic arm in automatic
mode (tasks 5 and 6), and then got close to two persons
one after another (tasks 7 and 8). Finally, the subject moved
left (task 9) and returned to the original location (task 10).
No collisions occurred during the whole process, and safety
of the subject was ensured.

E. EEG Data Acquisition And Signal Processing

1) EEG Data Acquisition: According to the international
10–20 standard, we used the actiCHamp amplifier and its

electrodes (Brain Products, Germany). We used five electrodes
(FC1, FC2, CP1, CP2, and Cz) to record the subjects’ EEG
signals, two EEG electrodes (TP9 and TP10) as the reference
electrodes, and Fpz as the ground electrode. The sampling
frequency was 500 Hz. The impedance of all electrodes was
maintained below 5 k� in the experiment. To reduce the
electromyography (EMG) signal and electrooculogram (EOG)
signal, we used a bandpass filter (0.5 Hz-50 Hz) and a zero-
phase filter.

2) EEG Signal Processing: When a stimulus appeared for
each option, we started recording EEG signals for 700 ms.
Each 700-ms-long EEG signal contained the features of a stim-
ulus. Next, we used a downsampling filter to filter all 700 ms-
long EEG signals. The sampling rate of the downsampling
filter was one tenth; in other words, we chose one point from
every ten points. Therefore, the filtered signal was 70-ms-long.
Then, we multiplied each 70-ms-long signal by the optimal
parameter matrix W obtained by the SWLDA algorithm in
the offline stage [28]. The product was the P300 score for
each stimulus. In this study, multiple stimuli appeared for each
option. By totalling the P300 scores of all stimuli for an option,
we could obtain the P300 score of this option. Finally, we used
the bubble sorting algorithm to determine the option with the
maximum score, which was the decoding result.

Si =
∑N

k=1
WXik (1)

In equation (1), i is the ith option, N is the number of flashes
required to decode one target, W is the optimal parameter
matrix, Xik is the EEG signal recorded for the ith option in
the kth flash, and Si is the P300 score of the ith option.

Decoding the subject’s P300 signal was a binary classifi-
cation process. The P300 classifier only needed to classify
the options in the user interface as a target or nontarget [28].
As shown in equation (2), X and Y are the recorded EEG
signals and the corresponding labels (target or nontarget),
respectively. The SWLDA algorithm was used to determine
the optimal parameter matrix W. Assuming that we collected
M EEG signals with the corresponding labels in the offline
experiment, X and Y could form a data set in equation (3).
Xi, Yi indicates the ith EEG signal and its corresponding label.
First, the SWLDA used the linear discriminant analysis (LDA)
algorithm to determine an original parameter matrix Woriginal
that could fit the relationship between X and Y. This process is
shown in equations (4)-(7). Xtarget represents the EEG signals
of the target. μtarget, σtarget is the mean and variance in Xtarget.
For the nontargets, we calculated their mean and variance
similarly according to equations (4) and (5). Then, we could
calculate the divergence matrix S according to equation (6).
Woriginal was computed in equation (7). Next, SWLDA filtered
Woriginal with the stepwise regression method. This stepwise
regression process was repeated until the model included a
predetermined number of terms or until no additional terms
satisfied the entry/removal criteria.

Y = W X (2)

D = ((
x1, y1

)
,
(
x2, y2

)
,…,

(
xi, yi

)
,…,

(
xM, yM

))
(3)
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μtarget = 1

Ntarget

∑
xtarget (4)

σtarget =
∑

(xtarget − μtarget)(xtarget − μtarget)
T (5)

SW = σtarget + σnon-target (6)

Woriginal = S−1
W (μtarget − μnon-target) (7)

3) Dynamic Optimization of the Number of Trials: During the
online stage, the number of trials was not fixed. The system
evaluates the SNR of the current P300 signals every four trials.
If the SNR was greater than a predefined threshold (the maxi-
mum SNR of the subject’s P300 signals recorded in the offline
stage), the stimuli stopped flashing, and our BCW executed
the subject’s command; otherwise, each stimulus flashed four
more times. In the online stage, at most, each stimulus could
flash 12 times. In other words, each stimulus could flash four,
eight, or twelve times. Equations (8) and (9) show the method
of computing the SNR of the P300 signals [30], [31].

EEGk = P300k + Noisek (8)

SNR = 10log10(
Var(E(EEGk))

E(Var(EEGk-E(EEGk)))
) (9)

Each recorded EEG signal was composed of a noise com-
ponent and a P300 component. In the two equations, k denotes
the kth flash, and EEGk is the EEG signal recorded in the kth

flash. P300k and Noisek are the P300 component in the kth

flash and the noise component in the kth flash, respectively.
The operator E computed the mean, andE(EEGk) was the aver-
age EEG signal of all k flashes. (EEGk-E (EEGk)) reflects the
noise component in the kth flash. The operator Var computed
the variance. Var(E(EEGk) is the variance in the average EEG
signals.

F. Performance Metrics

In this study, we used accuracy, the information transfer rate
(ITR), the average number of trials, the environment detec-
tion success rate, the navigation error rate, and the average
experiment time as the performance metrics. In this study,
accuracy was defined as the number of successfully completed
tasks divided by the total number of tasks. Successfully
completing a task meant that the BCW decoded the correct
target and successfully executed the subjects’ commands. For
example, if a subject wanted to grasp a bottle, the BCW
should successfully decode the target bottle and then grasp
the bottle with the robotic arm. A condition in which the
BCW decoded the bottle but did not grasp it was regarded
as a failure. The definition of ITR is shown in equations (10)
and (11). N is the number of options in the user interface.
P is the accuracy, and T is the time required to choose the
current target [32], [33]. S is SOA, which was 400 ms in
our experiment. R is the number of flashes required to select
the current target. I is the interval between two selections.
According to relevant BCI studies, one trial was defined as
each option flashed once. If and only if one stimulus appeared
for each option did the BCI complete a trial. For a subject,
the average number of trials was the total number of trials
required for this subject to complete all 30 tasks divided by
30. Additionally, each subject completed three experiments.

Every time the BCW entered automatic mode, it detected the
environment. If the BCW successfully detected objects in the
environment, the detection was deemed successful; otherwise,
the detection was considered unsuccessful. The number of
successful detections of the BCW divided by the total number
of detections (number of successful detections plus the number
of failed detections) was calculated as the environment detec-
tion success rate. In the experiment, an incorrect decoding
of subjects’ commands and an incorrect navigation of the
BCW could both cause task failure. We counted the number
of task failures caused by incorrect navigations. This number
was divided by the total number of tasks to determine the
navigation error rate. We also measured the average time that
each subject required to complete an experiment.

ITR =
(

log2 N + Plog2 P + (1 − P)log2(
1 − P

N − 1
)

)
/T

(10)

T = (S ∗ R + I)/60 (11)

G. Safety Concerns

Safety and reliability were considered priorities in the
design of the wheelchair. Three levels of safety guarantees
were provided in the wheelchair system.

Level 1: The safety of automatic navigation system. During
the navigation process of task execution, a depth camera
was used to capture visual images. The navigation module
of robotic operation systems is universal, and the navigation
algorithm is widely used. The efficiency of the algorithm
is validated to guarantee safety. Under normal conditions,
no hazardous behavior is executed by the system, and the
wheelchair does not collide with environmental objects.

Level 2: Ultrasonic sensors were installed around the under-
pan, which were not involved in route planning but were
included as independent safety measures. The sensors can
detect obstacles with a frequency of 20 Hz and calculate
distances with an accuracy of 1 millimeter. The industrial-
level high reliability PLC single chip Microco was used as the
central processing unit (CPU), with a reliability higher than
99.9%. The special emergent stop module consisting of a PLC
CPU and ultrasonic sensors had the highest priority among all
systems, which directly controlled the electric supply. Namely,
no matter what task was currently being executed, once close
distance was detected by the emergent stop module, the power
would be immediately cut off to ensure safety.

Level 3: A self-locking light touch switch was installed
onto the underpan in an easily accessible location to meet
the related safety criteria. The light touch property allows
activation using only a small push. The self-locking property
means that once activated, the switch requires an excessive
unlocking maneuver to be performed before it is disabled,
providing an additional safety measure that the switch cannot
be incorrectly operated after being switched on. During each
task, a safety guard would escort the person in the wheelchair
and observe his or her condition. Once any condition that
might be hazardous to the subject occurred, the switch was
manually activated to guarantee subject safety.
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TABLE II
COMPARISON OF VITAL SIGNS BEFORE AND AFTER THE TEST

Finally, clinical metrics were obtained during the experi-
ments to ensure patient safety. Vital signs, including blood
pressure, pulse rate and respiratory rate, were measured and
recorded before and after each experiment to ensure that
subjects maintained a proper physiological state. To assess the
task load of the experiment, the NASA-TLX values before and
after the experiment were recorded and analyzed.

III. RESULTS

A. P300 Signals of Subjects

P300 signals of 10 subjects are displayed in Fig. 4. All
subjects demonstrated clear P300 responses. The minimal
and maximal peaks of P300 signals were approximately 1
μV and 3 μV, with most peaks being approximately 2 μV.
The response latencies of the subjects were approximately
200∼400 milliseconds, with a mean latency of approximately
300 milliseconds.

B. Vital Signs Before And After the Experiment

Wilcoxon rank-sum tests were applied to evaluate the dif-
ference in participants’ vital signs between and after they
completed the experiment, and the results are shown in
Table II. The average systolic blood pressure measurements
before and after the experiment were 113±13.7 mmHg
and 114±11.9 mmHg, respectively. The average diastolic
blood pressure measurements before and after the experiment
were 77±8.1 mmHg and 78±7.7 mmHg, respectively. The
average heart rates before and after the experiment were
79±8.4/min and 79±8.2/min, respectively. The average respi-
ratory rates before and after the experiment were 20±1.4/min
and 20±1.8/min, respectively. None of the vital signs demon-
strated significant differences after the experiment compared
with the corresponding pre-experiment values.

C. Task Load Assessment

The results of the NASA-TLX values of 10 subjects before
and after the experiment are shown in Table III. The average
value for each subscale ranged from 10.0 to 25.5. The maximal
task load subscale was temporal load, with an average value of
25.5±2.84, while the minimal subscale was frustration, with
an average value of 10.0±4.08.

D. System Performance

Subjects’ performance in offline and online stages is demon-
strated in Table IV. In the offline stage, the average accuracy

Fig. 5. Movement trajectory diagram. This figure shows the trajectory
when one subject completed ten tasks. In this figure, the black, green,
red, and orange polygons are tables, chairs, persons, and bottles,
respectively.

and ITR were 79.2% and 5.5 bits/min, respectively. In the
online stage, the average accuracy and ITR were 94.8% and
4.2 bits/min, respectively. To determine the total accuracy,
i.e., the probability that the participant’s order was finally
fulfilled, we multiplied the environment detection success rate,
the navigation success rate, and the accuracy. The average total
accuracy was 90.8%. The average number of flashes in the
online stage was 8 times per target, compared with 4 in the
offline stage. The increased number of flashes significantly
improved the classification accuracy from 79.2% to 94.8% at
a minor cost of reducing the ITR from 5.5 bits/min to 4.2
bits/min, which we propose to be acceptable. The average
time required to finish 10 tasks was 21.6 minutes (including
intertask resting time), and the average time required to finish
one task was approximately 2 minutes. The average navigation
error rate was 4.5%, and the environment detection success
rates of all subjects were 100%.

To further elaborate the process of executing the tasks, the
process of subject 1 finishing the 10 tasks is displayed in Fig. 5
as arrowed dashed lines, and the time spent on each task is
displayed in Fig. 6. In the first task, the subject headed toward
a person, as indicated by the arrowed dashed line marked with
number 1. Notably, 39 seconds were required to decode subject
intention from the participants’ P300 signals, and 15 seconds
were used to execute the movement, for a total time of
54 seconds. Afterward, in task 2, the subject commanded the
wheelchair to turn left, in which 13 seconds were used for
decoding and 10 seconds were used to execute the turn, for a
total time of 23 seconds. Next, the wheelchair headed toward
a chair, after which it headed toward the bottles, grabbed the
water bottles twice, and headed toward 2 persons. Finally,
it returned to its original place in 2 maneuvers. No collisions
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Fig. 4. P300 signals of the subjects participating in this study.

TABLE III
SCORES OF THE NASA _TLX FOR 10 SUBJECTS

occurred during the whole process, and safety of the subject
was ensured.

IV. DISCUSSION

The average accuracy of the proposed BCW was approxi-
mately 95%, which demonstrated the feasibility of our BCW

in the clinical field. The lowest accuracy of the subjects was
86.7%, which might be caused by a low state of mood.

Safety, including the stability of the physiological parame-
ters of the subjects and the operative safety of the system,
is a major concern for devices meant to be used by patients.
First, we monitored participants’ vital signs before and after
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TABLE IV
PERFORMANCE OVERVIEW OF THE PROPOSED BRAIN-CONTROLLED WHEELCHAIR

Fig. 6. Illustration of the time spent in each task. This figure shows the
time spent when one subject completed the above ten tasks.

the experiment and found no significant differences. A general
trend indicating physical or mental work could be raised heart
rates, respiratory rates or blood pressure. The unchanged vital
signs suggest that the BCW was easy to use and elicited minor
physiological responses. Second, the NASA-TLX score was
used to evaluate the task burden on subjects. As shown in
Table III, the subscales of NASA-TLX ranged from 10.0 to
25.5, supporting the view that the cognitive burden of the
system was acceptably low to allow subjects to carry out all
tasks without feeling the tasks were burdensome, demonstrat-
ing clinical applicability. In addition, multiple safety guaran-
tees were designed to ensure that the operation would not

endanger the patient’s safety or collide with the surrounding
environment. The results showed that all subjects finished the
tasks successfully.

Our BCW system could effectively help with the life of the
disabled. First, it could automatically encode environmental
objects, allowing subjects to directly select items as targets
of interest. In addition, the route toward the target was auto-
matically programmed, and the users did not have to control
every specific movement of the wheelchair, which significantly
reduced users’ workload [6]. Second, direct object grasping
could be achieved by the installed robotic arm, which improves
the function of the wheelchair from just a platform that
“moves around” and better assists disabled individuals in
their daily tasks. In manual mode, the subject could also
control the movement of our BCW, which was useful for
cluttered environments or scenarios in which the subject just
wanted to move the wheelchair. Third, the wheelchair could be
controlled through visual P300 signals, which do not require
limb manipulation and are easy for paraplegic patients to use.
Moreover, the relatively short training time further improves
the efficiency and reliability.

In this study, P300 signals were elicited through a small
computer screen fixed on the BCW, and the color contrast of
the screen was low, which may influence the performance of
our BCW [34]. Additionally, the user interface was nonwear-
able, which could be uncomfortable for patients whose neck
movements were restricted. Relevant studies show that using
a head-mounted display (HMD) combined with augmented
reality techniques (AR) might address this issue well [35]–
[38]. In future work, we plan to integrate such HMDs in our
BCW. Our study has several limitations. We only measured
vital signs before and after the experiment, which did not
guarantee the stability of vital signs during the whole process
of the experiment.

V. CONCLUSION

We developed and evaluated a BCW system to help with
the movements of patients with paraplegia. The system has
the capability to automatically identify and encode environ-
mental objects, perform automatic route programming and
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TABLE V
TASKS PERFORMED BY EACH SUBJECT

Fig. 7. The Effects of changing number of flashes. The shaded regions
are the error bands.

Fig. 8. Effects of changing the number of flashes on the BCW
performance. This figure was plotted using the data of subject P1.

interact with environmental objects by robotic arms. The
average classification accuracy was 94.8%, and the average
ITR was 4.2 bits/min, with a time requirement of approx-
imately 2 minutes for each task. No evident physiological
or cognitive burdens were observed during task completion,
and the users’ experiences were optimal. We propose that
this wheelchair system is suitable to assist the movement
and environmental interaction of cognitively intact, paraplegic
patients. Future work will focus on improving the system to

develop a more patient-centered system and further promote
its clinical applicability.

APPENDIX

See Figures 7 and 8, and see Table V.
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