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Lower-Limb Joint Torque Prediction Using LSTM
Neural Networks and Transfer Learning

Longbin Zhang , Davit Soselia, Ruoli Wang , and Elena M. Gutierrez-Farewik

Abstract— Estimation of joint torque during movement
provides important information in several settings, such
as effect of athletes’ training or of a medical interven-
tion, or analysis of the remaining muscle strength in a
wearer of an assistive device. The ability to estimate joint
torque during daily activities using wearable sensors is
increasingly relevant in such settings. In this study, lower
limb joint torques during ten daily activities were predicted
by long short-term memory (LSTM) neural networks and
transfer learning. LSTM models were trained with mus-
cle electromyography signals and lower limb joint angles.
Hip flexion/extension, hip abduction/adduction, knee flex-
ion/extension and ankle dorsiflexion/plantarflexion torques
were predicted. The LSTM models’ performance in pre-
dicting torque was investigated in both intra-subject and
inter-subject scenarios. Each scenario was further divided
into intra-task and inter-task tests. We observed that LSTM
models could predict lower limb joint torques during various
activities accurately with relatively low error (root mean
square error ≤ 0.14 Nm/kg, normalized root mean square
error ≤ 8.7%) either through a uniform model or through ten
separate models in intra-subject tests. Furthermore, a trans-
fer learning technique was adopted in the inter-task and
inter-subject tests to further improve the generalizability of
LSTM models by pre-training a model on multiple subjects
and/or tasks and transferring the learned knowledge to a
target task/subject. Particularly in the inter-subject tests,
we could predict joint torques accurately in several move-
ments after training from only a few movements from new
subjects.

Index Terms— LSTM, inverse dynamics, time series, gen-
eralizability, transfer learning.

I. INTRODUCTION

JOINT torque is an important biomechanical parameter
as it provides essential information about neuromotor
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control mechanisms during movement [1], [2]. The ability
to predict joint torque is useful in numerous applications,
such as assessment of athletes’ training [3], [4], evaluation
of surgical outcomes [5]–[7], and incorporation in controller
design of active exoskeletons or prostheses [8]–[10]. Joint
torques during movements are commonly computed through
multi-body inverse dynamics, using 3D kinematics and ground
reaction force data collected in an instrumented motion lab.
While this approach is generally considered a gold standard
for computing joint torque, it requires a specialized lab,
marker-based biomechanical models of the body, and motions
performed over instrumented force transducers. This approach
has thus limited use in real-time joint torque estimates and in
any out-of-lab environments.

Electromyography (EMG)-driven neuromusculoskeletal
(NMS) modelling and deep learning have in recent years
become two dominant approaches of real-time joint torque
prediction based on EMG signal inputs [11]–[13]. In a recent
study, we compared ankle joint torques in gait and isokinetic
movements estimated from NMS models and from artificial
neural networks (ANNs) [14]. Our results suggested that
the ANN model was able to predict ankle torques more
accurately when trained on a varied set of trials. In that study,
however, EMG signals were only recorded in soleus, tibialis
anterior, and gastrocnemius medialis muscles; inputs were
thus limited to these three EMG signals along with ankle
joint kinematics, during only gait and isokinetic ankle joint
movements. Additionally, EMG-driven NMS models generally
require specific calibration procedures and construction of
complex relationships among different variables, such as
muscle excitation-activation, force-length, force-velocity, and
joint angle-musculotendon kinematics relationships. As a
result, using NMS models can be time- and labor-intensive.
Alternatively, deep learning models can provide an approach
to extract features on multiple levels of inputs and to predict
the complex relationships between inputs such as joint angles
and EMGs, and outputs such as joint torques, on a large and
varied set of trials.

Among deep learning models, long short-term mem-
ory (LSTM) networks have been reported as among the
most effective and robust for predicting time-series data
[15]–[18]. LSTM networks are capable of selectively remem-
bering patterns that represent a duration of time by adding
memory structure [19]. The memory structure can update the
information across time steps using gates to decide what to
remember, what to forget and what to output. Kim et al. [20]
used an LSTM network to estimate, with high agreement, both
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the torques and position of the wrist joint based on EMG
signals. Siu et al. [21] implemented an LSTM network to
estimate ankle joint torque based on EMG and accelerometer
signals during standing, walking, running, and sprinting. Their
results showed that prediction errors tended to increase with
locomotion speed, with the highest errors during sprinting and
the lowest during standing or walking. Despite the progress
of LSTM networks in joint torque prediction, there are few
studies in which torque is predicted in multiple lower extremity
joints and degrees of freedom (DOFs).

The generalizability of joint torque prediction models has
also been a matter of concern. In short, generalized mod-
els undergo a performance drop when tested with unseen
data from new and unpracticed circumstances. For example,
Su et al. [22] proposed an LSTM model to predict gait tra-
jectory and gait phase in multiple upcoming time frames,
and report that model performance dropped in inter-subject
tests. To overcome this limitation, transfer learning techniques
have been extensively studied to improve the generalizability
of LSTMs recently. Transfer learning is a machine learn-
ing technique that uses shared knowledge from previous
experience/tasks to boost performance in other different but
related tasks. A recent study by Soleimani et al. [23] proposed
a generative adversarial network with cross-subject (inter-
subject) knowledge transfer in human activity recognition.
They report that their proposed model outperformed other
state-of-the-art methods in more than 66% of experiments
with less data for training, and thus can be used for a pre-
trained model, applied on a new subject for whom it is not
possible to collect and label enough data to re-train the model.
By leveraging knowledge from multiple previous subjects,
a new neural network can be trained with good performance
using relatively few samples. However, the validity of the
approach has not been studied for predicting torque in multiple
joints and DOFs, nor across different subjects and daily
tasks.

The objectives of this study are thus threefold: (1) to pre-
dict hip flexor/extensor (F/E), hip abductor/adductor (Ab/Ad),
knee flexor/extensor and ankle dorsiflexor/plantarflexor (D/P)
torques using LSTM neural networks trained with EMG
and kinematics from single and from multiple movements;
(2) to evaluate the generalizability of the LSTM models
across subjects and tasks, and (3) to investigate whether a
transfer learning strategy would improve prediction perfor-
mance by making use of the knowledge learned from previous
experience.

II. METHODS

A. Data Collection

Eight non-disabled adults (4F/4M, (mean±SD) age 29±4
years; weight 65.2±17.8 kg; height 168.1±9.4 cm) partic-
ipated. All participants provided informed written consent.
Data collection was performed at the KTH MoveAbility Lab,
Stockholm, Sweden, and the study was approved by the
regional ethics committee (Dnr. 2020-02311). Each subject
was asked to perform ten types of dynamic trials: slow
walking, normal walking, fast walking, jump down from a

Fig. 1. (a) Marker and EMG sensor placement; (b) Kinematic model
based on captured marker positions.

15-cm stair, jump up to a 15-cm stair, vertical jump up,
land from vertical jump, squat, sit-to-stand and stand-to-sit.
The sequence of the movements was randomized. During
the experiments, each movement, or “task” as they are
referred to in the current study, was repeated at least ten
times.

1) EMG Data Collection and Processing: EMG signals were
recorded unilaterally using 13 EMG transmitters (aktos nano,
myon, Schwarzenberg, Switzerland). The selected leg was
randomized. Based on European recommendations for surface
EMG [24], surface EMG electrodes were placed (Fig. 1. (a))
on the soleus (SOL), peroneus longus (PL), tibialis anterior
(TA), gastrocnemius medialis (GM), gastrocnemius lateralis
(GL), rectus femoris (RF), vastus medialis (VM), vastus lat-
eralis (VL), biceps femoris (BF), semitendinosus (ST), glu-
teus maximus (GLMA), gluteus medius (GLME), and tensor
fasciae latae (TFL) muscles. EMG signals were recorded
at 1000 Hz, then band pass filtered (30-300 Hz), rectified, low
pass filtered (6 Hz), and normalized to the maximum processed
EMG value recorded across all trials.

2) Inverse Kinematics and Inverse Dynamics: A 3D motion
capture system (V16, Vicon, Oxford, UK) was used to record
the marker trajectories, which were placed according to the
CGM2.3 marker set protocol (Fig. 1. (a)) [25]. Marker posi-
tions were captured at 100 Hz. During a static trial, a rigid
segment model was created based on the captured marker data
(Fig. 1. (b)). Inverse kinematics was used to compute the joint
angles by solving a weighted root mean square problem to
minimize the distance between modeled and measured mark-
ers. Ground reaction forces (GRFs) were recorded at 1000 Hz
using three force plates (AMTI, MA, USA). Joint kinematics
and kinetics were low-pass filtered with a fourth-order zero-
lag Butterworth filter (6 Hz) [26]–[28]. Joint torques were
computed using inverse dynamics computations, by solving
the dynamic equations of motion [29] (Eq. (1))

M(q)q̈ + C(q, q̇) + G(q) + R(q)Fmt + Fe = 0 (1)

where q, q̇, q̈ are the vector of generalised position, veloc-
ity and acceleration, respectively; M(q) is mass matrix and
M(q)q̈ is a vector of inertial forces and torques; C(q, q̇)
is the vector of centripetal and Coriolis forces and torques;
G(q) is the vector of gravitational forces and torques; R(q)
is the matrix of muscle moment arms; Fmt is a vector of
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Fig. 2. Overview of joint torque prediction by LSTM neural networks. Hip
flexion/extension, hip abduction/adduction, knee flexion/extension, and
ankle dorsiflexion/plantarflexion joint torques were predicted through a
uniform model trained by multiple-tasks or through ten separate models
trained by one single task each. EMG signals and joint angles were
acquired from 3D motion analysis, pre-processed, then used as input
data for LSTM neural networks. For each LSTM neural network, the
time-series input data were transformed as time slices data. Each time
slice included five time steps and each time step had seventeen features
including thirteen muscle EMG signals and four joint angles. n LSTM
layers (n = 2 for single-task and n = 3 for multiple-tasks in the intra-
subject scenario; n = 3 for single-task and n = 4 for multiple-tasks in
the inter-subject scenario) were included, followed by a dense layer and
a dropout layer. Joint torques were predicted at the output layer.

musculotendon forces and R(q)Fmt is the vector of musculo-
tendon torques; Fe is the vector of external force and torques
(i.e. GRFs in this paper).

B. LSTM Neural Networks

LSTM neural networks were constructed to predict
joint torque with the same inputs that are used in an
EMG-driven NMS model, namely EMG signals and joint
angles (Fig. 2) [30]. The EMG signals and joint angles were
acquired from 3D motion analysis, pre-processed, then used
as input data for the LSTM neural networks. For each LSTM
neural network, the time-series input data were transformed
into time slice data. Each time slice included time steps,
and each time step had seventeen features, including thirteen
muscle EMG signals and four joint angles. n LSTM layers
(n = 2 for single-task and n = 3 for multiple-tasks in the intra-
subject scenario; n = 3 for single-task and n = 4 for multiple-
tasks in the inter-subject scenario) were included, followed by
a dense layer and a dropout layer. The dense layer obtained
the outputs from the LSTM layers to help with the regression
task—joint torque prediction, whereas the dropout layer was
used to prevent the neural networks from over-fitting [31].
Finally, the joint torques were predicted at the output layer.

C. Transfer Learning

To boost the prediction performance, a transfer learning
method (Fig. 3) was used in the inter-task/subject scenarios

Fig. 3. The LSTM neural network architectures with transfer learning in
inter-task and inter-subject tests. We extracted layers except the last two
from a pre-trained model (information from previous subjects or tasks,
O1,O2, . . . ,Op) and transferred it to the target model (Ot). In the target
model, we added one dense layer, one dropout layer, and one output
layer, then trained the new layers with the data from the target subject or
task.

to learn structural similarities by pre-training a model on
multiple subjects/tasks (O1, O2, . . . , Op) and transferring the
learned knowledge to a target task/subject. As described
by Molnar et al. [32] and Brownlee et al. [33], deep neural
networks learn high-level/complexity features in the hid-
den/middle layers that combine the low-level features extracted
from the input layer, and layers close to the output layer
interpret the extracted features in the context of a regres-
sion/classification task. Therefore, in transfer learning tech-
niques, it is generally recommended to replace the layers close
to the output layer, then re-use the pre-trained model and
integrate it into entirely new models. Inspired by this approach,
in this study, we extracted layers except the last two in the
pre-trained model and transferred them to the model of target
subjects or task (Ot ). In the target model, we added one dense
layer, one dropout layer and one output layer, then trained
the weights of the new layers and fine-tuned the weights of
other layers, with the data from the target task/subject. This
type of fine-tuning technique is an optional step in transfer
learning and can potentially achieve meaningful improvements
by incrementally adapting the pre-trained features to the new
data [34].

D. Hyper-Parameter Tuning for LSTM Neural Networks

The hyper-parameters of the LSTM models were determined
by “coarse-to-fine” random search [35]. The batch size was
set to 50. A Xavier weight with zero bias initializer was
chosen. Two LSTM layers were used for the single-task cases
and three LSTM layers for the multiple-tasks cases in intra-
subject tests. Three LSTM layers were used for the single-
task cases and four LSTM layers for the multiple-tasks cases
in the inter-subject test. In the dense layer, 64 neurons were
used for the single-task case and 128 neurons for the multiple-
tasks case. The dropout rate was set to 0.4. Each LSTM layer
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Fig. 4. The training and testing data for intra- and inter- subject
(S1,S2, . . . ,S8) scenarios. Each scenario was further divided into intra-
task (within movements m1,m2, . . . ,m10) and inter-task (between move-
ments) tests. For each test, different cases were studied using different
collected movements to train the models. Four cases were included in
intra-subject scenario: uniform models within movements (UWintra),
separate models within movements (SWintra), uniform models between
movements (UBintra), uniform models between movements with transfer
learning (UBTintra). Five cases were included in inter-subject scenario:
uniform models within movements (UWinter), separate models within
movements (SWinter), uniform models within movements with transfer
learning (UWTinter), separate models within movements with transfer
learning (SWTinter), uniform models between movements with trans-
fer learning (UBTinter).

has 50 neurons, and the tanh activation function was used.
The mean square error between predicted and experimentally
measured joint torque is used as the loss function during the
training. The Adam optimizer was adopted with a default
learning rate, 10−3. In the transfer-learning approach, the
learning rate was tuned to 10−4 and 10−5 for fine-tuning.
The optimum model was trained for 4000 epochs with an
early stop if the prediction performance did not increase in
the consecutive 50 epochs.

E. Evaluation Protocol

The lower limb joint torque prediction performance of the
LSTM models was investigated in intra- and inter- subject

scenarios. Each scenario was further divided into intra-task
(within movements) and inter-task (between movements) tests.
In addition, the benefit of adding transfer learning was also
investigated across tasks and subjects (Fig. 4). For each test,
different cases were studied using different collected move-
ments to train the models. For more detailed illustrations of
all cases, see Fig. 4).

1) Intra-Subject Scenario:
• Uniform models within movements (U Wintra ): trained

models using data from all ten movements. Contains
seven layers.

• Separate models within movements (SWintra ): trained
separate models using data from each movement sepa-
rately. Contains six layers.
Both U Wintra and SWintra were trained on 80% of the
data and tested on the remaining 20%.

• Uniform models between movements (U Bintra): trained
models using data from multiple movements except one
(leave-one-out) and tested on the remaining “new” move-
ment. Contains seven layers.

• Uniform models between movements with trans-
fer learning (U BTintra): used pre-trained model from
U Bintra method as prior information to a new movement;
then re-trained models using data from the new movement
and tested on the remaining “new” movement. Contains
eight layers.

2) Inter-Subject Scenario:
• Uniform models within movements (U Winter ): trained

models using data from all ten movements; The models
were trained from multiple subjects except one and tested
on a remaining “new” subject. Contains eight layers.

• Separate models within movements (SWinter ): trained
separate models using data at each movement separately.
The models were trained from multiple subjects except
one and tested on a remaining “new” subject. Contains
seven layers.

• Uniform models within movements with transfer
learning (U W Tinter ): used pre-trained models from
U Winter method as prior information to new subject; then
re-trained models using data from the same movements
of new subject and tested on the remaining trials of the
same movements of “new” subject. Contains nine layers.

• Separate models within movements with transfer
learning (SW Tinter ): used pre-trained models from
SWinter method as prior information to new subject; then
re-trained models using data from the same movements
of new subject and tested on the remaining trials of the
same movements of “new” subject. Contains nine layers.

• Uniform models between movements with transfer
learning (U BTinter ): similar to U W Tinter method, but
only used data from five movements of the new subject
to re-train the models, and tested on the remaining
movements of the “new” subject. Contains nine layers.

Prediction accuracy was considered high when prediction
error was low. The prediction error of each LSTM model
was computed as the root mean square error (RMSE) between
predicted (by the LSTM) and measured (calculated by inverse
dynamics) joint torques, normalized by body mass. In addition,
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Fig. 5. Violin plots [37] depicting the distributions of RMSEs between
predicted and measured joint torque (normalized by body mass) across
subjects during ten movements in the intra-subject scenario, with four
cases: uniform models within movements (UWintra), separate mod-
els within movements (SWintra), uniform models between movements
(UBintra), and uniform models between movements with transfer learning
(UBTintra). ∗ indicates a significant difference between two cases based
on a Wilcoxon signed-rank test with Bonferroni correction for multiple
comparisons.

Wilcoxon signed-rank tests with Bonferroni correction for
multiple comparisons [36] were used to identify prediction
error differences between torques predicted via the differ-
ent models (p < 0.05 significance level). Normalized root
mean square error (NRMSE) was also computed as RMSE
divided by the range of measured joint torque during different
movements. The RMSE and NRMSE were computed for each
subject and then the median value was obtained across eight
subjects.

III. RESULTS

A. Intra-Subject Tests

Overall, the prediction error was similar between uniform
U Wintra and separate SWintra models within movements
(Fig. 5 and Fig. 6) during all ten movements. However, the
prediction errors on uniform models between movements
U Bintra were considerably higher than those from U Wintra

and SWintra in most movements, i.e., jump down from a stair,
jump up to a stair, vertical jump up, land from vertical jump
and squat. Among the U Wintra , SWintra and U Bintra three
cases, the predicted torques (Fig. 7) all agreed well with the
measured torques in walking movements, and predictions from
within movements models (U Wintra and SWintra ) generally
agreed better than from between movements models (U Bintra )
in other movements.

The trained models in U Wintra and SWintra

(Fig. 5 and Fig. 6) predicted joint torques accurately with
relatively low error (RMSE ≤ 0.14 Nm/kg, NRMSE ≤ 8.7%),

Fig. 6. Violin plots depicting the distributions of normalized root mean
square error (NRMSE) between predicted and measured joint torques
across subjects during ten movements in the intra-subject scenario, with
four cases: uniform models within movements (UWintra), separate mod-
els within movements (SWintra), uniform models between movements
(UBintra), and uniform models between movements with transfer learning
(UBTintra). The NRMSE is defined as RMSE shown as % of measured
joint torque during this movement.

especially in walking movements (hip F/E (RMSE ≤
0.08 Nm/kg, NRMSE ≤ 3.6%), hip Ab/Ad (RMSE ≤
0.07 Nm/kg, NRMSE ≤ 4.9%), knee F/E (RMSE ≤
0.07 Nm/kg, NRMSE ≤ 5.7%) and ankle D/P (RMSE ≤
0.07 Nm/kg, NRMSE ≤ 4.1%)). Prediction error in U Bintra

(RMSE ≤ 0.29 Nm/kg, NRMSE ≤ 18.4%) was higher
than in U Wintra and SWintra . The trained models in
U Bintra have relatively higher prediction error in hip F/E
(RMSE: 0.18 Nm/kg, NRMSE: 13.6%), hip Ab/Ad (RMSE:
0.10 Nm/kg, NRMSE: 18.2%) and ankle D/P (RMSE:
0.13 Nm/kg, NRMSE: 18.4%) during squat than in other
movements.

Among the joint torque prediction in different movements
of all cases (Fig. 6), models in walking movements have
relatively lower error (NRMSE ≤ 9.2%).

When trained with U BTintra with transfer learning, trained
models overall better predicted joint torques than in U Bintra ,
i.e. with a relatively low normalized error (RMSE ≤
0.17 Nm/kg, NRMSE ≤ 9.1%, Fig. 5 and Fig. 6) and better
agreement with measured torques (Fig. 7).

B. Inter-Subject Tests

When testing on uniform U Winter and separate SWinter

models within movements (Fig. 8 and Fig. 9), the pre-
diction errors were relatively higher (U Winter : RMSE ≤
0.24 Nm/kg, NRMSE ≤ 21%; SWinter : RMSE ≤ 0.25 Nm/kg,
NRMSE ≤ 19.5%) than in the intra-subject scenario. In par-
ticular, prediction errors were higher in hip Ab/Ad (NRMSE
U Winter : 19.4%; SWinter : 19.5%) and ankle D/P moments
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Fig. 7. one example trial of measured (computed by inverse dynamics) and estimated joint torque via models during ten movements in intra-subject
scenario, with four cases: uniform models within movements (UWintra), separate models within movements (SWintra), uniform models between
movements (UBintra), and uniform models between movements with transfer learning (UBTintra).

Fig. 8. Violin plots depicting the distributions of RMSEs between predicted and measured joint torque (normalized by body mass) across subjects
during ten movements in intra-subject scenario with five cases: (a) separate models within movements (SWinter) and separate models within
movements with transfer learning (SWTinter), (b) uniform models within movements (UWinter), uniform models within movements with transfer
learning (UWTinter) and uniform models between movements with transfer learning (UBTinter). ∗ indicates a significant difference between two cases
based on a Wilcoxon signed-rank test with Bonferroni correction for multiple comparisons.

(U Winter : 21%; SWinter : 16.5%) during squat, hip F/E
(U Winter : 15.1%; SWinter : 12.7%), and hip Ab/Ad (U Winter :
16.8%; SWinter : 17.5%) during stand-to-sit, as well as hip F/E:
(U Winter : 13.4%; SWinter : 13.8%), and hip Ab/Ad (U Winter :
16.7%; SWinter : 18.7%) during sit-to-stand than in other joint
torques during different movements.

Compared to SWinter , SW Tinter (that used transfer
learning) predicted joint torques with significantly lower

error (hip F/E: RMSE ≤0.13 Nm/kg, NRMSE ≤ 8.0%;
hip Ab/Ad: RMSE ≤0.08 Nm/kg, ≤ 7.8%; knee F/E:
RMSE ≤0.11 Nm/kg, ≤ 5.0%; ankle D/P: RMSE ≤
0.14 Nm/kg, ≤ 9.4%, Fig. 8 (a)).

Compared to U Winter (without transfer learning),
U W Tinter and U BTinter (both with transfer learning)
predicted joint torques with significantly lower errors
(U W Tinter : RMSE ≤0.15 Nm/kg, NRMSE ≤ 10.1%;
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Fig. 9. Violin plots depicting the distributions of normalized root mean
square error (NRMSE) between predicted and measured joint torques
across subjects during ten movements in the inter-subject scenario, with
five cases: uniform models within movements (UWinter), separate models
within movements (SWinter), uniform models within movements with
transfer learning (UWTinter), separate models within movements with
transfer learning (SWTinter), and uniform models between movements
with transfer learning (UBTinter). The NRMSE is defined as RMSE shown
as % of measured joint torque during this movement.

U BTinter : RMSE ≤0.14 Nm/kg, NRMSE ≤ 9.9%) and
better agreement with measured torques (Fig. 10). Prediction
errors between U W Tinter (re-trained with all movements)
and U BTinter (re-trained with a subset of five movements)
did not significantly differ (Fig. 8 (b)).

IV. DISCUSSION

In this study, ankle and knee joint torques in the sagittal
plane, as well as hip joint torques in both sagittal and
frontal planes during ten different motions were predicted
using LSTM neural networks and transfer learning. We eval-
uated the generalizability of LSTM models to predict torques
across tasks and subjects and studied whether generalizability
improved with the adoption of a transfer learning technique,
which takes advantage of information extracted from pre-
vious tasks and/or subjects. We observed that the models
predicted lower limb joint torques during various activities
accurately through a uniform model trained by multiple tasks
or through ten separate models trained by a single task each,
in intra-subject tests. The joint torque prediction performance
dropped when generalizing the models across tasks and sub-
jects. To overcome this, we adopted transfer learning, which
significantly improved the prediction accuracy and thus the
generalizability of the LSTM models. Particularly in the inter-
subject tests, we could predict joint torques accurately with
only a few movements from “new” subjects. Our findings,
particularly those relating to how to train generalizable mod-
els with inputs from few movements, can provide useful

guidelines for training models when only minimal amounts
of movement input are feasible, and thus holds great promise
in applications such as incorporation in control strategy design
of active prostheses or exoskeletons, real-time assessment of
athletes training and evaluation of surgical outcomes.

Among ANNs, LSTM neural networks have frequently been
used to predict joint torques and other sequential data in bio-
mechanics applications, as an alternative model-free method to
EMG-driven NMS models to map EMG signals to joint torque
for real-time applications. Compared to NMS models, LSTM
networks map the relationship of EMG to joint torque without
explicitly modelling the relationship of different physiological
variables, such as muscle excitation-activation, muscle force-
length, and joint angles-musculotendon kinematics relation-
ships. In addition, an NMS model is usually subject-specific,
and it is usually recommended to calibrate it with experi-
mental data to obtain subject-specific NMS parameters, such
as optimal fiber length and tendon slack length, after which
joint torque can be further estimated with the subject-specific
model [9], [30], [38]. Since NMSs are subject-specific, few
studies have investigated their generalizability across subjects.
If, however, these subject-specific relationships are sought,
then an NMS model-based approach is clearly more appro-
priate. In our previous study [14], we estimated ankle joint
torques in gait and isokinetic movements using both the NMS
model and ANN-based approaches. Our results suggested that
the ANN model was able to deliver a better prediction of
ankle joint torques when it could be trained on a varied set
of motion trials. It is therefore useful to define guidelines that
maximize the prediction accuracy if deep learning algorithms
are to be used to predict joint torques. In the current paper,
we constructed different LSTM networks in different cases to
predict joint torques in multiple joints of anatomical planes
and investigated their generalizability across movements and
subjects.

The LSTM models predicted multiple joint torques accu-
rately with relatively low error (RMSE ≤ 0.14 Nm/kg,
NRMSE ≤ 8.7%), both through a uniform model trained by
multiple tasks and through ten separate models trained by a
single task each, in intra-subject tests (U Wintra and SWintra ,
Fig. 5). Both of these models are tested with the unseen,
“new” trials of the same movement types that were used for
training. Generally, deep learning can be expected to show
good prediction performance when the same motions are used
to train and test the model. The constructed LSTM model
with multiple layers and neurons are capable of selectively
remembering patterns for a duration of time and could extract
the complex nonlinear relationship between EMG signals and
joint torques, and thus accurately predict torques in unseen
trials of the same movement types, regardless of whether
the network consists of a uniform model or of ten separate
models. A recent study by Xiong et al. [39] also predicted hip
F/E, hip Ab/Ad, knee F/E and ankle D/P torques accurately
(NRMSE≤ 7.9%) using a feed forward ANN with 5-6 EMG
signals. However, the only movements tested were walking
at four different speeds, and models were only investigated
in the intra-subject scenario. In our study, we predicted
torques with better accuracy in similar scenarios (in walking
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Fig. 10. Example results in one subject of measured (through inverse dynamics) and predicted joint torques in hip flexion/extension, hip
abd/adduction, knee flexion/extension, and ankle dorsi/plantarflexion, during all ten movements inter-subject scenario with three cases: uniform
models within movements (UWinter), uniform models within movements with transfer learning (UWTinter) and uniform models between movements
with transfer learning (UBTinter).

movements, hip F/E NRMSE≤ 3.6%; hip Ab/Ad NRMSE≤
4.9%; knee F/E NRMSE≤ 5.7%; and ankle D/P NRMSE≤
4.1%), and evaluated their generalizability across subjects and
across ten movements/tasks. Another study about EMG-driven
NMS model proposed by Pizzolato et al. [30] was able to
predict knee F/E and ankle D/P torques accurately (RMSE
0.18 Nm/kg and 0.24 Nm/kg, respectively) but predicted hip
F/E torques somewhat less accurately (RMSE 0.39 Nm/kg)
in walking movements. Specifically, it underestimated the hip
flexion moment in the second half of stance phase, likely
attributable to the inability to acquire surface EMG data on
the iliopsoas, a deep muscle. In our study, there is no apparent
different prediction accuracy between joints of LSTM models
in walking movements (RMSE hip F/E ≤0.08 Nm/kg; hip
Ab/Ad ≤ 0.07 Nm/kg; knee F/E ≤0.07 Nm/kg; and ankle
D/P ≤ 0.07 Nm/kg). In the same study by Pizzolato et al. [30],
they further proposed an EMG-assisted NMS model that
includes a static optimization to synthesize EMG signals that
could not be acquired experimentally, and allows muscle exci-
tation adjustments that better track joint torque. This approach
improved the prediction accuracy in torques in which deep
muscle activity is prominent. While the prediction accuracy in
the EMG-assisted model was improved, especially at the hip
(RMSE 0.07 Nm/kg in hip F/E), the optimization procedure
can be time-consuming, thus not currently suitable for real-
time applications.

As could be expected, the LSTMs’ generalizability was not
good in inter-task tests of the intra-subject scenario (U Bintra ,
Fig. 5) and intra-task tests of the inter-subject scenario
(U Winter and SWinter , Fig. 8) when transfer learning was
not included. Without transfer learning, LSTM models were
trained with only information from previous subjects/tasks
but none from the new participant/tasks. This performance
drop was not surprising, as muscle coordination patterns may
be quite different between multiple tasks and subjects [40],

[41]. Traditional neural networks generally work well under
a common assumption that the training and testing data
have the same feature space and distribution. However, when
distribution differs, the prediction results are likely to degrade
due to the differences in domain data. As an example in
inter-task tests, relatively high prediction errors were observed
during squat (NRMSE ≤ 18.4%, U Bintra , Fig. 6) but lower
errors were found during walking movements (NRMSE ≤
9.2%, U Bintra , Fig. 6). We attribute this finding to the larger
discrepancy in muscle coordination patterns during in squat
vs. in other motions, compared to the smaller discrepancy
in muscle coordination patterns during gait at one speed
vs. those in gait at other speeds. It is important to note
that in inter-subject tests, higher prediction errors were also
observed in squats. Different squat techniques may be used
by different subjects. One previous study by Slater et al. [42]
demonstrated that differently aligned squats in the frontal and
sagittal planes result in significantly different muscle activation
patterns. It is therefore possible that, due to the different
muscle coordination patterns across some tasks and subjects,
it may not be possible to achieve good generalizability without
at least some training data from a new subject or task.

To improve the generalizability of neural networks, transfer
learning is a popular technique for cross-subject or cross-
task validation. Transfer learning is inspired by the fact
that humans can learn new tasks more quickly if they have
learned similar knowledge previously, especially with limited
data [43]. A recent study by Kian et al. [44] stated that the
effectiveness of EMG-driven NMS model calibration is task-
dependent and recommends using a broad range of contrasting
tasks to produce the most accurate and physiologically relevant
musculotendon and EMG-to-activation parameters. However,
for persons with disabilities, it would quite likely be very
difficult to perform a broad range of tasks. It is especially
beneficial for situations in which a large amount of data
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would be required, and when collecting such data on a new
subject/movement would be expensive, time-consuming, and
possibly difficult, for instance in persons with motor disabili-
ties. When transfer learning was implemented, the joint torque
prediction performance was significantly improved in all cases.
For instance, the maximum prediction errors in squat in
inter-task (NRMSE 18.4%, U Bintra , Fig. 6) and inter-subject
(21.0%, U Winter and SWinter , Fig. 9) scenarios reduced
(8.7%, (U BTintra , Fig. 6) and 9.6% (U W Tinter , SW Tinter ,
and U BTinter , Fig. 9), respectively) when transfer learning
was included. It is important to note that the generalized model
could predict joint torques with similar accuracy in inter-
subject U W Tinter (re-trained on all movements) and U BTinter

(re-trained on a subset of 5 movements), indicating that the
model’s generalizability when trained on fewer movement
types is not compromised. This is likely attributable to the
shared similarities in the pre-trained model based on previous
subjects and tasks, which was used as the starting point to
train a new model for the new subject. The starting point would
influence the performance of the trained neural network model
wherein initial weights that are closer to the target solution
will result in better network prediction performance [45], [46].
In short, with the incorporation of transfer learning in inter-
subject/task scenarios, LSTM models can predict joint torques
accurately with less effort from new subjects, which increases
their feasibility when acquiring a large amount of training data
may not be possible.

Though we only investigate hip, knee and ankle sagittal
plane moments and hip frontal plane moments in the current
study, our workflow could be further applied to other joints
and degrees of freedom in different applications. For example,
predicting hip internal/external rotator torques during a change
in direction while walking [47] and knee abductor/adductor
torque during an evaluation of a patient-specific cost func-
tion [7] or a real-time assessment to prevent anterior cruciate
ligament injury [48] could all be of interest.

There are some limitations in this study. The major outcome
measurement by which we determine prediction accuracy was
computed errors of predicted to the ’ground truth’ torques from
experimental motion capture and inverse dynamics. While low
error should certainly be a goal in a prediction model, the
timing of prediction inaccuracies can have large implications
on exoskeleton control; prediction inaccuracies during, for
example, swing vs. stance may have different practical conse-
quences. Furthermore, inaccurately predicted torques will alter
the user’s dynamics, further complicating the task of creating
a stable gait. These should be topics of future studies before
realistic implementation can be achieved. We predicted joint
torques using only LSTM neural networks. While our aim
was to predict joint torques using different trained LSTM
models and to improve and evaluate their generalizability
across tasks and subjects, other types of neural networks may
have had even higher prediction accuracy, which warrants
further investigation. Also, in U BTinter , we only use five
movements from a new subject to re-train the LSTM model
for predicting unseen movements of that subject. A subsequent
sensitivity analysis could be performed to determine how
many and which movements are optimal for re-training the

model, more specifically to increase feasibility without sacri-
ficing prediction accuracy. Furthermore, one could consider
standardizing the chair height in relation to each subject’s
height during sit-to-stand and stand-to-sit, and could also take
into account different subjects’ squat techniques, as they can
result in different muscle activation patterns [42]. Also, the
subjects enrolled in this study were relatively homogeneous
with regards to age and overall health. Further studies using
a subject group with a wider spread of both age and of
neuromuscular function is warranted.

V. CONCLUSION

In this paper, we predicted ankle and knee joint torques in
the sagittal plane, and hip joint torques in both sagittal and
frontal planes during several different motions using LSTM
neural networks and transfer learning. Our results illustrate
that both a uniform model trained on all ten movements and
ten separate LSTM models trained on one movement each
could predict lower limb joint torques accurately with low
prediction error in intra-subject scenarios where both of these
models were tested with the unseen, “new” trials of the same
movement types that were used for training. Adopting transfer
learning further improved the LSTMs’ generalizability across
tasks and subjects, even if re-trained with a smaller subset
of movements from the “new” subject. Detailed information
relating to how to construct LSTM models with good general-
izability can provide useful guidelines to train neural networks
with minimal data in different circumstances, and thus holds
great promise in applications ranging from exoskeleton control
to real-time assessment of interventions.
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