E MB IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

—o0——

Activities of Daily Living-Based Rehabilitation
System for Arm and Hand Motor Function
Retraining After Stroke

Xinyu Song
Hong Wang

Abstract— Most stroke survivors have difficulties com-
pleting activities of daily living (ADLs) independently.
However, few rehabilitation systems have focused on
ADLs-related training for gross and fine motor function
together. We propose an ADLs-based serious game reha-
bilitation system for the training of motor function and
coordination of both arm and hand movement where
the user performs corresponding ADLs movements to
interact with the target in the serious game. A multi-
sensor fusion model based on electromyographic (EMG),
force myographic (FMG), and inertial sensing was devel-
oped to estimate users’ natural upper limb movement.
Eight healthy subjects and three stroke patients were
recruited in an experiment to validate the system’s effec-
tiveness. The performance of different sensor and classi-
fier configurations on hand gesture classification against
the arm position variations were analyzed, and qual-
itative patient questionnaires were conducted. Results
showed that elbow extension/flexion has a more signifi-
cant negative influence on EMG-based, FMG-based, and
EMG+FMG-based hand gesture recognition than shoul-
der abduction/adduction does. In addition, there was no
significant difference in the negative influence of shoul-
der abduction/adduction and shoulder flexion/extension on
hand gesture recognition. However, there was a significant
interaction between sensor configurations and algorithm
configurations in both offline and real-time recognition
accuracy. The EMG+FMG-combined multi-position classi-
fier model had the best performance against arm position
change. In addition, all the stroke patients reported their
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ADLs-related ability could be restored by using the system.
These results demonstrate that the multi-sensor fusion
model could estimate hand gestures and gross movement
accurately, and the proposed training system has the poten-
tial to improve patients’ ability to perform ADLs.

Index Terms—Upper limb rehabilitation, ADLs, natural
movement estimation, EMG, FMG, IMU, serious game.

|. INTRODUCTION

TROKE is a leading cause of death and long-term dis-

ability [1]. Seventy-five percent of stroke survivors suffer
from upper limb dysfunction, which limits their performance
in daily life [2]. Effective rehabilitation should be long-
term, repetitive, and intensive for stroke patients’ neurological
restoration [3], [4], [5]. Normally, patients in acute and suba-
cute stages stay in the hospital, receiving conventional rehabil-
itation such as occupational therapies (OT) with the assistance
of therapists, which is labor-intensive and consumes medical
resources. Patients in the chronic stage should also continue
effective upper limb motor function training in accordance
with doctors’ advice even after being discharged from the
hospital. However, it is difficult for outpatients to persist due to
boredom and lack of motivation [6]. In addition, patients may
rely on the usage of the unaffected side to complete activities
of daily living (ADLs) due to the dysfunction of the affected
side in daily life [7], which could cause the gradual decline
in motor function capacity of the affected side [8]. Sixty-five
percent of patients in the chronic stage cannot integrate their
affected side into their ADLs [9].

Many wearable technologies have been developed to
overcome these problems which could provide effective
goal-oriented training to patients with upper limb dysfunction
in multiple scenarios. Also, these technologies do not involve
the same privacy issues as camera-based rehabilitation sys-
tems. Most motor training systems only focus on the recovery
of one area. Some focus on hand function training to restore
pinch strength, grip strength, flexibility, or stability [10]-[13],
while others just focus on gross upper limb training to restore
endurance, joint mobility, or muscle strength [14]-[16]. How-
ever, most of the movements in our daily lives are completed
by coordinating arm and hand motions. Therefore, compared
with the single training methods, the combined training of
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these two can better improve the coordination ability of the
arm and hand, increase movement control ability, prevent
spasming, and promote volitional movement.

Some effective rehabilitation systems have also aimed to
improve patients’ skills in ADLs. Portable wearable systems
were developed to monitor patients’ ADLs and encourage
them to use their affected side more in daily life to com-
plete tasks [17], [18]. In addition, many systems designed
to guide patients performing ADLs-related movements have
been developed. A haptic-devices-based virtual training system
could provide training for three ADLs tasks, where patients
perform virtual tasks via manipulating the 3D-printed objects
attached to haptic devices and a computer [19]. A Rehab-
Fork was developed to guide patients in performing eating-
related movements [20]. A tangible tabletop combined with a
wearable system was proposed to provide goal-oriented tasks
and ADLs-related training [21]. All these systems simulate
the life tasks pretty well, but they need additional instruments
and grounded systems. In addition, these tangible or traction
devices are fixed on the table, and predefined missions can
only be performed on the table, which limits the training of
gross upper limb motor function. To overcome these problems,
a wearable multi-sensor-based rehabilitation system was devel-
oped and introduced in this paper. The system can estimate
patients’ natural upper limb movements. and lead patients to
perform ADLs that combine gross upper limb movement and
fine hand movement in serious games.

Electromyography (EMG) has been widely used in hand
movement estimation [22]. However, arm position variations
degrade the accuracy of EMG-based hand gesture classifica-
tion [23]. A significant amount of research has focused on
addressing this problem to increase the robustness of pros-
thetic control. Different algorithms, classifier configurations,
and training strategies have been proposed [23]-[27]. The
influence of static and dynamic arm movement, offline and
real-time analysis, and healthy subjects and amputees were all
included in previous studies [28]-[30]. Inertial measurement
units (IMU) have also been widely used with EMG to address
the problem [23], [29], [31] and can be applied to motion
detection. Both of these sensors play an important role in
stroke rehabilitation. To estimate hand gestures, barometric
pressure sensors have also been applied to measure the force
myography (FMG) signals around the wrist [32] in previous
research. Force myography is more sensitive to gestures with
low strength compared to EMG [33] and could be compen-
satory to increase the accuracy. The influence of arm position
change on FMG-based hand gesture estimation has not yet
been studied to our knowledge, though it is explored in
this study. A wearable multi-sensor fusion model could be
a promising method to accurately estimate natural movements
that combine gross movement and hand gestures.

The purpose of this paper is to analyze the robustness
of different sensor and algorithm configurations against arm
position change for hand gesture estimation and to find a
sensor-fusion model that can optimize gesture recognition
accuracy and stability in daily life. The study also aims to
present an ADLs-based serious game rehabilitation system
for the training of both arm and hand motor function. Eight

healthy subjects and three stroke patients with upper limb
dysfunction were recruited in a pilot experiment to study the
characteristics of different sensors and algorithm configura-
tions and to validate the effectiveness of the rehabilitation
system. We hypothesized that the multi-sensor-based model
could recognize users’ gross arm movement and estimate
a variety of ADLs-related hand gestures in different arm
positions accurately and that patients would be involved and
enthusiastic while using the system.

Il. SYSTEM DESIGN
A. System Structure

The natural-movement-estimation-based serious game reha-
bilitation system could provide users with ADLs-related move-
ment training. The whole structure of the proposed system
(Fig. 1) consists of five parts: natural human movements,
a multi-sensor fusion system, an upper limb gross movement
estimation algorithm, a hand gesture recognition algorithm,
and a serious game. First, users perform predefined natural
human upper limb movements, such as grasping a cup with a
handle from a shelf. The kinematic information of the upper
limb (including acceleration and orientation) is measured by
IMUs attached to the upper arm and forearm. The physio-
logical information, including electrical activity of forearm
skeletal muscles and wrist tendon slide, is measured by the
EMG electrodes around the forearm and the barometric pres-
sure sensors around wrist, respectively. After preprocessing
and feature extraction, IMU data are put into the gross arm
movement estimation algorithm, and EMG and FMG data
are used in the fine hand movement classification algorithm.
The estimated arm position and hand gesture are the input
for the ADLs-based serious game, which allows the users
to interact with the target in the game and get audiovisual
feedback, thereby guiding patients to perform rehabilitation
training for natural upper limb movement function restoration
in an immersive experience.

B. System Design

Fine movements can be detected by the electromagnetic
signal of forearm superficial muscles. Six EMG sensors of the
Trigno Wireless EMG System (MAN-012-2-6, Delsys Inc.,
Natick, MA, USA) were applied in our system and were
placed evenly around the user’s forearm, about 8cm from the
elbow (Fig. 1).

When people perform hand and wrist movements, the
wrist tendon slides, causing deformation on the wrist’s sur-
face. Thus, eight barometric pressure sensors (MPL115A2,
Freescale Semiconductor Inc., Austin, TX, USA) covered by
VytaFlex rubber were selected and attached evenly around the
inner side of the wrist to measure the force myography (FMG).
A microcontroller (STM32F401, STMicroelectronics, Geneva,
Switzerland) was used to process FMG data.

Two 9-axis IMUs (MTw Awinda, Xsens Inc, Enschede,
Netherlands) were attached to the outside of the arm. One
was attached to the middle of the forearm, and the other was
attached to the upper arm about 10cm above the elbow. The
output data of the IMUs included 3-dimensional accelerations
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System structure of the ADLs estimation-based serious game for arm and hand function rehabilitation. Users perform ADLs-related natural

movements, including eight different gross arm movements and seven fine hand gestures. Kinematic information is measured by IMU and sent
into the gross movement estimation algorithm. In addition, physiologic information is measured by EMG and FMG and sent into the fine movement
classification algorithm. The estimated arm position and hand gesture are then put into the proposed serious game that simulates daily life scenes
and provides ADLs training to patients with upper limb dysfunction after stroke.

and quaternions. The kinematic data were used to estimate the
gross upper limb movement.

An app was developed in MATLAB (MathWorks, Natick,
MA, USA) for data collection and synchronization. The
picture and text of the current target movement appear on
the interface to prompt the user to perform corresponding
movements. Data from EMG, FMG, and IMU were sampled
at 2000 Hz, 90 Hz, and 40 Hz, respectively, and synchronized
by corresponding triggers in different movements. All the data
were saved automatically in.csv files at the end.

A comprehensive and meaningful movement set was
defined. The rehabilitation of shoulder motor function and
elbow motor function are essential gross functions. There-
fore, shoulder adduction (SAD), shoulder abduction (SAB),
shoulder flexion (SF), shoulder extension (SE), elbow flexion
(EF), and elbow extension (EE) were selected for the pro-
posed system. The combination of these three DOFs results
in eight different combinations, which corresponds to eight
different positions in front of the body. In addition, seven
hand gestures (Fig. 2) were selected from the Fugl-Meyer
Assessment (FMA) [34]: mass flexion (MF), thumb adduction
(TA), opposition (O), hook-like grasp (HG), wrist volar flexion
(WF), wrist dorsiflexion (WE), and mass flexion with forearm
pronation (MFFP), which are all meaningful fine movements
for patients completing ADLs.

The game “Get objects from the shelf” was designed to
train patients’ motor function and improve their performance
in ADLs (Fig. 2). In this game, the user stands in front of a
shelf, which has eight blocks (2 x 2 x 2 in 3D: top and bottom,
right and left, front and back), corresponding to eight different
positions defined in the movement set. Different objects appear
in different places on the shelf. Users need to get the objects
by performing the correct corresponding movement: grasp a
bottle, hold a glass of wine, grab a cup with a handle, grab a
spoon, turn left, turn right, and grasp a cucumber with forearm
pronation.

The subject’s upper limb is at rest in the initial position
(arm naturally hanging down) at the start of each round.
The standard deviation of the Euclidean norm of three-axis
acceleration for each 200ms window is extracted as the feature
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Fig. 2. A serious game “Get objects from the shelf”’ for ADLs-based

upper limb motor function rehabilitation. Seven different objects can
appear on eight different positions on the shelf which is in front of the user.
The object on the shelf is regarded as the target of the current round,
and the user reaches for the correct position and then performs mass
flexion, opposition, hook-like grasp, thumb adduction, wrist volar flexion,
wrist dorsiflexion, or mass flexion with forearm pronation to complete
the correct movement in the game: grasp a bottle, hold a glass of wine,
grab a cup with handle, grab a spoon, turn left, turn right, or grasp a
cucumber with forearm pronation, respectively. The gray pictures indicate
the current estimated position and target object, which allows the user
to adjust his movement to complete the target successfully.

that judges the state of upper limb movement. The moment
when the feature is greater than the threshold is regarded as the
beginning of the subject’s upper limb movement. Then, when
the feature drops below the threshold, we assume the subject
has reached his target position, and the system starts to predict
his upper limb position and hand gesture continuously. The
game provides audiovisual feedback to the patients. If both



624 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

N
N
If T<5s If T<5s If T<5s
N Y N N LY
5 Predict right
It R4 Moveto e Y
m pos“lon -
hand movement
& & & e W

Fig. 3. The logical flowchart of the serious game. Onset is the beginning
of each round. Accel represents the standard deviation of the Euclidean
norm of acceleration. Th is the abbreviation of Threshold, which is used
to judge the motion state of the upper limb. T is the time range from
onset to now. Blue arrows represent performing the next step at once,
and yellow arrows represent waiting 1.5 seconds to perform next step. ©®
is the start of one round, @ is the start of the upper limb movement, ® is
the start of prediction, @ is the first time predicting the right upper limb
position successfully, ® is the first time predicting the right hand gesture
successfully, and ® is the time predicting both position and hand gesture
successfully.

the arm position and fine movement have been performed and
predicted successfully and simultaneously, the text “excellent”
appears on the screen, and the money on the screen increases
by one. Subjects also hear a positive audio cue. Otherwise, the
recognized current position will be displayed on the shelf at
the corresponding position in the game through a small gray
box, and the corresponding object of the estimated current
hand gesture below the game’s interface is highlighted in
gray (Fig. 2). Then, the subject can adjust his arm position
or hand gesture based on the current feedback. If the subject
fails to complete the task within five seconds of the onset
of the round, the round is deemed to be over. After each
round, 1.5 seconds is left for the subject to return his upper
limb to the initial position, and the timer stops during this
1.5s. Then, the game goes into the next round (Fig. 3). The
serious game was written in Python based on the pygame
library.

C. Movement Estimation Algorithm

During the preprocessing phase, a 20-500 Hz bandpass
filter and a 50 Hz comb filter were applied to the raw EMG
data. The abnormal values of FMG were deleted. Data from
different movements were segmented automatically based on
triggers corresponding to different movements. During the
transition period between movements, related muscle activities
erupt and cause a larger EMG amplitude. Thus, data of the first
second and the last second of each movement in the training
phase were removed to reduce interference.

Overlapped segmentation was applied. A window with a
200ms length and 50ms step length was selected, which
has good performance in EMG-based real-time classification.
To synchronize the data, the same segmentation method was
applied to all three kinds of sensors.

Considering that real-time feature extraction requires a
relatively large computing source, frequency domain-based
features were excluded. Four effective time-domain features
for EMG signals were selected: Mean Absolute Value (MAV),
Waveform Length (WL), Zero Crossings (ZC), and Slope Sign
Changes (SSC) [35]. Two reliable time-domain features for
FMG were selected: Mean Absolute Value (MAV) and Root

Mean Square (RMS). Two IMU features were also selected:
standard deviation of the Euclidean norm of three-axis accel-
eration was calculated to analyze the state of the movement,
and the mean value of quaternions was used to estimate the
gross upper limb movement. Thus, 24 EMG features, 16 FMG
features, and 10 IMU features resulted in a 50-dimentional
feature array. Then, each feature was scaled and normalized
by standardization.

Linear discriminant analysis (LDA) has proven to be one
of the most effective algorithms for real-time hand gesture
classification [29]. It was chosen for both gross movement
estimation and hand gesture classification in this study.
There are three algorithm configurations—single-position clas-
sifier (SPC), two-stage cascade classifier (CC), and multiple-
position classifier (MPC)—which were applied to estimate
hand gestures [23], [29]. A single-position classifier is trained
by data collected from a single arm position. A cascade
classifier uses a classifier trained by the data collected from
a specific single position detected during the test. Lastly, a
multiple-position classifier is trained by data from all arm
positions. These three LDA-based algorithms were applied
in the proposed system, and their efficiency was analyzed
in EMG-based, FMG-based, and EMG+FMG-based hand
gesture recognition offline and online.

I1l. EXPERIMENTAL VALIDATION

An experiment was conducted to analyze the influence of
arm position change on different sensor-based hand gesture
recognition methods to validate the estimation accuracy and
practicality of the proposed system. The experiment was
pre-approved by the Huashan Hospital Institutional Review
Board (CHiCTR1800017568) and was performed in accor-
dance with the Declaration of Helsinki. Eight healthy subjects
(male, 25.5 £ 5.2, right-handed) and three stroke patients
(male, 46.31+8.1, right-handed, Brunnstrom stage greater than
four) were recruited in this experiment. The inclusion criteria
of stroke patients were: aged 18 to 80 with upper extrem-
ity dysfunction after stroke, mini-mental state examination
(MMSE) score greater than 24, modified Ashworth scale for
upper extremity spasticity less than three, and Brunnstrom
stage for both hand and arm greater than four. Patients with
pain in the upper extremity, neglect, or aphasia were excluded.
An experienced clinician was also recruited and involved in
the patients’ experiment.

First, the subjects were informed in detail of the experiment
content and precautions. The gross movement and fine move-
ment in the proposed movement set were carefully described
to the subjects. Then, the instruction software was displayed
to the subjects to familiarize them with the movements and
experimental procedures. Subjects put on all the sensors with
the help of a clinician; first, the subject’s arm was shaved and
wiped with alcohol pads, and then, EMG sensors were placed
around their forearm evenly. Force myography sensors were
attached to the underside of their wrist. One IMU was placed
on the outside of the upper arm, and the other was placed
on the outside of the central forearm. An elastic bandage was
used to secure the sensors (Fig. 1).
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TABLE |
QUESTIONNAIRE FOR ADLS-BASED SERIOUS-GAMES REHABILITATION SYSTEM

Questions

Score-S1 Score-S2 Score-S3

QL.

Do you have a sense of accomplishment while playing the game?

1 1 1

Q2. Was your body uncomfortable while playing the game?

Q3.

Were you able to connect the simulated scenes in the game with the scenes in daily life?

Q4.

Do you think the game is suitable for home-based rehabilitation?

Q5.

Do you think the game is beneficial for improving your ability in ADLs?

Q6.

Do you think the game is beneficial for improving your cognitive function?

—| N =] N W,

Q7.

Do you think the game is beneficial for improving your upper limb motor function?

5 5
1 1
1 1
1 1
1 1
1 1

2

The questionnaire includes seven questions, and each answer could be a score of 1-5 (1: strongly agree, 2: agree, 3: neutral, 4: disagree, 5: strongly disagree)

For offline data analysis and model training, a training phase
was conducted. The healthy subjects were asked to perform
nine sessions (nine positions), including eight positions in
front of the body and one base position (arm naturally hanging
down). One session consisted of three trials, with a one-minute
break in between. Each trial consisted of seven hand gestures,
each one lasted five seconds, and there was a two-second break
between movements. After the training phase, the game’s
content was explained to subjects, and they watched an
instructional demo of the game while taking a ten-minute
break. During the break, the models for arm position and hand
gesture recognition were trained. Then, subjects performed
two practice trials before the formal test to get familiar with the
naturalistic-movement-estimation-based serious game. Sub-
jects then started to play formally for six sessions. Each
session consisted of two trials, and each trial lasted 60 seconds
with a 60-second break between trials. For the hand gesture
recognition part, different methods were applied to test the
system’s real-time performance and the influence on hand ges-
ture real-time classification caused by the arm position change
and different included sensors. Sessions 1 and 2 used models
trained by EMG signal alone, using MPC and CC (EMG-MPC
and EMG-CC). Sessions 3 and 4 used models trained by FMG
signal alone, using MPC and CC (FMG-MPC and FMG-CC).
Sessions 5 and 6 used models trained by EMG and FMG
signals together, using MPC and CC (EMG+FMG-MPC and
EMG+FMG-CC).

For stroke patients, shorter testing periods were preferred,
and the base position (arm naturally hanging down) was
excluded. Only the other eight positions (corresponding to
eight sessions) and one trial per session were required for these
subjects’ training phase. Two practice trials and five formal
trials were required during the real-time gaming phase (Fig. 4).
The EMG+FMG-MPC model was selected and applied to all
stroke patient trials because pilot testing showed this model
had the best performance. After the experiments, patients
were asked to fill out a questionnaire about their experience
playing the serious game and their subjective opinions on the
proposed system (TABLE I). The questionnaire included seven
questions, and each answer was scored on a scale of 1 to 5
(1: strongly agree, 2: agree, 3: neutral, 4: disagree, 5: strongly
disagree).

Fig. 4. Example stroke patient playing the ADLs-based serious game
wearing multiple sensors.

IV. STATISTICAL ANALYSIS

A. Effect of Arm Movement Change on
Physiological-Information-Based Hand
Gesture Recognition

In order to analyze the influence of different arm posi-
tions on EMG-based, FMG-based, and EMG+FMG-based
hand gesture recognition, offline analysis was applied on the
healthy subjects’ data (TABLE II). Single-position classifier
was applied to each position, and models trained by each posi-
tion were used to estimate the hand gesture performed in each
position. Leave-one-trial-out and cross-validation were applied
to compare the differences between and within categories.
The intra-class accuracies of different sensor configurations
were compared to analyze the accuracies of different sensors
without being affected by arm position change. In addition, the
inter-class accuracies were also compared to study the perfor-
mance of different sensor configurations while using SPC.

In addition, how these three arm-movement-related pair
indicators (SAD/SAB, SF/SE, and EF/EE) influenced the
hand gesture estimation was comprehensively analyzed. Four
sessions with the same indicator were regarded as a group,
and the other four sessions with the opposite indicator were
regarded as the other group. The SAD group (sessions 1,
3,5, 7) and SAB group (sessions 2, 4, 6, 8) were a pair.
The SF group (sessions 1, 2, 5, 6) and SE group (sessions
3, 4,7, 8 were a pair. The EF group (sessions 1, 2, 3, 4)
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TABLE Il
RESEARCH ON THE INFLUENCE MECHANISM OF ARM POSITION VARIATION ON DIFFERENT MODEL-BASED GESTURE RECOGNITION

Study purpose Algorithm Sensor Test method
SPC EMG, .
. = .. FMG, Offline
Influence mechanism of arm position change on (Data from one arm position)
. Lo . EMG+FMG
physiological-information-based hand gesture
L . . EMG,
recognition SPC (Data from four positions which .
ds t -related indicator) FMG, Offline
corresponds to one arm-related indicator EMGAFMG
MPC-2, MPC-1, EMG, .
CC. SPC FMG, Offline
Effect of different sensor and algorithm ’ EMG+FMG
configurations EMG,
12;/[(}; C, FMG, Real-time
EMG+FMG

and EE group (sessions 5, 6, 7, 8) were also a pair. For
the two groups in each pair, the inter-group accuracies and
intra-group accuracies were calculated offline when applying
different sensor configurations accuracies. Training on two
trials of each session in one group, testing on one trial of each
session in the other group, and cross-validation was applied.
For each sensor configuration, the intra-class accuracies of
the different arm-movement-related indicators were calculated
and compared. The inter-class accuracies were also calculated
in these circumstances. In addition, the inter-class and intra-
class accuracies of using the EMG+FMG-based model across
all the arm-movement-related indicators were compared to the
EMG-based model and FMG-based model.

One-way analysis of variance (ANOVA) was conducted to
assess if there were differences. If there was a difference,
a least significant difference procedure was used for post hoc
analysis. The statistical significance was set to p<0.05.

B. Effect of Different Sensor and
Algorithm Configurations

First, the offline analysis was performed on healthy sub-
jects to study the sensor contribution and compare different
algorithm configurations. The accuracy of three classification
algorithms (MPC, CC, and SPC) while applying EMG alone,
FMG alone, and EMG and FMG together were calculated to
validate which method could most accurately recognize the
hand gestures during natural human arm movement. Three
trials per session were used to perform an offline test, using
leave-one-trial-out cross-validation. In addition, to study the
impact of data volume on the MPC algorithm, both two trials
per session and one trial per session were used to train the
MPC model, and these were then tested offline. In addition,
the accuracy of arm position classification was analyzed offline
to validate the performance of arm movement estimation and
guarantee the feasibility of using CC. The performances of
different algorithm configurations were compared when the
same sensor configuration was applied. Also, the performances
of different sensor configurations were compared when the
same algorithm configuration was used. The hand gesture clas-
sification accuracies for each subject were calculated offline.
Using the EMG+FMG-MPC method, a confusion matrix was
made to show the recognition rate of each gesture and display
the misclassification of gestures. The average accuracy of arm
position estimation was also calculated.

Both the effectiveness of the proposed system and the
real-time performance of hand gesture recognition affected
by arm position change while applying different sensor and
algorithm configurations were studied. The score measuring
the effectiveness of the system was defined as the points
obtained by subjects in each 60-second game. The aver-
age scores of the eight healthy subjects playing the serious
game based on different methods—EMG-MPC, EMG-CC,
FMG-MPC, FMG-CC, EMG+FMG-MPC, and EMG+FMG-
CC—were analyzed. The real-time performances of the six
different configurations were compared by comparing healthy
subjects’ scores.

Two real-time indexes of healthy subjects playing the
proposed serious game were also calculated. The real-time
indexes were defined as: 1) response time: from the onset of
the round to the start of the subject’s movement, which refers
to the period between @ and @ in Fig. 3; and 2) execution
time: from the start of the subject’s movement to the start of
prediction, which refers to the period between @ and @ in
Fig. 3. These indexes reflect subjects’ ability to react in the
game. Indexes of different trials were compared to study if
there was a learning process for healthy subjects in the formal
game trials.

Two-way repeated ANOVA was conducted to analyze the
main effect of using different sensor configurations and differ-
ent algorithms as well as the interaction effect between them.
If there was a significant interaction between two variables,
Bonferroni was used to adjust for multiple comparisons. The
statistical significance was set to p<0.05.

C. Effect of Stroke Patients Using the Proposed
Rehabilitation System

In order to analyze the influence of the three pairs of
arm position indicators on hand gesture recognition for stroke
patients, the same grouping method as used for healthy
subjects was applied, and the inter-group accuracies and
intra-group accuracies were analyzed offline.

To validate the feasibility of stroke patients using the
proposed rehabilitation system for training ADLs-based arm
and hand motor function, the scores of stroke patients while
playing the serious game were analyzed. The results from
the questionnaire (TABLE I) were analyzed to assess patients’
feelings about using the proposed system.
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Fig. 5. The accuracies of different sensor-based hand gesture recognition methods while training on each session (position) and testing on each
session (position). 1 — 9 on the axis label represent sessions 1 — 9, and SPC was applied. The number in each box represents the average accuracy
of eight healthy subjects after cross validation. Left: only EMG sensors applied. Middle: only FMG sensors applied. Right: EMG and FMG sensors

applied together.

V. RESULTS

A. Effect of Arm Movement Change on
Physiological-Information-Based Hand
Gesture Recognition

The numbers which form a diagonal line from the top left to
the bottom right of each table in Fig. 5 are the average intra-
class classification accuracies from the eight healthy subjects,
which refers to the training data and testing data from the
same arm position where SPC was applied. On the other
hand, the other numbers in each table that are not part of the
diagonal line are the inter-class classification accuracies, which
refer to the training data and testing data from different arm
positions. The intra-class accuracies of FMG-alone-based hand
gesture classification (which ranged from 88.2% to 97.4%,
with an average accuracy of 92.7%) were higher (P < 0.05)
than the EMG-alone-based intra-class accuracy (which ranged
from 85.2% to 91.5%, with an average accuracy of 88.7%).
The intra-class accuracies of EMG+FMG-based hand gesture
classification (ranging from 93.6% to 98.2%, with an average
accuracy of 95.6%) were higher than the intra-class accuracies
of FMG-alone-based hand gesture classification (P < 0.05).

The FMG-alone-based inter-class accuracies ranged from
31.9% to 80.3%, with an average of 68.4%. The EMG-alone-
based inter-class accuracies ranged from 57.0% to 85.0%, with
an average accuracy of 78.9%. For EMG+FMG-based hand
gesture classification, the inter-class accuracies ranged from
38.4% to 86.5%, with an average accuracy of 75.5%. There
was no significant difference between these three inter-class
accuracies (P > 0.05).

The intra-group and inter-group hand gesture recognition
accuracy of the three indicator pairs—SAD/SAB, SF/SE, and
EF/EE—averaged from the eight healthy subjects were ana-
lyzed with three different sensor combinations: EMG-based,
FMG-based, and EMG+FMG-based (Fig. 6). The color gap
between the main diagonal and the antidiagonal in each little
block represents the negative influence of arm-movement-
related indicators to hand gesture recognition (Fig. 6). There
was no significant difference between intra-group accuracies
of SAD/SAB, SF/SE, and EF/EE (P > 0.05). There was
also no significant difference between inter-group accuracies
of SAD/SAB and the accuracies of SF/SE (P > 0.05).

-100%
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2
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Fig. 6. The accuracies of EMG-sensors-alone-based, FMG-sensors-
alone-based, and EMG-+FMG-sensors-together-based hand gesture
recognition averaged across eight healthy subjects. Left: while training
on SAD group and SAB group and testing on SAD group and SAB group,
respectively. Middle: while training on SF group and SE group and testing
on SF group and SE group, respectively. Right: while training on EF group
and EE group and testing on EF group and EE group, respectively.

However, the inter-group accuracies of the SAD/SAB pair
were significantly higher than EF/EE across all three different
sensor combinations (P < 0.05). The accuracy of EF/EE was
significantly lower than SF/SE when the EMG+FMG-based
model was used (P < 0.05). In addition, the intra-group
and inter-group accuracies of EMG+FMG-based hand gesture
classification were higher than the accuracies while using
either of these sensors alone (P < 0.05).

B. Effect of Different Sensor and
Algorithm Configurations

Applying different sensor and algorithm configurations
was analyzed offline on the eight healthy subjects (Fig. 7)
(TABLE III). When using EMG alone, FMG alone, or EMG
and FMG together, the offline classification accuracies of
applying MPC with training on two trials per session (MPC-2)
were 87.4%, 92.4%, and 96.7%, respectively. The performance
of using MPC with training on one trial per session (MPC-1)
were 86.4%, 91.6%, and 96.1%, respectively. Applying CC
resulted in accuracies of 88.4%, 93.0%, and 95.5%. The results
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TABLE IlI
PAIRWISE COMPARISON FOR OFFLINE ANALYSIS OF DIFFERENT
SENSOR AND ALGORITHM CONFIGURATIONS

TABLE IV
PAIRWISE COMPARISON FOR ONLINE ANALYSIS OF DIFFERENT
SENSOR AND ALGORITHM CONFIGURATIONS

(A) (A)
. . Mean Mean
Sensor (DAlgorithm  (J)Algorithm Difference(I-J) P Sensor (I)Algorithm  (J)Algorithm  Difference(I- P
MPC-1 0.010 0.190 1)
MPC-2 CC -0.013 1.000 EMG MPC CC -1.687 0.351
EMG SPC 0.209* 0.002 FMG MPC CC 8.375* 0.002
MPC-1 CC -0.023 1.000 EMG+FMG MPC CcC 9.188* 0.013
) SPC 0.198* 0.001 (B)
CC SPC 0.221* 0.035 . Mean
FMG MPC-2 MPC-1 0.009 1.000 Algorithm — (Sensor  (J) Sensor Difference(I-)  ©
CC 0.001 1.000 EMG FMG -1.750 0.620
SPC 0.488* 0.000 MPC EMG+FMG -6.687* 0.001
MPC-1 cC -0.007 1.000 FMG EMG+FMG -4.937* 0.014
SPC 0.439* 0.000 FMG 8.313% 0.011
cc SPC 0.447% 0.000 cc EMG EMG+FMG _ 4.188 0.554
EMG+FMG MPC-2 MPC-1 0.006 0.852 EMG EMG+FMG 4.125% 0.038
CC 0.014 1.000 A - - -
Adjustment for multiple comparisons: Bonferroni
SPC 0.397+ 0.001 The statistical significance was set to P<0.05.
MPC-1 CC 0.008 1.000
SPC 0.391* 0.001
CC SPC 0.384* 0.002
(B) each sensor configuration, there was no significant difference
Algorithm  (I)Sensor (3) Sensor Mean P in using MPC-2, MPC-1, and CC (P > 0.05). On the other
Difference(I-J) . .
MG 0,050 0124 hand, the offline accuracy of using SPC on all three sensor
MPC2 EMG EMGIEMG 20.093% 0.007 configurations was significantly lower than other algorithm
FMG EMG+FMG -0.043* 0.002 configurations (P < 0.05), with 66.6%, 47.6%, and 57.0%
EMG FMG -0.051 0.149 accuracies. For the MPC-2 and MPC-1 algorithm configura-
MPCI EMG+FMG -0.097* 0.006 tions, the offline classification accuracy of using EMG and
FMG EMGHFMG _ -0.046* 0.002 FMG together was significantly higher than using FMG alone
EMG FMG -0.036 0.249 (P < 0.05) or using EMG alone (P < 0.05). However, there
CC EMG+FMG -0.067 0.059 (onifi diff b . EMG and FMG
MG EMGFMG 003" 0.036 was no significant difference between using i an
FMG 0.189* 0015 (P > 0.05) under MPC-2, MPC-1, or CC. In addition, EMG
SPC EMG EMG+FMG 0.096 0.180 and FMG together had significantly better offline accuracy
FMG EMG+FMG -0.094* 0.004 than FMG alone when CC was applied (P < 0.05). Force
Adjustment for multiple comparisons: Bonferroni myography alone resulted in significantly lower accuracies
The statistical significance was set to P<0.05. compared to EMG alone (P < 0.05) or EMG and FMG
together (P < 0.05) when applying SPC. Additionally, the
e —— average offline accuracy of arm position estimation for healthy
it subjects was 98.9%.
100% . N S—— = —+- EMG+FMG Offline hand gesture recognition accuracy for each healthy
g [ﬁ————‘[\\ subject ranged from 91.3% to 99.8%, with an average of
E s 96.7%, when applying MPC on EMG and FMG together.
s The confusion matrix showed that HG and TA were easily
'§ 6% misclassified with each other, and for EMG-based recognition,
2 MF was easily misclassified as MFFP. In addition, O and
g TA were easily misclassified with each other when FMG was
. applied. The fusion of EMG and FMG improved the accuracy
of classifying each hand gesture (Fig. 8).
. The average real-time score (number of objects taken
MPC-2 MPC-L CC spC from the shelf) of the eight healthy subjects when
Algueam applying  EMG-MPC, EMG-CC, FMG-MPC, FMG-CC,
Fig. 7. The offline accuracies of EMG-sensors-alone-based, FMG- EMG+FMG-MPC, and EMG+FMG-CC were 20.1, 21.8,

sensors-alone-based, and EMG+FMG-sensors-together-based hand
gesture classification while MPC-2, MPC-1, CC, and SPC were applied.

of two-way repeated ANOVA revealed that there was a signif-
icant interaction between sensor configurations and algorithm
configurations (F (6) = 14.6, P < 0.05, 175 = 0.676). For

21.8, 13.4, 26.8, and 17.6, respectively (Fig. 9) (TABLE 1V).
The results of two-way repeated ANOVA revealed that there
was a significant interaction between sensor configurations
and algorithm configurations by analyzing the real-time score
(F (2, 14) = 10.87, P < 0.05, 175 = 0.608). For MPC, sub-
jects could get higher scores when EMG+FMG was applied
compared with EMG (P < 0.05) or FMG (P < 0.05) alone.
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Fig. 9. Average scores of healthy subjects playing the serious game
while different sensor and algorithm configurations were used.

For CC, subjects’ scored significantly lower when FMG was
used compared to EMG (P < 0.05) alone or EMG+FMG
(P < 0.05). When using EMG alone, there was no significant
difference between using MPC or CC (P > 0.05). However, for
both FMG and EMG+FMG, subjects could get significantly
higher results by using MPC compared to CC (P > 0.05).

For healthy subjects, the response time ranged from 272ms
to 365ms, and the execution time ranged from 843ms to
1001ms. There is no significant difference between applying
different methods to these two indexes (P > 0.05).

C. Effect of Stroke Patients Using the Proposed
Rehabilitation System

The offline inter-group accuracies and intra-group accura-
cies of the three indicator pairs which related to three pair arm
indicators were calculated on stroke patients (Fig. 10).

The stroke patients’ average score was 9.3, which is lower
than the average score of healthy subjects when the same
configuration (EMG+FMG-MPC) was applied. The question-
naire results showed that all subjects strongly agreed that
they felt accomplishment and no discomfort while playing the
game. All the patients agreed or strongly agreed that using
the proposed system could improve their motor function and
cognitive function, and they could connect the game scene
to real-life situations. They also thought their ADLs-related
ability could be restored by using the system (TABLE I).

EMG+FMG
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WF WE MFFP MF o HG A WF WE MEFP
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EMG
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Fig. 10. The accuracies of EMG-sensors-alone-based, FMG-sensors-
alone-based, and EMG+FMG-sensors-together-based hand gesture
recognition averaged across stroke patients. Left: while training on SAD
group and SAB group and testing on SAD group and SAB group,
respectively. Middle: while training on SF group and SE group and testing
on SF group and SE group, respectively. Right: while training on EF group
and EE group and testing on EF group and EE group, respectively.

VI. DISCUSSION

An ADLs-based serious game rehabilitation system was
developed to provide patients with arm and hand motor
function training via recognizing the natural movement of
the patients’ affected sides with a multi-sensor fusion model
and providing audiovisual feedback through the serious game.
In addition, the offline accuracies and real-time performance
of hand gesture classification applied by different methods
were analyzed to study the influence of arm position change
on different sensor- and algorithm-configurations-based hand
gesture recognition. The study found that EMG+FMG-MPC
is the optimal sensor and algorithm configuration to reduce
the negative impact of arm position changes on hand gesture
recognition.

Our findings demonstrate that arm position can influence
the accuracy of EMG-based hand gesture classification, which
aligns with previous findings. Yang et al. [27] analyzed the
effectiveness of four training paradigms and found that hand
gesture classification accuracy was significantly influenced
by wrist pronation and supination. Similarly, in the pre-
sented study, the influence of EF/EE, SF/SE, and SAD/SAB
on accuracy was systematically tested and analyzed, and
findings demonstrated that SF/SF and SAD/SAB have no
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significant negative influence on EMG-based, FMG-based,
or EMG+FMG-based hand gesture recognition. EF/EE
has a more significant negative influence on EMG-based,
FMG-based, or EMG+FMG-based hand gesture recognition
than SAD/SAB. EF/EE has the most negative influence on
EMG+FMG-based hand gesture recognition, followed by
SF/SF and SAD/SAB (Fig. 6). Liu et al. [28] suggested
that the relative shifting between sensors and subcutaneous
muscle, muscle activities against gravity, and muscle activ-
ities for inertial compensation were significant contributing
factors to the negative influence of arm position on accuracy.
Fougner et al. [23] observed the negative impact of static arm
position variations to EMG-based hand gesture classification
and proposed MPC and CC configurations to reduce classifi-
cation error. Also, Geng et al. [29] studied the performance of
CC and MPC in real time on amputees, and the performances
were improved by 8.7% and 12.7%, respectively, compared
to SPC. Others have suggested a mixed-LDA classifier and
neural network approaches to reduce arm-position-based clas-
sification errors [24], [26].

From the offline results, most intra-class accuracies of FMG
were higher than intra-class accuracies of EMG (Fig. 5). The
EMG and FMG sensors can compensate for each other, with
FMG being more sensitive with gestures with lower strength
and EMG being the opposite. We can tell that misclassified
hand gestures were different when EMG and FMG were
applied separately. Each gesture’s estimation accuracy largely
improved when EMG and FMG were used together (Fig. 8).
Both inter-group and intra-group accuracies were improved for
each arm-related indicator pair when EMG and FMG were
applied together compared with either sensor applied sepa-
rately (Fig. 6). In addition, EMG and FMG sensor fusion also
shows better performance when either MPC or CC algorithm
were used (Fig. 7).

The offline effectiveness of each sensor and algorithm
configuration were analyzed. Also, scores of healthy subjects
under different sensor and algorithm configurations were com-
pared and analyzed to study the real-time performances of the
different configurations. Results showed significant interaction
between sensor configurations and algorithm configurations
in both offline and real-time recognition accuracy. For MPC,
EMG+FMG showed better performance than the other sensor
configurations in both offline and real time. However, other
simple main effects showed some differences. For CC, there
was no significant difference between using EMG or FMG
offline, but FMG performed worst in real-time recognition.
For all sensor configurations, there was no significant differ-
ence between MPC and CC offline. However, in real time,
MPC resulted in higher accuracy than CC when FMG or
EMG+FMG was used. These results indicate that hand gesture
recognition via measuring the tendon slide of the wrist had the
same robustness against arm position change as hand gesture
estimation based on forearm muscle activities measuring.
On the other hand, the movement of the hand caused more
shifting between FMG sensors and wrist skin than the shifting
that happened between the EMG sensors and forearm skin.
Finding an FMG-based skin-attached wristband that is not easy

to shift or loosen could be a solution to address the problem.
Results also indicated that EMG+FMG-MPC was the best
configuration to reduce the negative impact of arm position
change.

Most ADLs-related training systems [19]-[21] can only
provide patients with table tasks, which limits the training
of comprehensive gross movement. The ADLs monitor sys-
tems [17], [18] can only classify a few rough movements,
which is not suitable to expand into active rehabilitation
systems. The proposed system could accurately estimate both
hand gestures and arm positions in which patients could
perform natural ADLs movements. The patients were asked
to perform various functional tasks in the entire area in front
of them to complete the simulated tasks of the serious game.
According to clinical scales, the selected stroke patients had
no significant cognitive dysfunction, and their upper limb
motor function impairment was mild. However, their scores
while playing the serious game were much worse than healthy
subjects. We observed that patients were slower in performing
the right hand gesture in the right position and may have
problems with hand and arm coordination which still need
long-term training. Audiovisual feedback can help patients
adjust their movements in real time to complete tasks. The pro-
posed serious game system seems effective, comprehensive,
and attractive, which could make patients more immersed in
function training and could be beneficial for regaining ADLs
ability and neurological restoration. In addition, the system is
wearable with no extra grounded devices and can be used in
both a clinical environment and the home.

A. Limitation

There are still some limitations of this system that could
be improved in future work. We used the given targets in the
serious game as golden labels. However, we ignored if subjects
were actually performing the movement the game required
them to do. We did not recognize the gestures subjects were
intending to perform for a given target. Therefore, we cannot
get exact accuracies of different models. In the presented study,
average scores that subjects obtained by using different sensor
and algorithm configurations were compared to evaluate the
real-time performance for different models. A formal, real-
time experiment excluding serious games (such as the Motion
Test) should be conducted in future research. Also, we tried
to eliminate learning effects by providing several practice
trials before the formal experiment began to allow subjects
to become familiar with the system. Enough rest time was
provided to subjects to avoid fatigue. However, the order of
the sessions in this study was fixed, which could potentially
lead to learning effects or fatigue effects. Future studies
should randomize the order of sessions. In addition, only male
subjects were recruited in the study. Female participants should
also be included in the future to achieve a balanced gender
distribution.

This pilot study was intended to demonstrate initial feasi-
bility of this system for healthy subjects and stroke patients.
Future follow-up research should focus on increasing the sam-
ple size. The effect of the training data volume on estimation
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model accuracy of stroke patients also needs to be validated in
future work. The serious game scene could be further devel-
oped to provide a more immersive environment: the shelf can
be more vivid to provide more instinctive depth information,
and the position of the user’s arm can be represented by
the form of a hand instead of a gray picture. In addition,
a white-box-based arm position estimation algorithm can be
developed to increase the generalizability of the system. It is
also necessary to comprehensively consider the displacement
of the sensor due to re-wearing and the impact of arm position
variance on the recognition accuracy. Finally, a long-term
randomized control trial should be designed and conducted on
stroke patients to validate if the proposed system can improve
arm and hand motor function and restore patients’ ability to
perform ADLs.
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