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Abstract—1t is difficult to identify optimal cut-off fre-
quencies for filters used with the common spatial pattern
(CSP) method in motor imagery (Ml)-based brain-computer
interfaces (BCls). Most current studies choose filter cut-
frequencies based on experience or intuition, resulting in
sub-optimal use of Ml-related spectral information in the
electroencephalography (EEG). To improve information uti-
lization, we propose a SincNet-based hybrid neural net-
work (SHNN) for MI-based BCls. First, raw EEG is segmented
into different time windows and mapped into the CSP feature
space. Then, SincNets are used as filter bank band-pass
filters to automatically filter the data. Next, we used squeeze-
and-excitation modules to learn a sparse representation of
the filtered data. The resulting sparse data were fed into
convolutional neural networks to learn deep feature repre-
sentations. Finally, these deep features were fed into a gated
recurrent unit module to seek sequential relations, and a
fully connected layer was used for classification. We used
the BCI competition IV datasets 2a and 2b to verify the
effectiveness of our SHNN method. The mean classification
accuracies (kappa values) of our SHNN method are 0.7426
(0.6648) on dataset 2a and 0.8349 (0.6697) on dataset 2b,
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respectively. The statistical test results demonstrate that
our SHNN can significantly outperform other state-of-the-
art methods on these datasets.

Index Terms— Brain-computer interface, motor imagery,
SincNet, neural network, gated recurrent unit.

I. INTRODUCTION

RAIN-COMPUTER interfaces (BCIs) that can directly

connect the outside world and the human brain with-
out the involvement of peripheral nerves and muscles [1],
have been attracting more and more attention in recent
years. Practical applications of BClIs include virtual reality
games [2], exoskeleton control [3], [4], rehabilitation of stroke
patients [5], [6], communication with patients with conscious-
ness disorder [7], [8], and many other applications.

Motor imagery (MI) based BCIs allow their users to
enact control by imagining movement in one or more body
part [9]-[11]. The electroencephalogram (EEG) is one of
the most commonly used signals in MI-based BCIs and has
the advantages of low cost, low risk, and high portability.
Movement imagination is associated with changes in the
power of the oscillatory EEG. These changes in power are
known as the event-related desynchronization (ERD) and
event-related synchronization (ERS) phenomena. By detect-
ing the ERD/ERS in the EEG, the part of the body that
the user is imagining moving can be identified. Compared
with the other common non-invasive BCI control paradigms
such as even-related potential (ERP) [12], [13] and steady-
state visual evoked potential (SSVEP) [14], [15] based BCls,
the MI-based BCI does not rely on external stimuli, which
can make them more convenient and intuitive for their
users. However, improving the classification performance of
Ml-based BClIs is still a challenging problem.

Combinations of spatial, spectral, and temporal features are
usually extracted from EEG for MI task classification. The
common spatial pattern (CSP) method is the most commonly
used spatial feature extraction method used for this process.
However, the performance of CSP is easily affected by the
selection of the cut-off frequencies that are used to filter the
EEG [16], [17]. To address this problem, Ang et al. [18]
proposed a filter-band CSP (FBCSP) method to filter the
EEG into multiple sub-bands. However, these sub-bands also
need to be determined manually, while the appropriate filter

For more information, see https://creativecommons.org/licenses/by/4.0/
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bands varied for different participants. With the development
of deep learning methods, many researchers proposed novel
feature extraction and classification methods for MI-based
BClIs. Lawhern et al. [19] proposed a compact neural network
called EEGNet, which can extract temporal and spatial features
together. In a recent study, Izzuddin et al. [20] used SincNet,
which was proposed to improve the classification perfor-
mance of speech signals [21], as a band-pass filter to process
Ml-related EEG signals and achieve promising performance.
Howeyver, these methods can not make full use of the infor-
mation included in MI-related EEG signals.

Inspired by the filter-bank technique and the SincNet
method, we propose a SincNet-based hybrid neural net-
work (SHNN) in this study. First, the raw EEG is segmented
into different time windows and mapped into the CSP feature
space using the learned CSP projection matrices. Then, for
each time window, a SincNet based CNN module is used to
extract the spatial and spectral features from the mapped EEG.
In addition, after the SincNet method, we also use squeeze-
and-excitation (SE) modules to re-calibrate the data processed
by the different maps of SincNet to obtain a sparse representa-
tion of MI-related EEG. Next, features extracted from different
time windows are concatenated and fed into a gated recurrent
unit (GRU) module to seek sequential relations in the data.
Finally, a fully connected layer was used for classification.
To verify the effectiveness of the proposed neural network,
our SHNN method is evaluated on two public BCI competition
datasets. Ablation experiments were also conducted to explore
the function of each module in our SHNN method.

The rest of our paper is organized as follows. In section II
we introduce our SHNN method and datasets. In section III
we present our experiment results. Finally, in section IV
and section V we present our discussion and conclusion,
respectively.

Il. METHODS

In this section, we first introduce the method that was
used to extract features from the raw EEG. Then we show
the detailed structure of our proposed SHNN method. Next,
we describe the datasets used in this study. Finally, we describe
our experimental process.

A. Common Spatial Pattern Features Extraction With
Retaining Temporal Information

The Common spatial pattern (CSP) method has been widely
used to classify ERD/ERS activity in the EEG. The principle
of CSP is to seek a spatial projection matrix to maximize
the covariance of one class in the EEG whilst simultaneously
minimizing the covariance of the other class in the EEG
(see equation (2)) [22]. For multi-class MI tasks, the one-
versus-rest CSP (OVR-CSP) considers one task as one class
and the remaining tasks as the other class [23]. Assume
the X;; € RE*T denotes the j-th EEG trial belonging to
i-th class, where C and T are the number of channels and
timepoints, respectively. The typical steps to obtain the spatial
filter and CSP features are:

(1) Use a band-pass filter with a specific cut-off range to
process the raw EEG data. Then subtract the mean from
the filtered data.

(2) Calculate the covariance matrix of i-th class:

1 N;
Ei = ﬁl Zj:l X

where N; denotes the number of EEG trials belonging
to i-th class.

(3) Use equation (3) to solve equation (2) and obtain the
spatial projection matrix W:

L X7 (1)

 wltiw T T _
argmin — , st.w Ziw+w Zow=1
w w! Xow
2
IW =AW 3)

where w is a column vector of the spatial projection
matrix W.

(4) Construct the spatial filter matrix WeRC*ZM with the
hyperparameter M that is the number of selected eigen-
vectors corresponding to the largest and smallest eigen-
values.

(5) Transfer the filtered EEG data into CSP feature space
by the projection of W:

Zij=W'X;; 4)

The traditional CSP method further uses a log method
to extract CSP features from EEG data mapped into the
CSP feature space. However, the extracted CSP features lack
temporal information. In this study, we used the EEG data
Z; ; transferred into CSP feature space (hereafter referred to
as CSPWT) as the input to our proposed neural network.

B. SincNet-Based Hybrid Neural Network

In this study, we propose a SincNet-based hybrid neural
network (SHNN) to classify MI tasks. Fig. 1 shows the time
flow of the classification process of our SHNN method. The
raw EEG data were first divided into multiple time windows,
and the CSPWT method was applied to the EEG in each
time window to extract the features. The extracted spatial and
temporal features from each window were then fed into a sub-
CNN module for learning deep features, then the deep features
were fed into the GRU module for classification.

As shown in Fig. 2, the SincNet, CNN, and GRU methods
are the three main parts of the proposed neural network.
We first applied the SincNet method of Ny maps in our
network to band-pass filter the EEG data that had been
transformed into the CSP feature space (Fig. 2(c)). The filter
bank parameters, including the low cut-off frequency and the
filter’s bandwidth, can be auto-adaptive, which can result in a
minimum classification error.

The SincNet method was first proposed to discover more
meaningful filters for the better recognition of speech sig-
nals [21]. Its structure like 1D convolution and the traditional
1D convolution is defined as follows:

yinl = xlnlxhinl =3 alll b -1 (S)
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Fig. 1. Time flow of the classification progress of the SincNet-based hybrid neural network.

where x[n] is the input signal, y[n] is the filtered signal
and h[n] is the filter kernel of length L. Motived by the
1D convolution, the SincNet performs the convolution with
a predefined function g:

yln] = x[n] * gn, 0] (6)

where 6 is the parameters that SincNet needs to learn.
In the frequency domain, a band-pass filter can be seen as
a difference between two low-pass filters. Thus, the g[n] in
equation (6) can be viewed in the frequency domain as:
f f

Glf, f1, 2]l = rect(T) — rect(T)

where rect (-) denotes rectangular function, f1 and f> are the
low and high cut-off frequencies, respectively. With the use
of inverse Fourier transform, the time domain equation can be
written as:

@)

. sin(2x fan) sin(2z f1n)
8[n,f1;f2]—2f2W— W
= 2 fasinc2n fon) — 2 fisincx fin) (8)

Therefore, SincNet can act as a band-pass filter by learning
parameters f; and f>. However, to satisfy the limitation of
f1 = 0 and f, > fi in the training process, the parameters
can be modified as:

i =1 f1]
fabs = abs + fband

where fpand = |f1 — f2| is the cut-off range of the band-
pass filter. Hence, f“bs and fpunq are the parameters that
SincNet needs to update during the training process. Moreover,
to mitigate the problem of filter truncation, we windowed
the convolutional filter with the Hamming windows, and the
windowed filter kernel is:

gu)[na f13 f2] = g[na f13 f2] : U)[n]

©)
(10)

(11)
where

wln] = 0.54 — 0.46 cos(znTn) (12)

The outputs of SincNet were fed into the squeeze-and-
excitation (SE) modules [24], [25] for recalibration. The
structure of the SE modules is shown in Fig. 2(a). Suppose the
input features map X € RN/ >*NexNi where N is the number
of maps of SincNet, N. and N, are the numbers of channels
and time points. We used average pooling to generate band-
wise statistics:

J=N¢ th .
5= 2 > b i=1,2,---,N
Si c Xt lj, ’ !

13)

Next, two fully connected layers were used to learn the non-
linear relations between different bands, then obtain the scale
vector:

W =0 (Wr2,0(Wr1, S)) (14)

where W is the scale vector, S = {s1,s2, - 2SN denotes

N
the band-wise statistics vector, Wr; € R~ *Ns and Wpy €

N
RNs x5t are weight matrixes of two fully connected layers,
r is the reduction ratio, which is one of the hyperparameters,
d(-) and o (-) denotethe rectified linear unit (ReLU) activation
function and softmax function respectively. Note, the re-
calibrated output features of the SE modules have the same
shape as the input features.

Afterward, temporal and spatial convolutional blocks were
used to further extract deep features. Specifically, the temporal
convolutional block consists of a convolutional layer with a
kernel size of 1 x 10 followed by a batch normalization layer
and a ReLU layer. The mathematical formula of the ReLU
function can be given as follows:

ReLU(x) = max(0, x) (15)

In addition, the spatial convolutional block has a convolu-
tional layer with a kernel size of C x 1 (where C is the number
of the EEG channels), a max-pooling layer with a kernel size
of 1 x 6, a convolutional layer with a kernel size of 2 x 2,
a max-pooling layer with a kernel size of 1 x 2, and a fully
connected layer with 100 nodes. As shown in Fig. 2(b), the
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ratio.

number of maps of three convolutional layers are 128, 64,
and 16, respectively. Thus, the output dimension of the spatial
convolutional block is 16 x 100.

According to Fig. 1, we concatenated the output feature
vectors from the CNNs. The inputs to the CNNs are N7
different time window segmentations of the EEG mapped into
the CSP feature space. These feature vectors will be fed into
the gated recurrent unit (GRU) module to learn sequential
information. The structure of GRU is shown in Fig. 2(c). The
input of the GRU module is a vector of length 100. A reset

gate r; and an update gate z; were used in the GRU cells. The
rest gate can adjust to allow the incorporation of new inputs
with the hidden state of the previous GRU cell. Its mathematic
formula can be written as follows:

e = O'(Wrxt + Urhi—1) (16)

where W, and U, are weight matrixes of the reset gate,
o (e) denotes sigmoid activation function, and x; and h;_;
denote the input at time ¢ and the hidden state at time 7 — 1,
respectively.
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The update gate z; controls the degree of new information
that will be updated. The mathematical formula can be given
as follows:

2zt =0 (Wxy +Uzhy ) (17)

Here, o (e), x; and h;_; are the same as previously intro-
duced in equation (16),W, and U, are weight matrices of the
update gate. Consequently, the candidate state h; and output
h; can be obtained by calculating equations (18) and (19):

hy = tanh(Wx; + U (r;y ® hy—1))
hi=z2@h 1 +0—2z)Qh

(18)
19)

where tanh(e) denotes hyperbolic tangent operator, W and
U are weight matrices, and ® denotes the Hadamard product
operator. Finally, the latest outputs of the GRU module were
fed into a fully connected layer and a softmax layer for the
classification.

Since the lengths of different time windows are the same,
the size of inputs of sub-CNN (Fig. 1) is identical. Therefore,
the sub-CNN structure is consistent between different time
windows.

C. Loss Function

In this study, we used the cross-entropy loss to minimize
the classification error between the predicted labels and the
ground-truth labels. Moreover, the sparse loss [24] and center
loss [26] were used to simplify the neural network and improve
the discriminability of different class features, respectively.
The objective functions of cross-entropy loss LcE, sparse loss
Lsparse, and center 10Ss Lcenser are given as follows:

1 Nparcn
Lcg = — logy! 20
cE = —5— > ilogy] (20)
1 Nt

b = 3 30, 0 o

1 Nparcn e
Lcenter = ) Zj:l Je — Oy, 5 (22)
Ltotai = LcE + Lsparse + A% Leenter (23)

where y;.g denotes the ground-truth label of the i-th training
sample, yf denotes the normalized probability values of the
i-th training sample, Npgscn iS the number of samples in a
training batch, W; is the scale vector of the filter banks in the
j-th time window, | e|| denotes /{-norm operator, f; denotes
the feature vector extracted from k-th sample by the GRU
module, yx denotes the ground-truth label of the k-th sample,
and vf, denotes the center vector of class yy in the e-th training
epoch.

As introduced in [27], the center vectors can be updated in
each training epoch through the following formulas:

L T 00i= ) v = i,
[ —]
Nac .
]1 L4220 0(yi = J) (24)
e+l __ e e
v —vj—p*Avj
, 0, yi#j
6(yi=1)=[ Y # 25)
I, yi=]

where Avj is the average distance between the j-th class
samples and center vectors of the j-th class in the e-th training
epoch, and U;H and v; are the center vectors in the (e + 1)-th
and e-th training epochs, respectively. The term p denotes the
learning rate for center loss, and the value of p is in the range
of 0 to 1.

The center vectors can be updated with the training process,
and the center vectors are firstly initialized with random
Gaussian noise of dimension N, x 100, where N, denotes
the classes number of the MI tasks, 100 is the length of the
GRU output vector. The target of center loss is to minimize
the gap between the center vectors of one class and its GRU
outputs, which can make the features extracted from the same
class of data more aggregated (as shown in Fig. 6). Therefore,
the ability of the neural network to identify different classes
of data could be improved

D. Dataset Description

In this study, we used two public BCI competition datasets
to validate the effectiveness of the proposed neural network.
The detailed information of the two datasets are shown as
follows:

DS1: The first dataset is the BCI competition IV dataset
2b [28], which was recorded from nine participants (B1-B9)
at a sample rate of 250 Hz. For each participant, 720 trials
from two MI tasks (left hand vs right hand motor imagery
imagination) were performed, and the EEG was recorded
from 3 electrodes placed at positions C3, Cz, and C4 in
the international 10/20 system for EEG electrode placement.
Detailed information about this dataset can be found via
www.bbci.de/competition/iv/#dataset2b.

DS2: The second dataset is the BCI competition IV
dataset 2a [29], which was recorded from nine participants
(A1-A9). For each participant, 576 trials of EEG were
recorded from 22 Ag/AgCl electrodes at a sample rate
of 250 Hz. In this dataset, four kinds of MI tasks were per-
formed. Specifically, participants performed left hand (class 1),
right hand (class 2), tongue (class 3), and feet (class 4) motor
imagery tasks. The number of trials recorded for each class
is 144. Detailed information about this dataset can be found
via www.bbci.de/competition/iv/#dataset2a.

E. Experiment Setup

We used the adaptive moment (Adam) optimizer [30] to
train our proposed neural network and the optimizer para-
meters f; and f> were set to 0.5 and 0.999, respectively.
The learning rate p and weight of center loss were set to
0.00005 and 0.1, respectively. The batch size and learning rate
of the neural network were set to 16 and 0.0001. In addition,
the reduction ratio r in the SE module was chosen as 3. The
number of maps of each SincNet is 15 denoting that there
are 15 auto-adaptive band-pass filters. Due to the 3 seconds
of motor imagination time in DS1 and DS2, we segmented
the raw EEG into four-time windows of length 2 seconds,
which started from -0.5 seconds to 1 second with an interval of
0.5 seconds (i.e., —0.5s~1.5s, 0s~2s, 0.5s~2.5s, and 1s~3s).
In this study. due to the SincNet acting as band-pass filters,
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The training loss and evaluating accuracy of each participant (B1-B9) on DS1. We iteratively trained the SHNN method 200 times for

each participant. For each training epoch,the validating datasets were used to validate the SHNN method after training. The mean training time of
200 epochs for each participant is 399.31 seconds. The red lines denote the training loss curves, while the blue lines denote the evaluating accuracy

curves.

we only use the notch-filter to remove the 50/60Hz power-line
noise of the raw EEG. We trained our proposed neural network
with Pytorch on an AMD R7 3700X CPU, 32 GB RAM, and
the Nvidia 2080Ti platform. For each participant, eight of the
ten training datasets were used to train the SHNN method,
while one of the ten datasets was used as a validation dataset,
and the performance of our SHNN method was evaluated on
the last of the ten datasets.

In this study, Cohen’s kappa coefficient and classification
accuracy are used as two metrics for performance evaluation.
The mathematical formula of Cohen’s kappa coefficient is
given as follows:

k= Po — Pe (26)
- Pe
where p, denotes the classification accuracy, p, = 2’1'(,7‘;’"“’

denotes the hypothetical probability of chance agreement, n,;
and n;, are the sum of each column and row of the confusion
matrix, and N denotes the sum of all entries in the confusion
matrix.

1. RESULT

A. The Training Loss and Evaluating Accuracy
of the SHNN Method

We first analyzed the training loss and the accuracy of the
SHNN method on DSI. Fig. 3 shows the training loss and
accuracy for each participant (B1-B9) on DS1. The number of
training epochs is 200. For each training epoch, the validating
datasets were used to validate the SHNN method after training.
The red lines denote the training loss curves, while the blue

filterl filter7
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A ‘ ‘ A
\
\
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Fig. 4. Examples of the first, seventh and fifteenth sinc-filters g,,[n]
learned by the SincNet method for participant B4 on DS1. The f;‘bs and
frand are two parameters, namely, the low frequency and bandwidth of
the sinc-filter.

lines denote the accuracy curves. As shown in Fig. 3, the
accuracy is increased while the training loss is reduced. It can
be seen that the accuracy increased quickly during the first
25 training epochs and the training loss is generally stable
after training about 100 epochs, which suggests that the SHNN
metod can be trained well for MI task classification. The
average training time and single-trial test time are 399.31 s
and 2.03 s, respectively.

We take one participant as an example to illustrate the
operation of our method. Fig. 4 shows the first, seventh, and
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fifteenth sinc-filters g, [n] learned by the SincNet method
for participant B4 on DSI1. The low frequency signal com-
ponents and optimal bandwidths were automatically identi-
fied by SincNet and varied across the different sinc-filters.
The first sinc-filter can extract spectral information from
4 Hz to 10.4 Hz, while the seventh and fifteenth sinc-filters
extract spectral information from 18.41 Hz to 24.81 Hz and
37.61 Hz to 44.02 Hz, respectively. The mu and beta rhythms
(8-30 Hz) that have been proved crucial for the MI tasks
classification [9] are included in the band-pass frequency range
of these sinc-filters.

To better show the role of the SE module in our SHNN
method, we also illustrate some examples of the weight values
learned by the SE module. Fig. 5 shows examples of the
weight values of the EEG data filtered by the 15 sinc-filter
of the SincNet method across the four-time windows for
participants B3 and B4 on DSI.

The classification accuracy and kappa values for participants
B3 and B4 are (B3: accuracy = 0.5833, kappy = 0.1667, and
B4: accuracy = 0.9730, kappa = 0.9458), which are the worst
and best performances achieved by the SHNN method on DS1.
As shown in Fig. 5, the weight values from 0 to 1 were
automatically assigned to the data after filtering by the dif-
ferent sinc-filters. When inspecting time window 2 (TW2),
comparing the weight values distribution of participants B3
and B4, reveals that, for participant B3, the weight values of

(a) without center loss (b) with center loss

Fig. 6. The distribution of feature vectors extracted by SHNN (a) without
and (b) with center loss for participants B4 on DS1. All feature vectors
are mapped in the 2D embedding space by t-SNE method.

frequency bands 3 to band 13 are similar, while for participant
B4, the weight values of the different frequency bands are
more sparse. Thus, a more sparse representation of features
may contribute to a better classification performance due to
the suppression of redundant information.

We used the t-distributed stochastic neighbor embedding
(t-SNE) method [31] to map the feature vectors to a 2D
embedding space before and after applying the center loss
method. The distribution of feature vectors for participant B4
is shown in Fig. 6. The red and blue dots indicate the left-hand
and right-hand classes of samples, respectively. It can be seen
that after applying the center loss method, the feature vectors
of the same class are gathering together and the variance is
smaller. Hence, the center loss method can improve the feature
vectors’ power for the discriminating different class samples,
which also can be proved by the ablation experiments results
in Table I (see below).

B. Result of the Ablation Experiments

Three ablation experiments were conducted on DS1 to
verify the effectiveness of the SincNet method and specific
loss function (e.g., sparse /1-norm loss and center loss) within
our proposed SHNN method. We used three models named
modell, model2, and model3, which represent three cases:

1) Modell: The SHNN method is tested without any addi-
tional structure (SincNet and SE modules) and only trained
with cross-entropy loss.

2) Model2: The SHNN method is tested without the SincNet
module and trained with cross-entropy loss, sparse /{-norm
loss and center loss.

3) Model3: The complete SHNN method is only trained
with cross-entropy loss.

Table I shows the classification accuracies, kappa values,
and Wilcoxon signed-rank test results of three ablation exper-
iments, respectively. The mean classification accuracies of
modell, model2, and model3 are 0.7428, 0.7827, and 0.8044,
while the mean classification accuracy of our proposed model
is 0.8349. Moreover, the mean kappa values of modell,
model2, and model3 are 0.4858, 0.5643, and 0.6086, while
the mean kappa value of our proposed model is 0.6697.
In addition, the Wilcoxon signed-rank test results demon-
strate that our complete SHNN method, i.e., included the
SincNet and SE modules and trained with cross-entropy loss,
sparse /1-norm loss and center loss, outperformed the modell
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THE CLASSIFICATION ACCURACIES, KAPPA VALUES AND WILCOXON SIGNED-RANK TEST RESULTS OF ABLATION EXPERIMENTS ON DS1

TABLE |

Participant Modell Model2 Model3 Proposed Model
Acc(Kappa) Acc(Kappa) Acc(Kappa) Acc(Kappa)

Bl 0.7583(0.5167) 0.7778(0.5556) 0.8055(0.6111) 0.8333(0.6667)

B2 0.5588(0.1176) 0.5882(0.1765) 0.5882(0.1765) 0.6176(0.2353)

B3 0.5278(0.0556) 0.5556(0.1111) 0.5833(0.1667) 0.5833(0.1667)

B4 0.8919(0.7842) 0.9459(0.8918) 0.9189(0.8370) 0.9730(0.9458)

BS 0.8378(0.6763) 0.8649(0.7283) 0.8919(0.7830) 0.9189(0.8375)

B6 0.7500(0.5000) 0.8056(0.6111) 0.8333(0.6667) 0.8889(0.7778)

B7 0.7778(0.5556) 0.8333(0.6667) 0.8611(0.7222) 0.8611(0.7222)

BS§ 0.8053(0.6105) 0.8421(0.6842) 0.8684(0.7368) 0.9211(0.8421)

B9 0.7778(0.5556) 0.8308(0.6531) 0.8889(0.7778) 0.9167(0.8333)
Mean 0.7428(0.4858) 0.7827(0.5643) 0.8044(0.6086) 0.8349(0.6697)

p-value
(vs. proposed model) 0.008 0.008 0.018 -
TABLE Il

THE CLASSIFICATION ACCURACIES, KAPPA VALUES, AND WILCOXON SIGNED-RANK TEST RESULTS

OF THE DIFFERENT METHODS APPLIED TO ALL PARTICIPANTS IN DSH1

Participants Raza et al [37] 01[13?]&11 Xl[l;g] al Basha[s3hj]t1 ctal Proposed Model
Acc Acc Acc Acc Acc(Kappa)
B1 0.7500 0.8060 0.7260 0.7140 0.8333(0.6667)
B2 0.5156 0.6160 0.6030 0.6057 0.6176(0.2353)
B3 0.5219 0.6060 0.6690 0.5809 0.5833(0.1667)
B4 0.9656 0.9810 0.9120 0.9713 0.9730(0.9458)
BS 0.7719 0.8180 0.8060 0.9132 0.9189(0.8375)
B6 0.7406 0.8430 0.7060 0.8594 0.8889(0.7778)
B7 0.7000 0.7250 0.7320 0.7698 0.8611(0.7222)
B8 0.8844 0.8620 0.7770 0.9196 0.9211(0.8421)
B9 0.7500 0.8600 0.7120 0.8453 0.9167(0.8333)
Mean 0.7333 0.7910 0.7381 0.7977 0.8349(0.6697)
p-value 0.008 0.038 0.021 0.008 -

(vs. proposed model)

(Z=-2.670, p=0.008), model2 (Z=-2.666, p=0.008) and
model3 (Z=-2.371, p=0.018).

C. Comparison of the Classification Accuracies
and Kappa Values

In order to validate the efficacy of our SHNN method,
we compared its performance with other state-of-the-art
methods, including EEGNet, FBCSP, and so on [18], [19],
[32]-[37]. Table II shows the classification accuracies, kappa
values, and Wilcoxon signed-rank test results from the nine
participants in DS1. Table III shows the classification accura-
cies, kappa values, and Wilcoxon signed-rank test results of
the nine participants in DS2.

As shown in Tables II and III, our SHNN method achieved
the highest mean classification accuracies of 0.8349 and
0.7462, and the highest mean kappa values of 0.6697 and
0.6648 on datasets DS1 and DS2, respectively. Compared with
other state-of-the-art methods, our SHNN method achieved
improvements of 10.16%, 4.39%, 9.68%, and 3.72% in aver-
age classification accuracies on DSI, respectively, while for

DS2, the improvements are 9.58% (kappa), 7.48% (kappa),
14.62% (acc), and 9.19% (acc). It can be seen that, for fourteen
of the eighteen participants in DS1 and DS2, our SHNN
method achieved the highest classification performance. Since
the classification results were not normally distributed (as
confirmed by Kolmogorov—Smirnov test results), we used
Wilcoxon signed-rank test to compare the performance of our
SHNN method with the other state-of-the-art methods. The
statistical test results demonstrate the superiority of our SHNN
method in the two-class and multi-class MI classification
tasks. The p-value between SHNN and eight compared method
on two datasets are 0.008 (Z=-2.666), 0.038 (Z=-2.073),
0.021 (Z=-2.310), 0.008 (Z=-2.666), 0.008 (Z=-2.666), 0.028
(Z=-2.192), 0.008 (Z=-2.666) and 0.038 (Z=-2.073),
respectively.

IV. DISCUSSION

CSP is a very widely used and popular feature extraction
method for MI classification tasks. However, previous studies
that have used CSP to extract spatial features from EEG ignore
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TABLE IlI
THE CLASSIFICATION ACCURACIES, KAPPA VALUES, AND WILCOXON SIGNED-RANK TEST RESULTS OF THE
DIFFERENT METHODS FOR ALL PARTICIPANTS IN DS2

FBCSP Asensio-Cubero et al Kam et al EEGNet Proposed Model
Participants [18] [32] [33] [19] p

Kappa Kappa Acc Acc Acc(Kappa)
Al 0.6760 0.7500 0.7400 0.7188 0.8276(0.7706)
A2 0.4170 0.5000 0.3500 0.5104 0.6897(0.5864)
A3 0.7450 0.7400 0.7600 0.7917 0.7931(0.7538)
A4 0.4810 0.4000 0.5300 0.5799 0.6552(0.5426)
A5 0.3980 0.1900 0.3800 0.6458 0.5862(0.4467)
A6 0.2730 0.4100 0.3100 0.5104 0.4828(0.3539)
A7 0.7730 0.7800 0.8400 0.6632 0.8621(0.8162)
A8 0.7550 0.7200 0.7400 0.7431 0.8966(0.8619)
A9 0.6060 0.7800 0.7400 0.7257 0.8987(0.8528)
Mean 0.5690 0.5900 0.6000 0.6543 0.7426(0.6648)

p-value 0.008 0.028 0.008 0.038

(vs. proposed model)

the temporal information contained in the EEG. Moreover,
the performance of CSP is easily affected by the selection
of the cut-off frequencies of the band-pass filters used with
the method. In this study, we proposed a new method, SHNN,
to automatically learn spatial-spectral-temporal information
from the EEG.

The four main advantages of our SHNN method are:
(a) SincNets were used to automatically identify band-pass
filters from the data, meaning the parameters of each filter
can be automatically learned from the data, which results in
a better spectral features extraction of the MlI-related infor-
mation from the EEG. (b) The use of the GRU module and
CSPWT feature extraction method can make full use of the
temporal information in the EEG and boost the classification
performance. (c) Center loss was used to improve the dis-
tinguishability of different classes of samples. (d) The sparse
representation of data filtered into different frequency bands
can be learned by the SE module.

The function of the SincNets module in our SHNN method
is to band-pass filter the EEG into different frequency ranges.
As shown in Fig.4, according to the characteristics of the
EEG data, each SincNet can determine a specific frequency
range in order to optimally band-pass filter the data into
spectral features. Moreover, the optimal cut-off ranges of the
band-pass filters vary across different participants and the
SincNet module can make full use of the differences in spectral
information between participants. Hence, our SHNN method
can extract more discriminative spectral information from the
EEG for classification.

The traditional CSP method has the limitation of losing
temporal information of EEG. In this study, we used the
CSP projection matrix to map EEG data into the CSP feature
space while retaining the temporal information from the EEG.
In addition, the GRU module was used to learn the sequential
information from different time window segmentations of the
EEG. Furthermore, the center loss was used to train our SHNN
method, which allows it to reduce the variance of a single
class of samples and gather the samples together. Fig. 6 shows

the clustering performance of the center loss method. The
feature vectors from a single class are gathered together and
the variance is reduced. Table I demonstrates that the use of
center loss can improve the classification performance of our
SHNN method (with center loss vs. without center loss, DS1
accuracies: 0.8349 vs. 0.8044, DS2 accuracies: 0.6697 vs.
0.6086).

The SE module in our method can re-calibrate the data
by explicitly modeling interdependencies between EEG chan-
nels [23]. As shown in Fig. 5, different weight values were
automatically assigned to data processed by different SincNets
and segmented into the different time windows. The frequency
bands include discriminated information that can be assigned
to a higher weight value, which can enhance the features
extracted from those bands. On the other hand, the redundant
features could be suppressed by assigning a lower or zero
weight value. Therefore, the SE module can improve the
representational power and ease the learning of our SHNN
method.

Of course, our SHNN method still has some limitations.
Although Tables II and III show the superiority of our SHNN
method, the structure of SHNN is complex. Recently, prun-
ing [38] and knowledge distillation [39] techniques have
been used to simplify the structure of neural networks while
maintaining their performance at the same time. We will try to
combine these methods with our SHNN method to achieve a
more compact neural network. Secondly, our SHNN method is
an offline neural network that has not been validated in online
BCI environments. In future work we will explore its use in
online BCI experiments.

V. CONCLUSION

In this study, we proposed a SincNet based hybrid neural
network consisting of SincNets, SE modules, and GRU mod-
ules, which can automatically filter data and extract spatial,
spectral, and temporal features from EEG. The results of
our experiments, conducted on two public BCI competition
datasets, demonstrate that the performance of our SHNN
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method is significantly better than that of other state-of-the-
art methods. Our ablation experiments result also demonstrate
the effectiveness of the SincNet and SE modules within our
method.
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