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Abstract— Despite great innovations in upper-extremity
prosthetic hardware in recent decades, controlling a multi-
ple joint upper limb prosthesis such as an elbow/wrist/hand
system is still an open clinical challenge, in large part
due to an insufficient number of control inputs available to
users. While simultaneous control is in its early stages, the
common control approach is sequential control, in which
joints and grasps are driven one at a time. In this paper,
we introduce and evaluate a concept we call trajectory
control, that builds upon this approach, in which motions of
the wrist, elbow, and shoulder DOFs (and subsets of them)
are coupled into predefined sets of coordinated trajecto-
ries; to be selected by the user and driven with a single
input variable. These trajectories were designed based on
an earlier motion study of activities of daily life obtained
from human demonstrations. We experimentally evaluate
the efficacy of our approach through a human subjects
study in which tasks are performed in a virtual environment.
The results show that as device complexity increased (i.e.
greater number of DOFs corresponding to more proximal
amputations), participants were able to complete tasks
faster with trajectory control while exhibiting similar lev-
els of body compensation when compared to sequential
and simultaneous control. Additionally, participants found
trajectory control to be more intuitive and displayed more
natural movement.

Index Terms— Prosthesis control, prosthetics, upper
limb.

I. INTRODUCTION

ENABLING upper-limb prosthesis users to effectively
position and orient an end-effector is an ongoing chal-

lenge, often overshadowed by a focus on multi-degree of
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Fig. 1. Subject performing a cup pouring task, seen wearing the HMD
and is using the controller to operate the virtual wrist. In the top right a
semi-transparent red cup is visible indicating the desired cup orientation
goal, which turns green (bottom right) once the cup reaches the target.

freedom (DOF) hands [1]. A lack of proper joint control can
lead to unnatural movements [2], with many users developing
overuse syndromes [3]. Partly due to a limited number of
available control inputs and intuitive control strategies, little
progress has been made with respect to the development of
fully articulated prosthetic wrists and arm devices. Addition-
ally, complex control strategies can induce additional cogni-
tive burden that leads to an increase in device abandonment
rates [4]. In this work we investigate a novel control approach
and validate it by comparing it to other methods in virtual
reality (VR) (Fig. 1).

Conventionally, myoelectric upper-limb prosthetic devices
are operated with direct control, also known as sequential
control. In multi-DOF prosthetic hands, a user is outfitted
with a standard 2-site surface electromyography (sEMG) on
their residual limb and uses a “patterning” of their muscle
activity to select from a set of pre-programmed grasp types.
After grasp selection, the user is then able to move all the
joints of the hand simultaneously along the chosen grip motion
path and open/close it with a single analog input. In transra-
dial prosthetic devices that include a powered wrist rotator,
sequential control can also be used to toggle between grasping
modes and a pronation-supination mode. However, in fully
articulated 3 DOF joints, such as the wrist and shoulder,
controlling one joint at a time would be time consuming and
poses a cognitive challenge in deciding the order in which
the joints should be rotated. Some groups have leveraged
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pattern recognition (PR) [5] to mitigate the need for tedious
mode-switching by classifying muscle patterns to individual
DOFs, for example, in shoulder disarticulate amputees that
have undergone targeted muscle reinnervation [6]. On the
other hand, simultaneous joint control, primarily explored in
research, carries its own set of challenges, such as identifying
enough available control inputs (e.g. sEMG sites).

Advancements in prostheses hardware is inadequate without
an intuitive or practical way for amputees to control them [7],
and various groups have attempted to bridge the gap through
different interpretations of simultaneous control. For example,
some groups have leveraged PR, where synergies between the
residual limb and the device are coupled, such as the shoulder
or elbow joint angles and the wrist in transradial amputees [8].
However, additional movement combinations would have to be
introduced as additional classes, and thus increasing training
time. A more “natural” approach could be through regression
where data driven methods are used to map multiple inputs
to multiple outputs simultaneous, as has been demonstrated
in a 2 DOF prosthetic wrist [9]. These methods are robust
under certain conditions, however, they are unlikely to reach
the majority of prosthesis users as they can be either invasive,
require additional hardware, or include very involved training
and retraining phases.

Simultaneous controls have also been proposed without
the use of ANNs, such as on-line optimization techniques in
transhumeral amputees [10]. Wrist or elbow rotation could also
be directly coupled to shoulder abduction [11]. Controlling
a wrist device using symmetric or anti-symmetric mirror-
ing of the healthy hand has also been shown to be useful
for bimanual manipulations [12]. In shoulder disarticulate
amputees, directly controlling the 3 DOF of the device’s
shoulder becomes less tractable, and solutions have included
controlling the whole arm in the end-effector space using a
foot interface [13], or, in the case of a wheelchair mounted
robotic arm, a joystick [14]. These methods offer an additional
control input beyond the standard two-site sEMG [15], and
while they enable users to perform complex arm motions, they
also impose a cognitive burden that limits efficacy.

In this paper we present a novel prosthesis control approach
based on pre-programmed motion trajectories that allow all the
joints of a prosthetic arm to be simultaneously controlled with
a single input akin to sequential control. Our “trajectory con-
trol” method makes use of all available DOFs of a myoelectric
prosthetic wrist, elbow-wrist, or shoulder-elbow-wrist device
with the same standard clinical interfaces (e.g. 2-site sEMG),
while also reducing the cognitive burden associated with
controlling multiple joints simultaneously. Hereafter we refer
to a wrist, elbow-wrist, and shoulder-elbow-wrist prosthesis as
3 DOF, 4 DOF, and 7 DOF devices, respectively, referring to
the controllable DOF.

The prespecified motion trajectories are based on the
authors’ previous work on arm motions performing activities
of daily living (ADL) (Fig. 2) [16]; in total there are 5 trajec-
tories for the 3 DOF device, and 11 trajectories each for the
4 and 7 DOF devices. These trajectories were obtained by clus-
tering and averaging arm motions from healthy participants
performing an extensive set of ADL tasks. A range of par-
ticipants were recorded in order to include individual motion

Fig. 2. Summary of data analysis pipeline that identified prototypical
arm motions. (a) Motion capture collected time-series data from partici-
pants completing ADL. (b) Arm motions were segmented and clustered.
(c) Each cluster was averaged to obtain a single representative trajec-
tory, resulting in different number of prototypical motions for the 3, 4,
and 7 DOF arm models.

variation [17]. We refer to the proposed approach as trajectory
control, and we believe would offer users more intuitive, better
movement cosmesis, and more assistive control while limiting
body compensation. We test this hypothesis using various
quantitative and qualitative evaluation metrics [18] that pin
the proposed control against conventional myoelectric control
methods that include sequential and simultaneous control.

We coin the term “movement cosmesis” to describe how
natural the motion looks, analogous to conventional “cosme-
sis” that refers to how closely the prosthesis resembles a
real human limb. It can be quantitatively estimated in var-
ious ways, such as identifying joint angle deviations from
natural movement, or through generating smooth motions by
minimizing jerk [19]. However, in this work we leverage the
participants’ own perception of movement cosmesis through a
questionnaire.

The efficacy of trajectory control is demonstrated with par-
ticipants without limb differences in VR (Fig. 1), specifically
identifying whether leveraging trajectory control in 3, 4, and 7,
DOF devices outperforms conventional control approaches
(i.e. sequential and simultaneous). VR has been embraced
across a wide range of applications [20] as a low-cost method
to iterate and test new controls and device designs that extend
to a real world setting [21]. Other applications of VR have
included training amputees to use a new prosthesis [22], fitting
prostheses [23], and rehabilitation [24].

This paper builds upon the authors’ previous work, where
learned prototypical motions were first developed [16] and
tested in a pilot [25], by looking to demonstrate trajectory
control as a feasible control method to position and orient
the end-effector of various prosthetic devices. A summary
of the method that was used to obtain prorotypical motions
is included in section II. A; a full description can be found
in [16]. The pilot study [25] indicated that trajectory control
was superior to both sequential and simultaneous control on a
number of criteria, however, the protocol primarily examined
the execution of individual submovements rather than whole
tasks, grasping was not required, and testing was limited to
a 3 DOF device. In the present work we 1) expand the
analysis to a more comprehensive task protocol where tasks
are comprised of multiple submovements, 2) analyze 4 DOF
and 7 DOF devices, and 3) address the following questions
regarding trajectory control use in prosthetic devices: i) does
it reduce the time it takes to position and orient the hand,
ii) does it help mitigate body compensation, and iii) are there
differences in user preference between control methods. For
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the remainder of this paper, we begin with describing the data
collection protocol and set up (section II). We proceed with the
analyzing the results (section III) and follow with a discussion
covering conclusions and future work (section IV).

II. EXPERIMENT PROTOCOL

The role of an upper limb prosthesis is primarily to restore
independent living by enabling amputees perform ADL tasks.
Therefore, participants were asked to complete a series of ADL
tasks using various virtual prosthetic arms and controls. Body
tracking and VR display architecture was designed after [23].
Twelve right-handed participants (ages 18-53) completed the
study over one session, lasting from 6 to 8 hours. In addition
to lunch, participants were encouraged to take as many breaks
as they needed. Data processing and analysis was performed
in MATLAB 2021a. This study protocol was approved by Yale
University Institutional Review Board, HSC# 1610018511.

A. Overview of Prototypical Motions

Given that arm motion behavior likely occurs in a con-
tinuous and smooth manifold [26], we hypothesize that by
clustering and extracting a limited number of prototypical arm
motions we can enable prosthesis users to carry out a vast
number of activities. Specifically, each task can be divided into
generalizable subtasks, such as reaching or transferring. For
example, the task of drinking from a cup would be completed
using the following prototypical motions: reaching in front and
bringing to mouth motions. From a user’s perspective, they
would toggle to an appropriate prototypical motion, execute
it, then proceed to toggle to the next. Though the motions
themselves are not flexible and could result in certain users
being unable to complete certain subtaks, we nonetheless hope
to demonstrate the potential of this novel approach.

These motions were extracted in [16] using a series of data
driven methods, where the goal was to obtain a categorization
of motions representative of the range of ADL that are directly
relevant to prosthesis users. These included tasks related to
hygiene, feeding, and transferring; for example, reaching the
axilla, eating with a fork, and bimanual transferring of a
box. The procedure to obtain the prototypical motions is
summarized in Fig. 2. First, the arm joint angles of 12 healthy
participants, including left and right handed, and different
from those participating in the VR portion of this study,
performing 25 ADL were collected in the real world in a
laboratory setting. Each trial was then manually segmented
into clear reaching and transferring sub-movements. Three
repetitions for each participant were averaged using dynamic
time warping (DTW) and DTW barycenter averaging (DBA)
[27]. The motions were clustered using agglomerative Hierar-
chical Clustering [28], the distance metric was Ward’s linkage
using DTW [29], and the number of clusters was defined using
the L-method [30]. Finally, a representative motion from each
cluster was obtained using DBA, resulting in 5 unique motions
for a 3 DOF model and 11 unique motions for the 4 DOF
and 7 DOF models.

B. Virtual Reality Set Up

The VRE was designed in Unity, offering unimpaired
participants an immersive environment to operate prosthetic

Fig. 3. Four screenshots of the environment highlight the virtual posters
placed on the walls, and a few key tasks. Starting the at the top left going
clockwise the tasks are as follows: kettle pour, screw, cook, and fork use.

arms akin to prosthesis users. Virtual objects were either
designed in the environment, in Maya 3D modeling software,
or downloaded from the web. Visual feedback was designed to
imitate a possible set up in real life: a virtual computer screen
displayed the mode and controls that the device was currently
in, the control inputs coming from the user, and two posters
placed on the left and right walls of the virtual room listing the
modes for the participants to reference (Fig. 3, left panels); top
lists prototypical motions for trajectory control and the bottom
lists the order of arm joints. All segments of the prosthesis
(humerus, forearm, and hand) were scaled to the average
human arm dimensions. For simplicity, we only simulated
right-arm prostheses, and therefore the VR environment was
also designed for right handed participants. Although grasping
is included in the protocol, given that it is not the focus,
in-hand object kinematics and dynamics were not considered;
successful initiation of a grasp (and likewise release) resulted
in the object to automatically connect to the palm of the
end-effector as if they had grasped it using their own hand.

C. Control Inputs

The control input for the virtual prosthesis was either the
position and orientation of the right hand for the natural
and the no-wrist control modes, or K-Mix (Keith McMillen
Instruments, Berkeley CA, USA) (Fig. 4), a modular control
board MIDI audio interface, operated mostly by the left hand
for controls mimicking myoelectric prosthetics. The MIDI
controller also ensured that the inputs were consistent across
the different devices and control conditions, i.e. compared to
the different button interfaces on a game controller, MIDI
sliders are all operated the same way. To imitate sEMG inputs
found in myoelectric devices, slider intensity corresponded to
a velocity input; the right side of the slider was the “forward”
direction and the left was “backward”, while buttons were
used (in sequential and trajectory control only) as toggles
between grasping or switching between joints or prototypical
motions. For each slider, one inch in the middle of each
slider was defined as a “dead zone”, where velocity input
remained at zero, and whose value gradually increased towards
the ends either in the positive or negative direction. This
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Fig. 4. K-Mix MIDI keyboard used as a prosthesis controller by program-
ming the buttons and sliders. (a) This slider was used in conjunction with
any one of the buttons highlighted in (b) for both sequential and trajectory
control. (c) These sliders were dedicated for sequential control, with each
corresponding to a different arm joint.

way participants could rest their finger on the slider without
inducing motion; a particularly important feature for simulta-
neous control when multiple sliders were being used. A digital
keyboard was selected over an analog due to the ability to
program a “zeroing” of the sliders when fingers were no longer
making contact, akin to a joystick springing back to the middle
when released. The keyboard was set on the torso pad worn
by the participants and is meant to be controlled with the left
hand for the 3 and 4 DOF device, freeing up the right arm
to move. For 7 DOF device, both hands were free to control
the device since all the arm joints were controlled with the
keyboard (Fig. 5).

In this study we used 12 Bonita motion capture cameras
(Vicon, Oxford, UK), recording at 100 Hz with an accuracy
within 1 mm and 1◦ of orientation, to track the subjects’
body segments: hand, forearm, humerus, torso, and pelvis. For
easy donning, markers were placed on wearables. To track
the hand markers were placed on a small pad with elastic
straps. An orthopedic elbow brace (Orthomen ROM Elbow
Brace, Foothill Ranch CA, USA) was used to track the forearm
and humerus; the range of motion of the elbow joint was left
unrestricted; though participants found it helpful to lock the
elbow in a single configuration when keyboard was used to
control it. A modified lacrosse pad (Gait Gunnar Lacrosse
Shoulder Pads) was used to track the torso. Finally, a nylon
tactical belt with a plastic buckle was used for pelvis tracking.
Marker clusters for the torso and the pelvis were placed on
the dorsal side to avoid optical occlusions (Fig. 5).

For prosthetic devices related to more proximal levels of
amputation, distal segments were unused, for example, the
hand and forearm were not tracked when the participants
operated the elbow-wrist prosthetic device; the input came
directly from the controller for those joints. The reference
frame for the virtual device came from the most distal intact
segment, for example, the humerus was used to position the
base of the elbow-wrist device. For the 7 DOF device, the torso
was used as reference frame. In addition to providing partici-
pants an immersive experience by displaying a virtual arm in
place of their own, the presence of arm segments also acted

Fig. 5. Top panel: each component of the prosthesis control input
is described. Bottom panels: highlighted marker clusters correspond
to different body segment. Pelvis markers are seen as a small cluster
near the forearm. Markers are unhighlighted in the right panel for visual
reference.

as a reference for the positions of the prosthetic joints. The
reflective marker locations include bony landmarks that were
also used to calculate the joint coordinate reference frames
according to [31]. Head tracking was performed through Vive
(HTC, Taoyuan City, Taiwan) head mounted display (HMD).
Calibration between Unity, Vicon, and Vive was performed
automatically by minimizing the distance between a set of
reflective markers and Vive joysticks.

D. Control Modes

Each participant completed the experiment using five unique
control methods. Initially, participants completed tasks using
a positive and a negative control, hereby referred to as natural
and no-wrist controls, respectively. In natural control, partic-
ipants used their own unencumbered hand to complete the
tasks; this served as a performance benchmark that participants
aspired to achieve when using the prostheses. With the aid of
a marker cluster placed on the back of the hand, the virtual
hand closely matched the position and orientation of the real
hand.

The no-wrist control was a transradial test condition in
which the virtual prosthesis lacked wrist mobility. The sub-
jects’ virtual hand was fixed in place relative to the forearm.
In this mode, participants were to complete tasks without the
ability to rotate their wrist, thereby needing to compensate
using their residual limb and torso. For both the natural and
no-wrist trials only, grasping was instantaneously initiated
when the hand reached the target location and orientation.
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Negative controls in which the virtual prosthesis lacked
elbow or shoulder control, in addition to the wrist, were not
included in the testing protocol due to the inability to perform
most tasks; these limitations were identified during a pilot
study.

Sequential control imitated current myoelectric technologies
where users have access to only two control inputs. In this
mode only one slider was in use, while switching was relegated
to a button, mimicking the mode switching in myoelectric
devices. While this set up seems distinct to the two-site
sEMG input in myoelectric devices, functionally they are the
same: each half of the slider rotates a joint either forward
or backward. A single button press toggled the control mode
down the joint list, a double tap toggled the mode up the
list, and a prolonged 1 second press of the button toggled
grasping (or releasing). Switching between controllable joints
cycles in the following order: i) shoulder plane of elevation,
ii) elevation, iii) shoulder internal rotation, iv) elbow flexion-
extension, v) wrist pronation-supination, vi) flexion-extension,
and vii) radial-ulnar deviation. Only the relevant joints are
included for the 3 and 4 DOF devices. This sequence was listed
on a poster in the VRE that the participants could reference
at any time (Fig. 3, bottom left panel). This switching scheme
is akin to switching between grasps and available joints in
current prostheses.

In simultaneous control, participants were granted access
to all controllable joints at the same time by leveraging
multiple sliders on the MIDI keyboard. Like natural control,
this mode represents the state of the art and a theoretical
condition where users have all control inputs available to them
simultaneously; presently impractical with standard sEMG
control which would require 2 × 8 inputs for 7 DOF devices
(7 pairs of inputs for the joints and 1 pair for grasping). Each
slider corresponded to a single DOF, and participants could
decide whether they wanted to operate them using several
fingers concurrently or one at a time. Much like each of the
controllable joints, grasping and releasing was also performed
using a dedicated slider.

Finally, in trajectory control participants had the same
interface as the sequential control: one slider to move forward
and backward along a prototypical arm motion, and a button to
toggle between the modes and initiate a grasp. Implementing
the learned motions from [16] there were 5, 11, and 11 options
for the 3, 4, and 7 DOF devices, respectively; an example of
each is displayed in Fig. 6. Each trajectory mode was listed
on a poster in the VRE (Fig. 3, top left panel) accompanied
by a list of tasks from which the motions were extracted from
and would likely be the best candidates to help complete those
tasks. In practice, we suspect users will have visual cues on
hand, such as a “cheat sheet”, as they become accustomed to
trajectory control, though this warrants its own investigation
beyond the scope of this work. Although individual trajectories
were composed using coordinated joint motions, it was useful
to define them at an end-point level; in contrast to sequential
and simultaneous controls which are best defined at a joint
level. For all the control modes, a virtual computer screen
was placed in front of the subjects while they completed tasks,
displaying the present mode and their current input.

Fig. 6. An example of a prototypical motion is shown for each device.
In the 4 DOF case, the humerus is stationary.

E. Study Procedure

The protocol included a set of tasks inspired by work
done in evaluating upper-limb prosthesis performance [32].
Because motions in trajectory control were generated by
averaging a collection of diverse tasks and participants, there
is no guarantee that any individual motion would be able to
successfully complete any of those tasks, and therefore a com-
prehensive demonstration was deemed necessary. We selected
a set of 12 ADL tasks that required the use of only the
right arm, covered a variety of locations, and included both
reaching motion and object manipulation (Table I). These were
chosen to span as many of the learned motion modes as
possible. 9 tasks were chosen from those used in generating
the prototypical motions and were set up according to the
same dimensions listed in [5]. 3 totally novel tasks that
are comprised of a series of distinct submovements were
also selected to test trajectory control with tasks that are
significantly different from any task that was used to learn the
motions. The additional tasks include the following: pouring
from a kettle, turning a screw, and cooking (Fig. 3). The
12 tasks were prioritized previously for hand function assess-
ment protocols [33] and amputee surveys [34].

The tasks were completed using each control mode in the
order depicted in Fig. 7: the participants completed the series
of 12 tasks using each control mode starting with the natural
condition, followed by no-wrist control, then in a randomized
control condition order they completed the tasks with 3 DOF
device, followed by the 4 DOF and 7 DOF devices. The tasks
were randomized for each series. Prior to each new device and
control condition, participants were given a general overview
of the controls, which included a description of the trajectories
and the control order of the operable joints.

Participants were also provided unstructured practice time to
control the device itself prior to each task to mitigate learning
effects when faced with an unfamiliar environment or control
interface. Training ended when participants felt ready and had
a strategy for how they were going to accomplish the task,
such that they were not hesitating when recording started. For
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Fig. 7. The experiment protocol consisted of eleven blocks of testing, corresponding to each control mode and device combination (in green). Each
block (in green) consisted of a randomized order of the twelve tasks.

TABLE I
PROTOCOL TASKS

trajectory and sequential control, participants preselected the
mode during training with which they would start the trial.
Repeating tasks was permitted, as we hoped to capture the
participants’ best efforts. Although performance was closely
monitored by the experimenters, participants were additionally
instructed to indicate if a task could not be completed.

Prior to the start of each task, participants were asked to
begin with their hands relaxed by their side if standing or
on their laps if sitting. They were then instructed to match
the position and orientation of the end-effector, indicated
with a red semi-transparent hand model (Fig. 8). For tasks
that included several subtasks, the successful completion of
a subtask automatically initiated the next one. Each subtask
included a goal and tolerance for both the position and
orientation and a hand closure requirement; generally, within
2 centimeters and 10◦, established through pilot studies that
we conducted. The task goals were defined independently from
the prototypical motions that make up trajectory control to
qualify the method’s performance. A successful completion of
a grasping subtask resulted in the object to automatically be
placed within the hand (i.e. initiating a grasp while in the pose
seen in Fig. 8b) and was followed by a transferring subtask
in which the object, rather than the end-effector, was to be

Fig. 8. Example of a reach to a cup task. (a) Semi-transparent hand
indicates the desired goal position of the user-controller hand, which
dims as the hand approaches it. A red arrow is included next to the
hand to assist with visualizing the current hand orientation. (b) Task
completion occurs when the hand is within the Euclidean tolerance and
the corresponding orientation arrow is within the tolerance cone.

placed in a new location and orientation starting from where
they grasped it. For sequential and simultaneous control, the
controllable joints were reset to zero prior to the start of a
task. To ensure that participants intentionally completed the
tasks, the target pose had to be held for one second.

Several conditions were implemented to ensure that the
virtual tasks would be representative of the real world. As in
real life, if a cup was tilted beyond 180 degrees during a
transferring phase, then the whole task was considered a “fail”;
this condition is unique to the cup drinking and the cup
pouring tasks. Screwing and turning a knob would likewise
fail if the end-effector did not maintain its position while
rotating. Finally, the whole task was flagged as incomplete
if the participant was unable to complete each subtask within
one minute; no cutoff time was included for whole tasks.

F. Data Analysis

During the experiment the following were captured at a rate
of 50 Hz: position and orientation of each body segment,
inputs from the MIDI controller, and task success/failure
status. The start of the trial was manually detected by the
researchers when participants began to move, while the end
was automatically determined by the software when the target
pose for the final subtask was reached and held for 1 second.
A moving average of window size 5 was used to smooth the
data after large discontinuities were manually removed.

Assessment of control methods relative to one another was
done using quantitative and qualitative metrics. These included
evaluating the time it took to complete each task, and range of
motion (ROM) and Cartesian path lengths of each joint as indi-
cators of body compensation. These have generally been the
only quantitative indicators of compensatory movement [35],
where deviations from the normal range can indicate either
an inability to move certain joints, or extraneous motions
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that place increased burden on the joints [3]. For example,
when pouring a liquid, the proper end-effector motion can
be achieved either through pronation of the forearm or by
compensating through the elevation of the elbow; this is in part
what inspired the implementation of a synergy between the
two joints in a prosthesis [11]. Consider the challenges asso-
ciated with orienting the end-effector when reaching objects
on the table in various configurations without the ability to
supinate the wrist. Coordinate systems for the arm joints and
torso were established according to [31]. Using pelvis as the
reference frame, torso angles are described in the following
order: flexion-extension (bowing forward and back), leaning
left-right, and turning left-right (twisting), where extension,
leaning right, and turning left are positive directions. Cartesian
path length of each segment, L, was calculated as a sum of
Euclidean distances between globally defined sampled points,

L =
j−1∑

i=1

√
(Xi − Xi+1)

2 + (Yi − Yi+1)
2 + (Zi − Zi+1)

2 (1)

where X , Y , and Z correspond to the three Cartesian com-
ponents of a trajectory in space and j is the total number of
sample points in that trial.

Several processing steps were taken to ensure interpretable
results. According to the shoulder angle definitions [36],
a discontinuity appears when the humerus is perfectly vertical,
aligning the plane of elevation and internal rotation axes.
We therefore ignore the plane of elevation and internal rotation
data when calculating ROM or Cartesian path length when
humeral elevation is below 15 degrees.

At the end of the experiment participants were asked to fill
out a survey that included questions to gauge their perception
of each of the control methods. First their overall preference
was assessed on a scale of 1 (did not like) to 5 (very much
liked). Then, participants were also asked to indicate on a scale
of 1 (disagree) to 5 (agree) to the following statements about
each control-device combination: i) easy to learn, ii) appeared
natural (did the motion resemble a healthy arm), iii) mentally
challenging (gauges the cognitive burden), and iv) physically
challenging (gauges the amount of body compensation).

Before running statistical comparisons, missing data due to
failed tasks was estimated using Multiple Imputation method
with Monte Carlo Markov Chain; done in SPSS 2019. Tasks
that were not completed by any participants with a given
device and control condition cannot be imputed and were
therefore omitted from the analysis for the other control con-
ditions as well. Multivariate analysis of variance (MANOVA)
was performed for each device to test if there was a significant
difference between controls (excluding natural and no-wrist
conditions) while accounting for the variability of several
factors simultaneously, namely the differences between par-
ticipants and tasks. The α-level was adjusted to 0.0031 using
Bonferroni correction to account for repeated MANOVA cal-
culations; 16 tests in total were made for each device. Follow
up paired t-tests were performed between pairs of controls
for individual factors. Repeated testing was adjusted with
Bonferroni correction as well, accounting for tests within
each dependent variable category (i.e. time, Cartesian path

length, and ROM). Because the order of the 3, 4, and 7 DOF
devices were not randomized in the experiment protocol,
quantitative and qualitative assessment comparisons were not
made between them but within each device category, e.g.
the 4 DOF trajectory control was only compared to the other
two 4 DOF controls.

III. RESULTS

All participants completed the experiment to the best of
their ability, though most were not able to complete every
task with every control mode. Reasons for failing to complete
a task included timing out, failing a transferring condition,
or quitting. Some tasks under certain control conditions were
not completed by any participant and included reach to axilla
and the eating with a spoon tasks using the no-wrist control,
reach to axilla task with the 3 DOF trajectory control, and
cooking with the 7 DOF sequential control. A detailed list of
which modes lead to the most failed tasks is shown in Fig. 9.

Comparison between the time to complete the tasks, Carte-
sian path lengths, and ROM were made between pairs of con-
trol conditions. Approximately 7.4% of the distributions being
compared did not strictly meet the assumption of normality
under the Shapiro-Wilk test. The data across all conditions
did appear to come from a normal distribution, so the analyses
proceed.

After accounting for the variability between subjects and
tasks, time was found to be significantly different (p < 0.001,
MANOVA) between prosthesis control conditions for both
4 and 7 DOF devices; it was not significant for 3 DOF devices,
with p-value = 0.86. The time it took each participant to
complete the entire experiment is displayed in Fig. 9, along
with the number of mode switching that occurred when using
sequential and trajectory controls and the total number of
failed tasks. A representative completion time for each test
condition was calculated by summing the average task times
across participants. Colored bars in Fig. 9 and Fig. 10 do not
include tasks that participants were not able to complete for
any single control condition, such that they contain the same
data, but were included in the dark bars for the modes where
they were completed by at least one participant.

After accounting for the variability between subjects and
tasks, Cartesian path length was found to be significantly
different in the shoulder for the 7 DOF devices (p = 0.03) and
in the wrist and elbow for both the 4 DOF (p = 0.002 and
p = 0.02, respectively) and 7 DOF (p < 0.001 and p =
0.01, respective) devices. Although significance was found for
the wrist and elbow between the 4 DOF devices when using
MANOVA, significant difference could not be established
when comparing individual pairs of controls using a paired
t-test. Representative Cartesian path length of each joint center
is summarized in Fig. 10. Like the completion times, these
were calculated by summing the average lengths per task
for each control condition. Distal joints on average travelled
further than proximal ones. Thus, differences between control
modes increase in the distal joints, an observation that can
be seen to further increase the more DOF were controlled.
For the 7 DOF device, we observe that the dark bars in
simultaneous and trajectory controls are nonetheless shorter
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Fig. 9. Experiment completion times are displayed per subject and per control. Colored bars all contain the same data, while dark bars may
contain tasks that other control modes do not include. Each participants’ total time spent using each control mode and device is displayed as a dot.
Paired-test results (between colored bars) are displayed between pairs of controls for each device; significance levels were set at p-values of 0.05,
0.01, and 0.001 after accounting for repeated testing. Numbers below the bar charts indicate the number of mode switching that occurred and the
number of failed tasks, whether per subject or per control mode.

Fig. 10. Representative Cartesian path lengths are displayed as colored and dark bars. Colored bars all contain the same data, while dark bars may
contain tasks that other control modes do not include. Each participants’ total Cartesian path length for each control mode and device is displayed
as a dot. Paired t-test results are displayed between pairs of controls for each device; significance levels were set at p-values of 0.05, 0.01, and
0.001 after accounting for repeated testing.

than the colored bar in sequential, pointing to the inefficiency
of sequential control.

Significant differences in ROM between control conditions
are summarized in Table II: using MANOVA, p-values are
calculated to test the significance of the difference between
control methods for each device and joint angle. ROM of
each joint angle was assessed to evaluate body compensation
under different conditions and control modes by calculating
the average ROM across tasks and participants (Fig. 11). For
the 3 DOF condition, the no-wrist control generally had the
largest torso, shoulder, and elbow ROM, while the natural
control had the highest wrist ROM and the lowest ROM in the
other joints, satisfying the control expectations. Significance
levels are included, though only the 4 DOF device had a
significant difference between two conditions related to a
body joint (rather than a prosthesis joint), occurring between
simultaneous and trajectory controls. The torso, shoulder, and
elbow ROM were generally mixed between the three prosthesis
control conditions. While ROM is primarily analyzed with
respect to body compensation, it can also be used to evaluate
device usage as it relates to power consumption and motion
efficiency.

After each experiment session subjects had the opportunity
to give verbal feedback as well as rank the controls on various
qualities on a scale from 1 to 5 (Fig. 12). Between the three
prosthesis controls, there appear to be several trends that
gradually change from 3 to 4 DOF and 4 to 7 DOF devices.
For example, the preference given to trajectory control appear
to improve relative to the other modes the more DOF a device
had. Note that the scores reflect the participants’ perceptions,
so survey results may end up being inconsistent with the

TABLE II
MANOVA p-VALUES

quantitative measures. For example, while the trajectory con-
trol was perceived less physically challenging in the 7 DOF
than the 4 DOF device, ROM results indicate otherwise.

IV. DISCUSSION

In this paper several upper-limb prosthesis control methods
were assessed to highlight the proposed trajectory control.
Assessments included evaluating the time it took participants
to complete the tasks, body compensation, personal prefer-
ences, and the cognitive burden that users experienced when
faced with complex orienting tasks. No technical issues were
reported while achieving the end-effector goal location and
orientation, and although some struggled to complete certain
tasks, participants noted that the tolerances were fair.
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Fig. 11. Representative ROM values averaged across all tasks are displayed. Each participants’ average ROM for each control mode and device
is displayed as a dot. Paired t-test results are displayed between pairs of controls for each device; significance levels were set at p-values of 0.05,
0.01, and 0.001 after accounting for repeated testing. Significance bars were omitted for the wrist joint angles in the no-wrist conditions.

Fig. 12. Box plots indicate the median, 25th and 75th interquartile range, and outliers of survey results, separated by device type. Mentally challenging
and physically challenging are displayed as not mentally and physically challenging by flipping responses from 1-5 to 5-1, such that a higher value
was indicative of predilection across all fields. Paired t-test results are displayed between pairs of controls for each device; significance levels were
set at p-values of 0.05, 0.01, and 0.001 after accounting for repeated testing.

Participants consistently elected to use the available con-
trol method to operate the prosthesis when completing tasks
despite not being explicitly required to; they could have left the
prosthesis in its initial configuration and attempt to complete
the task without moving its joints. Even for the wrist device,
when participants could theoretically complete some tasks by
only compensating with their own elbows and shoulders, all
controllable joints were in use, even at the cost of longer
completion times. Ensuring that participants were not feeling
pressured to operate the joints, they reassured that it was
entirely because they wanted to mitigate body compensation.

Simultaneous control was not used as expected, and par-
ticipants largely operated the DOF sequentially. The diffi-
culty associated with visualizing the interaction between the
different DOF was highly prohibitive from their seamless
and simultaneous operation. Task completion was nonetheless
faster than using sequential control, and likely due to the
challenges associated with switching [37]. This contributed
to participants identifying this mode, as well as trajectory,
as easier to operate, and generally preferred over sequential.
This is consistent with previous findings [38]. While trajectory
control included a switching functionality to change motions,
it was not always necessary, since a desired motion mode was
preselected during training and could potentially be all that a
participant would need during the task. This demonstrates that
positioning and orienting the hand using learned motions is not
only feasible, but potentially superior under certain conditions
to the other control methods.

When it comes to completing the tasks in a natural way
with low extraneous movements and at a timely manner, there
appears to be a tradeoff. One interesting finding was that the
no-wrist control was significantly faster than the other 3 DOF

controls. We suspect it was due to the reduced cognitive burden
and likely due to the simplicity of the orienting strategy;
participants had a clear expectation of what was possible, and
thus vastly simplified their control plan. However, it also had
the largest amount of body compensation, appeared unnatural,
and was the least preferred by all participants, suggesting that
movement cosmesis and reduced body compensation are likely
more important than speed alone.

The time it took to complete the experiment with each
of the control modes was statistically indistinguishable for
the 3 DOF device, likely because positioning the end-effector
was mostly the same while the controls were only be used to
set the orientation. For 4 and 7 DOF devices, simultaneous
control was generally faster than sequential, mainly due to no
longer needing to laboriously switch between joint controls.
However, despite involving switching, trajectory control was
even faster, only requiring users to operate a single slider that
automatically oriented the end-effector close to the desired
goal. Given that the prototypical motions were generated using
a much larger set of motions, we did not expect the final
hand orientation to be exact. However, body compensation,
measured as ROM and Cartesian path length, was largely
comparable to the other controls and had the capacity to
re-orient the hand. This suggests that the reduced cognitive
burden may outweigh a reduction in direct orientation control.

Training time was not quantified, but certain observations
were made. During natural and no-wrist control, training time
was unsurprisingly very short, where participants primarily
focused on learning what hand positions and orientations
satisfied the target conditions. Training time during sequential
and simultaneous controls was spent learning how the joints
move and interact, while during trajectory control training time
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was used to learn and see what the motions were. However,
as participants moved from the 3 to the 4 DOF device
the training time somewhat shortened for the sequential and
simultaneous controls and lengthened for trajectory control.
When controlling the joints independently, the addition of an
elbow did not impose much more complexity and was largely
akin to the 3 DOF controls, whereas the participants had to
relearn a brand-new set of motions for trajectory control. The
opposite was observed for the 7 DOF device. Relearning a new
set of motions for trajectory control was not only similar, but
participants noted that they were more intuitive than the 4 DOF
motions given the more straightforward association between
whole arm motions and tasks. The same was not true for
controlling the joints independently, and the addition of three
new controllable DOF (i.e. shoulder), was significantly more
difficult to intuitively grasp than the distal joints. However,
when using sequential and simultaneous control, participants
seldom referred to the virtual posters. The opposite was true
when using trajectory control, where participants referenced
the poster almost every time they switched modes. Training
time appeared to have been relegated to the poster, so a more
in-depth investigation should address learning and memoriza-
tion of the motions in trajectory control.

It must be acknowledged that the preselection of modes
during training could bias the time it would normally take
to complete tasks with sequential or trajectory controls in a
real-world setting. However, this was necessary to maintain
consistency between tasks, as well as to demonstrate the
best-case scenario for each control method.

Participant feedback confirmed several notable observations.
Those that had an easier time controlling the devices at a
joint level, normally preferred the sequential and simultaneous
controls, though most participants preferred trajectory the
more DOF were being controlled. For the 7 DOF device,
sequential control was preferred by some over simultaneous,
noting that simultaneous control had too many inputs to keep
track of, but on the other hand, the excessive mode switching
that was necessitated in sequential control was cumbersome.
Most participants preferred trajectory control in the 7 DOF
device, as it combined the simplicity of controlling one DOF
at a time and simultaneous joint movement. Furthermore,
because prosthesis rejection rates appear to be higher for
more proximal levels of amputation [4], we believe that the
application of this work will likely have the most impact in
the elbow-wrist, and shoulder-elbow-wrist prosthetic devices.
With certain improvements to trajectory control, such as
adding an adaptive feature to the end-effector position to be
able to complete all tasks, we hope to increase prosthesis user
acceptance rates.

The learned motions in trajectory control were effective at
carrying out the tasks they were generated from, by demon-
strating that participants were able to complete most of the
tasks without inducing further body compensation; seen as
a lack of statistically significant differences between control
methods. Furthermore, participants did not appear to have
trouble visualizing which prototypical motions to use for the
three novel tasks, for example, they were quick to realize
that the doorknob motion was best for turning the stove

knob. This suggests that proficient users would be able to
extend the use of trajectories beyond the tasks that they
were designed after. Moreover, these findings highlight the
feasibility of using descriptive synergies (prototypical motions
obtained from observing human motion) in prostheses over
prescriptive synergies (lower dimensional synergistic control
inputs) which are significantly more difficult to identify and
implement [39]; it is unclear if there is a true neurological or
muscular synergy. We suspect that the concept of using learned
motions could be extended to other devices and sets of tasks,
such as the JACO wheelchair-mounted robotic arm [14].

A. Future Work

Some improvements to the experimental design can be
made. Both time and survey responses attempted to indi-
rectly capture the cognitive burden associated with each of
the control modes. However, cognitive burden could alterna-
tively be measured directly using pupillometry, as has been
demonstrated others fields, such as in prosthesis use [40] and
driving [41].

While our experiment made certain simplifications, in the
real world, dynamics play a major role in manipulation.
In order to better simulate a real-world prosthesis use and
recreate a more immersive experience, object interaction
dynamics, akin to [21], will need to be considered in future
efforts.

In our experiment, we deliberately avoided bimanual tasks
due to the complexity associated with coordinating control
with the healthy hand and a lack of haptic feedback. There has
been a bias towards assessing unilateral tasks by the research
community [42]. Given that the learned motions were gener-
ated in part by motions related to bimanual interactions [5],
such as transferring a box, further validation of trajectory
control could include bimanual tasks as well.

Improvements to the functionality of prosthetic devices need
not to be limited to advancements in software. Alternative
hardware decisions could simplify the types of controls that
are needed altogether, for example, by setting one of the
wrist DOF to an alternative axis or trajectory. An example
of this includes a single DOF wrist device that rotates around
an oblique axis [43]; one of the prototypical wrist motions
encompasses this rotation, namely the flexion/deviation mode.

As a proxy to sEMG control inputs, the keyboard was
used to assess prosthesis control. While for sequential and
trajectory control the input is a single slider, simultaneous
control involved up to eight sliders. This interface involved
a degree of finger dexterity that will unlikely be present in
a marketable device. As an imperfect imitation of sEMG,
it introduces error. While we hope the comparison stands,
further improvements to the cognitive burden and robustness
of operating several DOF simultaneously [6], [13] could ulti-
mately outweigh the simplicity of trajectory control. Finally,
it is likely that endpoint control is what humans use to program
reaching and grasping movements, so the idea of using a
predefined decoupled set of locations and orientations, rather
than joint motions, could be a possible future direction [44].
In the meantime, trajectory control highlights the benefits
of using learned motions and suggests that a complex, yet
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practical, solution will likely be a semi-autonomous one and
where additional trajectories can be added by the users.
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