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Abstract— The accurate evaluation of operators’ mental
workload in human-machine systems plays an important
role in ensuring the correct execution of tasks and the
safety of operators. However, the performance of cross-task
mental workload evaluation based on physiological met-
rics remains unsatisfactory. To explore the changes in
dynamic functional connectivity properties with varying
mental workload in different tasks, four mental workload
tasks with different types of information were designed and
a newly proposed dynamic brain network analysis method
based on EEG microstate was applied in this paper. Six
microstate topographies labeled as Microstate A-F were
obtained to describe the task-state EEG dynamics, which
was highly consistent with previous studies. Dynamic brain
network analysis revealed that 15 nodes and 68 pairs of
connectivity from the Frontal-Parietal region were sensitive
to mental workload in all four tasks, indicating that these
nodal metrics had potential to effectively evaluate mental
workload in the cross-task scenario. The characteristic
path length of Microstate D brain network in both Theta
and Alpha bands decreased whereas the global efficiency
increased significantly when the mental workload became
higher, suggesting that the cognitive control network of
brain tended to have higher function integration property
under high mental workload state. Furthermore, by using a
SVM classifier,an averaged classificationaccuracy of 95.8%
for within-task and 80.3% for cross-task mental workload
discrimination were achieved. Results implies that it is
feasible to evaluate the cross-task mental workload using
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the dynamic functional connectivity metrics under specific
microstate, which provided a new insight for understanding
the neural mechanism of mental workload with different
types of information.

Index Terms— Mental workload, different information
types, EEG, microstate analysis, dynamic functional con-
nectivity.

I. INTRODUCTION

MENTAL workload (MWL) refers to the psychological
stress felt by operators or the cognitive resources con-

sumption while performing tasks [1], [2]. Excessive mental
workload might affect operator’s judgment and performance
in human-machine interaction tasks such as manipulating
airplanes or unmanned air vehicles, which posed threats to
their safety [3]. The accurate evaluation of mental workload
plays a significant role in ensuring the correct execution of
tasks and the safety of operators. Frequently used methods of
evaluating mental workload include subjective measurement
(e.g., NASA-TLX, SWAT, etc. [4]), task performance mea-
surement (e.g., response time, accuracy, etc.), and physiolog-
ical measurement (e.g., EEG, ECG, etc. [5]–[7]). Compared
with subjective measurement and task performance measure-
ment, physiological measurement can objectively, continu-
ously assess operator’s mental workload without influencing
the execution of task and therefore has attracted more attention
from researchers.

Numerous researches indicated that different mental work-
load levels can be effectively distinguished by using physiolog-
ical metrics in single task. However, when the same metrics
were applied to the cross-task mental workload evaluation,
it tended to end up with an unsatisfactory result with low
accuracy. Metrics that can effectively assess mental workload
in different tasks have not been proposed [8], [9].

Many studies attributed the cross-task problem to different
information processing mechanisms of human brain while per-
forming different tasks [9]–[11]. Specifically, different brain
regions were involved when processing different types of
information, and the activation patterns of them differed from
each other, which leaded to the changes in physiological
metrics differed [12]–[14]. Certain physiological metrics were
often sensitive to tasks with a certain type of information,
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while these metrics cannot effectively characterize the change
of mental workload in other tasks. There are various types
of information in actual human-machine interaction tasks.
The information that affects operator’s mental workload levels
mainly include verbal, images (or object) and spatial types.
Clarifying the changes of physiological metrics with men-
tal workload in different tasks and further selecting “task-
independent” metrics that can evaluate mental workload effec-
tively in all tasks might provide valuable references for
establishing accurate and robust cross-task mental workload
evaluation models [15], [16].

It was commonly accepted that EEG is the most sensitive
physiological metric for its more direct reflection of the
process of human brain compared with ECG, heart rate,
eye movement, skin temperature, etc. Previous studies found
that spectral power of the Theta and Alpha band of EEG
can effectively reflect the change of operators’ mental work-
load [17]–[20]. Gevin [17] and Popov [18] found that the
power of Frontal Theta increased and Parietal Alpha decreased
along with the increment of the task load in Verbal and
Spatial N-Back tasks. Change of the EEG power in specific
frequency bands mainly reflected the regional properties of the
brain under workload. Considering that multiple brain regions
were involved and these brain regions worked coordinatively
while processing information, it would be beneficial to explore
the interaction patterns of different brain regions in different
tasks for the accurate evaluation of cross-task mental work-
load [21]–[23].

Recently, the functional connectivity based mental work-
load evaluation method has attracted the attention of
researchers [24], [25]. It has been previously validated that
the metrics of functional connectivity can be used to assess
mental workload in single tasks (such as in Verbal N-Back
task [21], Object working memory task [26], etc.). However,
the traditional static functional connectivity analyses assumed
that the statistic dependencies between brain regions kept
constant when processing information, which neglected the
time-varying property of brain activity [25], [27], [28].

To bridge this gap, a dynamic functional connectivity
method with slide windows was proposed [29]. However,
the selection of window size and slide step would directly
influence the results. Meanwhile, a fix-size window cannot
reflect the cognitive processing stage precisely [30]. The
EEG microstates analysis considered that the brain activity
remained quasi-stable for a short period (60 ∼ 120ms) while
processing information and these quasi-stable states were
thought to be closely related to specific cognitive processing
stages (many studies regarded the microstates as the build-
ing blocks of consciousness) [31]–[33]. In the microstate
analysis, EEG topography at each time point was assigned
to one “Microstate” based on clustering methods. Compared
with slide-window methods, microstates and their dynamic
properties can characterize the cognitive stages of brain more
precisely. Various studies implied that the dynamic properties
of EEG microstates can effectively reflect the change of brain
state when operators were performing tasks. Deolindo [34]
found that the dynamic properties of microstates can be used to
distinguish the situation awareness levels of helicopter pilots.

Krylova’s research showed that the microstate metrics were
statistically correlated with the vigilance level of human [35].
Therefore, it is reasonable to believe that the topological
characteristics of brain networks under specific microstates can
reflect the mental workload of operators more precisely.

Considering all the above, it is expected to understand
and solve the cross-task problem from a new insight by
exploring how the dynamic functional connectivity properties
change with mental workload when performing different tasks
by using the dynamic brain network analysis and microstate
analysis based on EEG. In this paper, four mental workload
tasks with different information types (i.e., Verbal, Object,
Spatial (Verbal) and Spatial (Object)) were designed. On the
basis of the microstate analysis, dynamic functional connec-
tivity networks under different microstates were constructed
by calculating the Phase-Locking Value (PLV) between EEG
channels. Statistical analysis was carried out to explore the
changes of microstate metrics and brain network metrics
with mental workload under different task conditions. At last,
a Support Vector Machine (SVM) classifier was used to vali-
date the effectiveness of the proposed method and the selected
dynamic functional connectivity features in discriminating
mental workload both in within-task and cross-task scenario.

II. METHODS

A. Subjects

Sixteen right-handed, healthy subjects (8 males and
8 females, Age: 25.6 ± 2.4 years) participated in the study.
None of the participants had histories of neurological diseases.
All participants signed written informed consent and the study
was approved by Beihang University Ethics Committee.

B. Experiment Protocol

The flowchart of the whole study was presented in Fig. 1.
N-Back paradigm was used to carry out the experiment. Par-
ticipants were instructed to judge if the information presented
now is matched to the one presented previously. Four types of
information were used in this study, namely Verbal, Object,
Spatial (Verbal), and Spatial (Object), in which the verbal and
object items were presented in different positions of a 3 ×
3 matrix. In the Verbal and Object task, participants needed to
judge if letters (or objects) were matched without considering
their positions; and in the two spatial tasks, positions of the
items (letters or objects) were the only information needed to
be considered. Three task loads were set by manipulating the
“N” from 1 to 3, which means there are 12 tasks in total.
Participants performed the 12 tasks in a random sequence.
A detailed illustration of the used N-Back tasks (Verbal and
Spatial (Object)) can be seen in Fig. 2.

Taking the Verbal 2-Back task as an example, letters were
presented on the screen sequentially every 2.5 seconds, each
of them was displayed for 0.5 seconds and then disappeared.
Participants should determine whether the present letter is
the same as the letter two trials earlier. If so, “←” should
be pressed and conversely “→”. All participants needed to
perform 40 trials in each task at each level of load, 50%
of which were set as matching answers. Response time of
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Fig. 1. Flowchart of the analysis framework. (A) The N-Back task paradigm. (B) The experiment setup. (C) Microstate analysis procedures. Step
1: Calculate EEG GFP of each trial in each task condition, Step 2: EEG data corresponding to the maxima of GFP were submitted into the T-AAHC
clustering algorithm to get an individual-level microstate, the group-level microstates were obtained by a second time clustering, Step 3: Back fit and
calculate the microstate metrics. (D) Dynamic functional connectivity analysis procedures. PLV was used to calculate the statistical dependencies
between EEG channels in theta and alpha bands firstly, brain networks of specific microstate were obtained by average the functional connectivity
with the same microstate allocated in (C), nodal and global metrics were calculated at last.

each trial was recorded during the experiments, accuracy of
each task was calculated. After each task, NASA-TLX scale
was required to be finished for subjective evaluation. Specifi-
cally, the NASA-TLX scale uses six dimensions (i.e., mental
demand, physical demand, temporal demands, performance,
effort, and frustration) to assess mental workload. Participants
were asked to complete rating on each dimension (ranging
from 0 to 100) and give weightings for each dimension to
obtain a global score [4].

C. Data Acquisition and Pre-Processing

The experiments were carried out in a sound-shielded room.
EEGs (60 channels, electrodes were placed according to 10–
20 standard) were recorded at 1000Hz by using the NeuroScan
system. The electrode impedances were kept below 10k�
during recording.

Only trials with successful responses were further analyzed
in this study. Firstly, a bandpass filter (0.5-40Hz) was applied
to eliminate direct components and noises with high frequen-
cies. Eye blinks, vertical/horizontal EOGs, and EMGs were
removed from the original EEGs by using the auto-recognition
algorithm SASICA after resampling signals at 256Hz [36].
Data were segmented into epochs that started 500ms before
stimulus onset and ended 2000ms after stimulus onset.

D. Microstate Analysis

Consistent microstate classes cannot be obtained by the
prevalently used k-means clustering method since it is sen-
sitive to the selection of clustering centers. Therefore, the
Topographic Atomize & Agglomerate Hierarchical Clustering

Fig. 2. Illustration of the N-Back paradigm. In the Verbal/Object task,
participants need to determine whether the present letter/object is the
same as the letter/object N trials earlier, and in the spatial tasks, only the
location of the items should be considered.

(T-AAHC) algorithm was used to carry out microstate analysis
in this paper [37], [38]. The T-AAHC algorithm takes all
the EEG topographies as original clusters at first and ends
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with a limited number of clusters by removing the “worst”
cluster and assigning each member of it to the clusters they
are most similar to in each iteration. The specific procedure of
microstate analysis can be divided into four steps. In the first
step, the EEG signals were bandpass (2-20Hz) filtered firstly
and then the Global Field Power (GFP, defined as Equation
(1)) was calculated for each time point [39]. In the second
step, the EEG topographies corresponding to the maxima of
GFP were submitted to the clustering algorithm considering
that EEG signals at the time point of GFP maxima have a
relatively high Signal/Noise ratio. The polarity of each topog-
raphy was ignored. For each subject and each task condition,
these procedures were repeated varying the number of clusters
from 3 to 12. The Global Explain Variance (GEV) and the
Cross-Validation (CV) criterion were used to determine the
best number of microstates (defined as Equation (2) and (3)).
These procedures were applied to the EEG of each subject and
thus leaded to individual microstate classes. In the third step,
the group-level microstate classes were obtained by a second
clustering procedure in which the topographies of microstates
of each subject were used as the clustering samples after the
subject-level microstate analysis. At last, EEG topographies at
each time point were allocated to one of the mean microstate
classes by finding the maximum spatial correlation coefficient
between the topography of each time point and the group-level
mean microstate maps. The procedure of microstate analysis
can be seen in the middle part of Fig. 1.

G F P =
√√√√(

N∑
i

(Vi (t)− Vmean (t))2
)/

Ne (1)

where Vi (t) and Vmean (t) is the instantaneous and mean
potentials across the Ne electrodes at time t .

G EV =
∑t max

t=1

(
G F Pu (t) · Cu,Tt

)2∑t max
t=1 G F P2

u (t)
(2)

in which, G F Pu (t) is the G F P of the data for Microstate
U at time point t , Tt is the template map of Microstate
U obtained by the analysis procedure, Cu,Tt is the spatial
correlation between data of Microstate U at time point t and
the template map Tt .

CV =
∑t max

t=1

(�u (t)�2 − Tt · u (t)2
)

tmax · (Ne − 1)
·
(

Ne − 1

Ne − 1− q

)2

(3)

where q is the number of microstates.
Topographic analysis of variance (TANOVA) was imple-

mented to evaluate the differences of each microstate class
in each task [40]. To quantify the dynamic properties of
microstates in each task condition, the following parameters
were calculated: (1) Occurrence, defined as the number of a
given microstate per second, (2) Duration, defined as the mean
duration time of a microstate and (3) Coverage, calculated as
the proportion of a given microstate.

E. Functional Connectivity Analysis

The pre-processed EEG data in section II.C were filtered
into Theta and Alpha bands through an FIR bandpass filter.

By calculating the Phase-locking value (PLV) between signal
at different channels, two time-varying functional connectivity
networks were constructed [41]. The PLV describes the phase
synchronization of two EEG signals and ranges from 0 to 1,
which was defined as:

P LV (t) = 1

Ntrial

∣∣∣∣∣
N∑

k=1

ei(ϕ(t,k)−ψ(t,k))
∣∣∣∣∣ (4)

where Ntrial represents the trial number, ϕ(t,k) and ψ (t, k)
are the instant phase of EEG signal of channel ϕ and ψ at
time point t , which was obtained by the Hilbert transform of
the signal. After all the above, mean functional connectivity
of each microstate was calculated by averaging the brain
networks at time points that with same microstate labels.

The topological properties (i.e., the functional integration
and segregation among different brain regions) can be quan-
tified by using graph theory-based analysis [42]. Nodal and
global metrics of the functional connectivity network at Theta
and Alpha band in each microstate of each task were calculated
by using the GRETNA toolbox [43]. The details are as follows.

1) Nodal Metrics: Degree of node i (ki ) is the number of
nodes it directly connected, which was defined as:

ki =
∑
j∈N

ai j (5)

in which the ai j is the connection strength between node i and
j , N represents the node set of the network. Change of node
degree reflects the change of the importance of this node in the
network. Nodes whose degree changed with mental workload
significantly were regarded as “core nodes” in this study.

2) Global Metrics: The global metrics can reflect the func-
tional integration and segregation of a network. Characteristic
Path Length (L p) was defined as the average shortest path
length between all pairs of nodes in the network, which
reflected the global integration of the network. Shorter L p

means higher information transformation efficiency of a brain
network. The L p was defined as:

L p = 1

Ne

∑
i∈Nset

Li = 1

Ne

∑
i∈Nset

∑
j∈Nset , j �=i di j

Ne − 1
(6)

in which, Li is the mean distance between node i and other
nodes, di j is the shortest path length between node i and
j, Nset refers to the set of all nodes.

Clustering coefficient (Cp) of node i is defined as the
fraction of triangles around the node, the mean clustering
coefficient of a network is the average Cp of all the nodes in
the network. Larger mean Cp reflects higher local information
processing of a network. Mean Cp was calculated as:

Cp = 1

Ne

∑
i∈Nset

Ci = 1

n

∑
i∈Nset

2ti
ki (ki − 1)

(7)

Global efficiency (Eg) is another metric to describe the
ability to transfer information between nodes. Unlike L p ,
which is primarily influenced by long paths, Eg is primarily
influenced by short paths hence making it a superior mea-
sure of integration. A network with higher Eg means faster
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Fig. 3. Average behavioral results for each task condition for all participants (Annotations ∗ means p < 0.05).

information transferring speed between brain regions. The
calculation of Eg was as follows:

Eg = 1

Ne

∑
i∈Nset

Ei = 1

Ne

∑
i∈Nset

∑
j∈Nset , j �=i d−1

i j

Ne − 1
(8)

F. Statistical Analysis

Two-way repeated-measures ANOVA (RANOVA, Task
load × Task type) was applied to test the effects of mental
workload and information types on behavior metrics and
the rationality of the experiment. To explore the correlations
between microstate metrics and mental workload, Pearson
correlation coefficient between microstate metrics and mean
response time under different task conditions were calculated
after the analysis of RANOVA. RANOVA was also applied
on the brain network metrics of different frequencies and
microstates for all the tasks subsequently to get nodal and
global metrics that were significantly influenced by task load.
Post hoc paired test were carried out on the selected network
metrics and the significance level was set as p <0.05 after
Bonferroni correction. All the statistical analyses were carried
out by using IBM SPSS 22.0.

G. Classification

To further validate the effectiveness of the proposed method
and the selected microstate-functional-connectivity features
in discriminating mental workload, a 3-class classification
procedure for within-task and cross-task classification were
performed by employing a SVM classifier. Specifically, nodal
metrics, global metrics, and connectivity strength values that
changed significantly with mental workload were used as the
feature set. For within-task workload classification, a leave-
one-subject-out cross validation procedure (i.e., trained on
data from 15 of the participants and tested on the left one)
was adopted for each of the four tasks; and for cross-task
classification, data from three tasks were used as the training
set and the left one as testing set, which can also be called as
“leave-one-task-out cross validation” procedure. Classification
accuracy, sensitivity and specificity were then evaluated.

III. RESULTS

A. Behavioral Results

NASA-TLX Scores, Accuracy and Mean Response Time of
different tasks were shown in Fig. 3. As expected, subjective
scores in the four tasks increased with the task loads, whereas
the accuracy decreased and the response time became longer
significantly. RANOVA results revealed a main effect of task
load on NASA-TLX scores (p < 0.05). Multiple comparisons
showed that scores of tasks with different loads were signifi-
cantly different from each other (1-Back vs. 2-Back: p < 0.01,
2-Back vs. 3-Back: (p < 0.01) in all four tasks. There’s no
main effect of task type on NASA-TLX scores (p > 0.05)
and the interaction of the two factors was not significant (p >
0.05).

Consistent with NASA-TLX, significant differences in accu-
racy were found between different task loads, and no main
effect has been found on task type and the interaction. Con-
sidering the mean response time, significant differences were
found between different task loads (p < 0.01), and between
different task types (p < 0.01). The interaction effect of these
two factors was not significant (p > 0.05).

B. Microstate Dynamics

As shown in Fig. 4, six microstates labeled as MS A-F were
determined according to the cross-validation criteria, which is
highly consistent with the results of Custo [44]. In detail, the
topographies of the six microstates are as follows: MS A had a
left occipital to right frontal orientation, MS B was from right
occipital to left frontal, MS C had a symmetric frontocentral
to occipital regions, MS D was also symmetric, but with an
occipital to prefrontal orientation, MS E had a right parietal to
the superior temporal orientation, while the MS F originated
from the right parietal to the left temporal. The GEV of
these microstates in different tasks are as follows: Verbal task
(1-Back: 65.75 ± 1.39%, 2-Back: 65.86 ± 1.69%, 3-Back:
66.19 ± 1.69%), Object task (1-Back: 65.38 ± 1.50%,
2-Back: 66.49 ± 1.56%, 3-Back: 66.14 ± 1.72%), Spa-
tial (Verbal) task (1-Back: 65.35 ± 1.76%, 2-Back: 64.49 ±
1.99%, 3-Back: 64.65 ± 1.77%), Spatial (Object) task
(1-Back: 65.15 ± 1.68%, 2-Back: 64.40 ± 1.75%, 3-Back:
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Fig. 4. Topographies of the six global microstates classes across task
types, task loads and participants.

TABLE I
CORRELATION BETWEEN MICROSTATE METRICS AND RESPONSE TIME

65.33 ± 1.84%). Results of TANOVA showed that there’s no
difference of microstate among different tasks.

Statistical analyses on microstate metrics showed that
Occurrence of all the microstates except MS E, the Duration
of MS A and MS C, as well as the Coverage of MS A,
MS C, and MS F were significantly affected by task loads (p
< 0.05). Significant effects of task type on all these metrics
were observed (p < 0.05). To further explore the relationship
between microstate metrics and mental workload in the four
tasks, Pearson correlation coefficient between the microstate
metrics and the mean response time of participants were
carried out, which can be seen in Table I. It can be known from
Table I that all the metrics of MS A, Occurrence and Coverage
of MS E in Verbal and Spatial (Verbal) tasks, and all the
metrics of MS F in Verbal tasks showed a negative correlation
with the mean response time significantly. Occurrence and
Coverage of MS C also showed a negative correlation with
the mean response time in all tasks except the Spatial (Object)
task. Occurrence and Coverage of MS D in Object task was
positively correlated with mean response time.

C. Nodal Properties

Fig. 5 (A) showed the distribution of core nodes in different
microstates in the four tasks respectively. It can be seen that
91.14% (average of Theta and Alpha bands) of the core nodes
were found in MS C, MS D, and MS F (specifically, MS C:
26.58%, MS D: 24.05%, MS F:40.51%) in Verbal task, and
90.68% of the core nodes were found in MS B, MS C, MS D,
and MS F (specifically, MS B: 31.06%, MS C: 16.15%, MS D:

27.33%, MS F:16.15%) in Spatial (Verbal) task. The core
nodes in Object and Spatial (Object) tasks showed an even
distribution in the 6 microstates.

The distribution of core nodes in different brain regions in
the four tasks was shown in Fig. 5 (B). It was found that about
90% (average of Theta and Alpha bands) of nodes existed
in the Frontal, Central, and Parietal Cortex in all four tasks.
Specifically, in Verbal task, number of core nodes in Frontal
accounts for 44.04% and Central 28.03%, Parietal 20.67%,
respectively; in Object task, Frontal 27.08%, Central 33.39%,
Parietal 30.55%; in Spatial (Verbal) task, Frontal 23.26%,
Central 37.02%, Parietal 32.30%, and in Spatial (Object) task,
Frontal 28.13%, Central 30.48%, Parietal 30.90%. In all these
nodes, the degrees of node FC6 from MS C, node FPz, F1,
FC3, FC1, P4 from MS D, node Fz, F2, FCz and FC2 from
MS F in Theta band brain network as well as node Fz,
FC1 from MS D, node Fz, F2, FCz from MS F in Alpha
band brain network (totally 15 core nodes) were significantly
affected by task loads in all the four tasks. Mean distribution
in Microstates and Brain Regions (across the four tasks) were
presented in Fig. 5 (C).

D. Connectivity Strength

In a similar way, connectivity that varied significantly with
mental workload in each task were obtained firstly, then the
connectivity that affected by mental workload in all the four
tasks were selected, which resulted in 68 pairs of connectivity
mainly distributed in MS B, MS C and MS D (Fig. 6, MS B:
29 pairs, MS C: 20 pairs and MS D: 16 pairs respectively) in
total. Specifically, connectivity in MS B was mainly located in
the Frontal area (account for 41.38%) and the Frontal-Parietal
area (account for 27.59%); connectivity in MS C were mainly
located in the Frontal-Central (account for 50%) and Parietal
area (account for 45%); connectivity in MS D mainly located
in the Frontal-Parietal area (account for 68.75%); connectivity
in MS E and MS F located in the Frontal-Central area.

E. Global Properties

Fig. 7 showed the characteristic path length, mean cluster-
ing coefficient, and global efficiency of brain networks with
different frequency bands and different microstates in the four
tasks. RANOVA showed that with the increment of task load,
the characteristic path length of MS D network in both Theta
and Alpha bands decreased significantly, whereas the mean
clustering coefficient of MS C and MS D network in both
frequency bands, as well as the global efficiency of MS C
network in Alpha band and MS D network in both frequency
bands increased significantly. There’s no significant effect of
task type on all the metrics mentioned above (p > 0.05).

To further explore the changes of global metrics of func-
tional connectivity networks with mental workload, One-way
ANOVA (Factor: task load) was utilized in each task. Post hoc
test results showed that in all the four tasks, the MS D network
in both frequency bands tended to have shorter characteristic
path length and higher global efficiency when the task load
increased. It should be noticed that in the Object task, with
the increment of mental workload, the Cp decreased firstly
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Fig. 5. Core nodes distributions in microstates and brain regions.

Fig. 6. Connectivity with significant effects of task load in all the tasks.

and then increased slightly, and the Eg increased firstly and
then decreased slightly, whereas there’s no difference between
2-Back and 3-Back condition (1-Back vs. 2-Back: p < 0.05,
1-Back vs. 3-Back: p < 0.05, 2-Back vs. 3-Back: p > 0.05).

F. Classification Performance

Nodal metrics, global metrics and the connectivity strength
that varied significantly with mental workload in all the four
tasks were used in the classification, which included degree
of 15 core nodes, 68 connectivity strength and 9 global
metrics. Table II showed the classification performance of
these features in discriminating mental workload both in
within-task and cross-task scenario. In detail, an averaged
95.8% accuracy for within-task classification and 80.3% for
cross-task classification were achieved. The comparison of the
proposed method with state-of-the-art methods was shown in
Table III.

IV. DISCUSSION

The accurate evaluation of cross-task mental workload
based on physiological signals such as EEG remains unsolved.
Change of dynamic functional connectivity properties with
mental workload in different tasks were explored by designing
mental workload tasks of different information types and
using a dynamic functional connectivity analysis method based
on EEG microstate analysis in this paper. Behavior results
showed that the experiments designed in this paper can evoke

TABLE II
WITHIN AND CROSS TASK CLASSIFICATION PERFORMANCE OF THE

PROPOSED METHOD

different mental workload levels of participants effectively.
Six microstates were determined to describe the EEG activ-
ities under tasks according to the CV criteria, which was
highly consistent with that of Custo’s [44]. Results showed
that the microstate parameters were significantly affected by
mental workload levels, however the types of information
to be dealt with had a greater impact on the microstate
parameters, i.e., variation of microstate parameters with mental
workload in different tasks differs from each other. Analysis
of nodal metrics of brain network under different microstates
showed that the degree of nodes and connectivity strength
in Frontal-Parietal network changed significantly with mental
workload. Among these, the degree of 15 nodes and strength
of 68 pairs of connectivity changed with mental workload
in a consistent way in all four tasks, which may have the
potential to be used in cross-task mental workload evaluation.
Analysis of global metrics of brain network showed that with
the increment of mental workload, characteristic path length
of MS D decreased, whereas global efficiency of MS D
increased significantly in all the four tasks, which may reflect
that the information transfer efficiency was strengthened in
the cognitive control network of brain while dealing with
high mental workload tasks. Further, the effectiveness of
the proposed method and selected features in discriminating
mental workload was validated by using a SVM classifier,
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Fig. 7. Global metrics of functional connectivity networks with different microstates and frequency bands in each task (∗ means p < 0.05 and ∗∗
means p < 0.01).

TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART STUDIES

an average accuracy of 95.8% for within-task and 80.3% for
cross-task workload classification were achieved. These results
may provide theoretical basis and practical references in the
accurate evaluation of cross-task mental workload.

A. Microstate Dynamic

Researches on neuroimaging have related the EEG
microstates with specific cognitive functions. This is because
different topographic maps of microstates are generated by
activation of different brain regions that are responsible for
specific cognitive functions [32], [44]. MS A was thought
to be associated with the phonological loop of brain, which
was in charge of the storage and control of verbal information
in the working memory model raised by Baddeley [45]. The
phenomenon that parameters of MS A decreased significantly
when workload raised in Verbal task may reflect that the
phonological loop of brain was dominated by the memory
load when dealing with verbal information. It should be
noticed that the parameters of MS A decreased significantly
with workload in Spatial (Verbal) task, in which the verbal
information was not set as target stimuli though. In other
words, the distracting stimulation of verbal information had
attracted the attention of participants [46]. The dynamics of

MS C reflected the aspects of attention, focus switching, and
reorientation of the dorsal attention network of brain [47], [48].
In this study, the Coverage and Occurrence of MS C decreased
when workload increased in all tasks except Spatial (Object)
task, which was a reflection of the brain’s adjustment to the
allocation of attention resources under different levels of task
loads. MS D, which originated from the posterior cingulate
cortex, is associated with the activities of the cognitive control
network of brain and is in charge of the advanced cognitive
activities of brain. It was found that the parameters of MS D
tend to be larger when mental workload increased in the
content-type (Verbal and Object) tasks, which reflected the
change of activation level of the cognitive control network
of brain when dealing with different intensities of information
flow. These results are consistent with the research of Milz [48]
that compared with the rest state, the parameters of MS C
decreased whereas that of MS D increased under cognitive
tasks. Custo [44] found that MS E mainly initiated from
the cerebellum region and was believed to associate with
the sensorimotor function of brain. The parameters of MS E
in all the four tasks decreased when the mental workload
increased (although the significant effect was found only in
Verbal and Spatial (Verbal) tasks), which may reflect the
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process of motion preparation after information memorizing
and processing of brain. MS F, which originated from the
anterior cingulate cortex, was considered as the default mode
network of brain [44]. The dynamics of MS F were thought
to be associated with the cognitive processing evoked by task
demands, whereas changes of MS F parameters were found
only in the Verbal task.

Results showed that the variation of microstate parameters
with mental workload in different tasks differs from each other
greatly. On the one hand, these results implied that different
cognitive functional networks were involved when the brain
was dealing with different information. On the other hand,
it can be inferred that the mental workload levels cannot
be effectively described by the microstate parameters and
therefore it’s not applicable in cross-task mental workload
evaluation.

B. Functional Connectivity

The change of node degree can describe the participation
of the node in information transferring in a network when
performing tasks, and the connectivity strength between nodes
was a reflection of information transfer efficiency within a
specific brain region or between different brain regions. The
distribution of nodes and connectivity that were significantly
affected by the mental workload in different microstates and
brain regions were analyzed in this study. Results showed that
nodes whose degree changed with mental workload signifi-
cantly (namely core nodes) were mainly distributed in MS
C, MS D and MS F (shown in Fig. 5), which reflected that
the attention network, the cognitive control network and the
default mode network were adjusted by the mental workload
in tasks with different information types [48]. The brain tended
to allocate more attention resources and change the efficiency
of information transfer in the cognitive control network to
deal with the pressure of higher information flow intensity.
It should be noticed that the connectivity strength between
nodes in the Frontal-Parietal regions of MS B network changed
significantly with mental workload in the four tasks though
the dynamic properties of MS B were not affected by mental
workload (Fig. 6). Considering the close association of MS B
with the visual system of brain, it may reflect the adjustment
of information flow intensity on the brain’s visual system.

Although the distribution of nodes whose degree was
affected by the mental workload differs in microstates, more
than 90% of these nodes existed in the Frontal-Parietal regions.
Among these nodes, the degree of 15 nodes changed signif-
icantly with task loads in all four tasks. In the same way,
68 pairs of connectivity changed significantly with task loads
in all four tasks. All the 15 nodes and the 68 pairs of
connectivity distributed in the Frontal-Parietal region, which
was consistent with the conclusion that the Frontal-Parietal
region of brain was involved in the process of working
memory [21], [49], [50]. Mencarelli [49] thought that the
dorsolateral prefrontal cortex (DLPFC) was involved in the
short-term storage and processing of information, and these
processes had nothing to do with the type of information.
However, more evidence from neuroimaging researches is

needed to prove these theories. Furtherly, considering that
the working memory process includes several periods (i.e.,
encoding, maintaining, retrieval and action periods) [5], [8],
clarifying which period was influenced by mental workload
the most might provide reliable references to the accurate
evaluation of mental workload. Despite these, the change
of connectivity strength in Frontal-Parietal regions of brain
reflected the increment or decrement of synergy between these
brain regions when dealing with tasks of different mental
workloads. These results may provide a valuable reference to
the accurate evaluation of cross-task mental workload.

Various researches indicated that the functional integration
of brain network tended to be strengthened to deal with the
pressure of higher information flow intensity when the mental
workload increased [21], [51]. This regularity was found in
the MS D network in both Theta and Alpha band in this
study (Fig. 7). Specifically, the brain network of both fre-
quency bands in the cognitive control network tended to have
shorter characteristic path length and higher global efficiency
under high mental workload tasks, which reflected that the
interaction between different brain regions was strengthened
and the efficiency of information transfer of the whole network
was promoted in the cognitive control network when the
mental workload increased [21]–[22], [51].The slight differ-
ence between 2-Back and 3-Back in the Object task may
be attributed to the constraint of working memory that the
response of human brain approached a plateau when task load
met or exceeded the capacity [26]. However, more experi-
ments and investigations should be carried out to validate this
hypothesis. Method that can accurately quantify the amount
of information needs to be developed too. Even though, these
results indicated that these metrics have the potential to be
applied in the cross-task mental workload evaluation.

In conclusion, several meaningful results were obtained
after analyzing the changes of functional connectivity prop-
erties with mental workload in cognitive tasks of different
information types, including: (1) Six microstate topographies
were obtained to describe the brain dynamics under tasks,
which were highly consistent with previous studies; (2) The
microstate parameters were significantly affected by mental
workload levels, however the types of information to be dealt
with had greater impact on the microstate parameters, i.e.,
variation of microstate parameters with mental workload in
different tasks differs from each other; (3) In the functional
connectivity network under different microstates, 15 nodes
and 68 pairs of connectivity from the Frontal-Parietal region
were found to be sensitive to mental workload in all four
tasks, which indicated that these node metrics have potential
to effectively evaluate mental workload in cross-task scenario;
(4) In all the four tasks, characteristic path length of MS D
decreased whereas the global efficiency increased when the
mental workload tended to be high, which implied that the
interaction between different brain regions was strengthened
and the efficiency of information transfer of the whole network
was enhanced; (5) By using a SVM classifier, an averaged
accuracy of 95.8% for within-task and 80.3% for cross-task
workload classification were achieved. These results can pro-
vide a theoretical basis for the accurate evaluation of cross-task



GUAN et al.: EEG BASED DYNAMIC FUNCTIONAL CONNECTIVITY ANALYSIS IN MWL TASKS 641

mental workload. Despite all these above, this research is still
limited to a pre-set task environment: all the four tasks were
designed by using the N-Back paradigm with the same form
but different types of information. However, in real human-
machine interaction tasks, the operators often face more com-
plex information types or need to complete more complicated
information processing. Therefore, the effectiveness of the
proposed metrics needs to be further verified when it is applied
to real scenarios.
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