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Graph Convolutional Networks for Assessment
of Physical Rehabilitation Exercises

Swakshar Deb, Md Fokhrul Islam™, Shafin Rahman™, and Sejuti Rahman

Abstract— Health professionals often prescribe patients
to perform specific exercises for rehabilitation of several
diseases (e.g., stroke, Parkinson, backpain). When patients
perform those exercises in the absence of an expert (e.g.,
physicians/therapists), they cannot assess the correctness
of the performance. Automatic assessment of physical reha-
bilitation exercises aims to assign a quality score given
an RGBD video of the body movement as input. Recent
deep learning approaches address this problem by extract-
ing CNN features from co-ordinate grids of skeleton data
(body-joints) obtained from videos. However, they could not
extract rich spatio-temporal features from variable-length
inputs. To address this issue, we investigate Graph Con-
volutional Networks (GCNs) for this task. We adapt spatio-
temporal GCN to predict continuous scores(assessment)
instead of discrete class labels. Our model can process
variable-length inputs so that users can perform any num-
ber of repetitions of the prescribed exercise. Moreover,
our novel design also provides self-attention of body-
joints, indicating their role in predicting assessment scores.
It guides the user to achieve a better score in future trials by
matching the same attention weights of expert users. Our
model successfully outperforms existing exercise assess-
ment methods on KIMORE and UI-PRMD datasets.

Index Terms— Automated assessment,
changing attention, graph convolution
performance metrics, physical rehabilitation.
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network,

I. INTRODUCTION

HYSICAL therapy intervention by exercises on given

tasks is one of the most effective ways to assess mus-
culoskeletal conditions and rehabilitate post-stroke patients.
Patients mostly perform those exercises in a home environ-
ment without the presence of experts/therapists. Consequently,
patients cannot get adequate guidance and evaluation for the
prescribed exercise. It motivates researchers to build models
for automatic assessment of physical rehabilitation exercises
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Fig. 1. Overview of existing vs. the proposed method. (a) The existing
deep learning method [1] applies CNN to the grid structure of stacked
skeleton (body-joints) data. It performs consistently only with fixed-length
input and ignores spatio-temporal topological structure from interaction
among neighborhood joints. (b) Our proposed method employs STGCN
to address the issues mentioned above. We offer extensions to STGCN
using LSTM to extract rich spatio-temporal features and attend to different
body-joints (as illustrated in colored joints) based on their role in the given
exercise. It enables our method to guide users for better assessment
scores.

given RGBD camera data of exercises as input [1], [2].
Such models ensure a economical solution for patients and
assist health professionals in monitoring patients’ progress.
This paper proposes a novel end-to-end model that assesses
rehabilitation exercises and provides explicit guidance about
achieving a better assessment score. We identify the fol-
lowing drawbacks of existing approaches. (1) Initial studies
solve a classification problem (correct or incorrect exercise)
instead of predicting a continuous assessment score [3], [4].
They cannot monitor the subtle improvement of performance.
(2) Many approaches address the regression problem by pre-
dicting a numerical score, but they mostly rely on hand-
crafted features (e.g., Relative Trajectory, Projected Trajectory,
and Jerk) [2]. It requirescostly pre-processing (e.g., PCA,
dynamic time warping) and expert knowledge that hampers
end-to-end processing. (3) Recent approaches employ deep
learning techniques (CNN) for feature extraction [1]. For
this, they convert all input RGBD videos to a fixed-length
before feeding them to the network. As a wide variety of
users (patients/experts) will perform the same exercises in
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diverse environments (indoor/outdoor/lab/home) with a dif-
ferent number of repetitions, the assessment network should
have the ability to process variable-length input. Moreover,
because of depending on CNN, they ignore topological
structure information from interaction among neighborhood
joints (see Fig. 1(a)). (4) Existing approaches predict an
evaluation score for an input exercise video but fail to
explicitly guide the subject by pointing out which body
movements/joints to focus on for a better score. This work
attempts to solve the mentioned problems. We investigate
Graph Convolutional Networks (GCNs) to assess physical
rehabilitation exercises. Spatio-temporal GCN (STGCN) was
first introduced in traffic forecasting problems [5]. Because
of its ability to explore the higher-order topological structure
from body joints during human movements, it has been widely
used in action/gesture/emotion classification problems since
then [6]-[8]. Primarily, STGCN methods use skeleton data
(body-joint co-ordinates represented as graphs) of human
movements as input and predict discrete class levels [6], [9],
[10]. The development of cost-effective depth cameras [11]
and pose estimation technology [12]-[15] has made skeleton
data considerably more accessible. In this paper, we extend
vanilla STGCN to predict a continuous assessment score for
physical rehabilitation exercises. Our proposed extension is
two-fold (see Fig. 1(b)). Firstly, we incorporate an LSTM
after the STGCN architecture (instead of global-pooling) to
extract temporal features from variable-length input. It signif-
icantly helps to adapt STGCN to regression-based problems.
Secondly, we propose a self-attention mechanism operated
on the adjacency matrix of body-joints by using ConvLSTM
layers. Different body-joints play a different role in the exer-
cise assessment process. By analyzing the attention quantity,
we determine how body-joints contribute to the final score,
which eventually guides the user to perform better in later
trials. We experiment on two established rehabilitation exercise
datasets, namely KIMORE [16] and UI-PRMD [17]. Our
method outperforms existing methods across several evalua-
tion metrics. We summarize the contributions of this paper as
follows:

o We extend the popular STGCN to adapt it for the assess-

ment of rehabilitation exercises in an end-to-end manner.

e Our proposed model supports variable-length exercise
input considering any number of repetitions of a given
exercise during training and testing. We also offer a
self-attention mechanism to guide users by highlighting
body-joints contributing more to the prediction.

« We provide extensive experiments on two rehabilitation
datasets (KIMORE and UI-PRMD) and establish a new
state-of-the-art performance.

Il. RELATED WORKS
A. Exercise Classification

To replace the costly and subjective evaluation of human
expert with an automated system, several works investigate
exercise classification for body motion tracking [12], [18],
activity classification [6], [19], gait analysis [20], robot pro-
gramming [21], virtual reality [22], and rehabilitation ther-
apy [1]. To capture motion data, researchers employ RGBD

cameras [23], Accelerometers [24], Kinect [2], Gyroscopes
[25], Vicon [23], IR cameras [4] and so on. Existing methods
generally extract hand-crafted features [3], [4], [23], [26],
[27] from motion data to represent human body motion and
classify using K-nearest neighbors, SVM, Random Forest,
and Logistic Regression, all of which need extensive domain
knowledge and lack end-to-end learning intuition. Authors
in [26] used machine learning algorithms to detect compensa-
tion in stroke survivors based on muscle pressure distribution
during exercise. To improve the classification results with
the help of more discriminative hand-crafted features, [4]
used features across spatial and temporal domains (elbow
angle, maximum and minimum knee angle, distance between
shoulders, velocity, etc.) to classify different types of disability
(e.g., Parkinson’s diseases, hemiplegia, etc.). [23] used spec-
tral features (e.g., frequency-domain entropy, high frequency
energy content, etc.) to incorporate more useful information
and used a support vector machine (SVM) classifier, similar
to [4]. These methods, however, rely solely on hand-crafted
features and do not fully harness the power of modern deep
learning architectures. On the other hand, due to its ability to
learn meaningful features and impressive performance, deep
learning-based exercise classification [24], [28] has recently
received much attention. In [24], a CNN based classifier was
implemented based on the wearable sensor data (accelerom-
eter). To improve performance, [28] proposed an RNN-based
compensation classification based on 3D joint locations with
noise reduction steps, in which they used a Savitzky Golay
filter with a fixed-length window size. These studies, however,
overlook the interconnectivity of the human body and fail
to capture important spatio-temporal features of the body’s
natural topological structure.

B. Exercise Assessment

Instead of predicting discrete class labels, exercise assess-
ment aims to assign a continuous value measuring the quality
of exercise in comparison to a prescribed version. Previous
works in this area usually learn a distance function to judge
the quality of performed and prescribed exercise. Example
works include [29] using Mahalanobis distance, [30]-[32]
using dynamic time warping algorithm [33]. For not being
exercise specific models, those methods can compare two
arbitrary exercises but cannot model task-specific targeted
exercise. To address this problem, another stream of works
focuses on probabilistic approaches like Hidden Markov mod-
els [34], [35] and mixtures of Gaussian distributions [36]
for assessing exercises. Those approaches require several pre-
processing stages, which hampers the end-to-end processing of
the system. Considering the recent success of deep learning,
we attempt to assess exercises using deep end-to-end models.

C. Assessment of Rehabilitation Exercise

Not enough work has addressed this topic. Initial results on
the assessment of rehabilitation exercise have been reported
by [1], [2]. Among them, Lee et al. [2] used hand-crafted
features to classify a range of motions, smoothness and detect
the occurrence of correct and incorrect movements. In another
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work, Liao et al. [1] proposed a Spatio-temporal network that
can assess an exercise. They combined temporal pyramid,
multi-branch convolution, and recurrent layers to improve the
performance. Both of the methods discussed above employ
skeleton data (consisting of 22-39 body joints) to model human
users. They applied convolutions on tensors of joint data that
break the subtle spatial organization of the natural graph
structure inside the human body. Moreover, these methods
could not process variable-length input sequences. Also, meth-
ods become dependent on many pre-processing steps (PCA,
Autoencoder, dynamic time warping and so on) that hampers
the end-to-end processing of the system. In line with the
recent success of GCNs for modeling human motion [6],
[37], we employ GCN to assess rehabilitation exercise. GCNs
are good at processing graph structure, useful to extract
features from variable-length input and to provide end-to-end
solutions.

I1l. METHOD

Problem Formulation: Suppose, ith RGBD video of an
arbitrary exercise e is represented by V; = (X;|1...n;) where,
X; and n; denote frame ¢ and number of frames, respectively.
We consider n; to be variable across videos. Each video has
a ground-truth score annotation y; € [0, 1] representing the
assessment/quality of the performed exercise. A higher y;
score indicates better performance by the user. The training
dataset includes a set of tuples {(V;, y;) : i € [0, 7]} where
T represents the total number of training videos associated
with the exercise e. We train an end-to-end 6, parameterized
model, F, for exercise e that can predict a continuous score,
y; close to the ground-truth assessment score, y;‘ for a given
test video V;. We formulae J; as follows:

Vi =F(Vj;0e), s.t.3;~y} (1)

We assume that each RGBD frame presents a single prominent
human subject. A well-known way to model human is to use
skeleton data of different joint co-ordinates [1], [2]. In this
paper, we adopt skeleton-based human modeling because it
is easy to obtain. Advanced RGBD cameras like Kinects can
provide automatic skeleton joint co-ordinates in real-time [16],
[17]. Other possible choices include the BlazePose [12] and
VideoPose3D [13] algorithms. According to studies [38], [39],
Kinectv2 [11] and Vicon are reliable sources of skeleton data
for motion-based tasks because the output is closely aligned
with the ground truth system (i.e., the stereophotogrammetric
system).

Suppose, there are N number of joints and each joint has
C dimensional co-ordinate vector that depend on the pose
estimation algorithm (2D, 3D or 6D [13], [40], [41]). The
dimension of ¢th frame and ith video become X; € RV*C and
Vi e RT*NxC, respectively. Different body joints play essen-
tial roles while assessing the qualify of the performed exercise.
In our experiments, we notice that such roles vary from one
exercise to other. Suppose, M; € R7*N*N s self-attention
map of all joints representing their roles/importance for jth
video. By analyzing M; of many users (patients and experts),
we can get meaningful insight about final predicted score.

TABLE |
COMMONLY USED NOTATIONS

Notations Descriptions

® Temporal convolution operation.

D Concatenation operation.

® Element-wise product.

* Convolution operation.

G A graph.

v The set of nodes in a graph.

v A node v € V.

N The number of nodes, N = [V].

& The set of edges in a graph.

€ij An edge e;; € £.

N (v) The neighbors of a node v.

Ay The k hop graph adjacency matrix.
Ay The normalize k£ hop graph adjacency matrix.
Dy, The k hop degree matrix of Ay.
T The total number of timesteps.

C The number of input channels.
Cout The number of output channels.

XE]RTXNXC

G, e RTxN xCT The output of k£ hop graph convolution.

It The i*" temporal kernal of I*® STGCN block.
Y € R7XNXCout The output from the I STGCN block.

Yﬁ € RNCout The tth sequence of Y.

M, € RTXNXN""The learned self attention map at k& hop.

l The layer index

t The time step/iteration index

10 The nonlinear activation function.

o(-) The normalizing factor.

Wy, W, Wo, Wy Learnable model parameters.

The input feature matrix.

Moreover, it can provide guidance to the user about where to
emphasize to achieve better performance. With this motivation,
given an RGBD video V; as input, our overall goals are:
(a) Exercise assessment: to predict the score y;, (b) Role of
body-joints: to calculate self-attention map, M;.

A. Solution Framework

We investigate Graph Convolutional Networks (GCNs) [42]
as our core solution framework for assessing physical reha-
bilitation exercises. GCN 1is a natural choice because GCN
represents human skeleton data as graphs to extract fea-
tures from the topological structure of neighborhood body-
joints. Our final design incorporates a recent spatio-temporal
GCN (STGCN) to extract both spatial and temporal feature
together as a unified network. Due to the nature of reha-
bilitation exercise data, our extension addresses the follow-
ing challenges. (1) Variable-length processing: Unlike related
problems with sequential data (action/motion classification
in general), rehabilitation exercise data exhibit significant
variations within variable-length data. A notable reason could
be the exercise actors are largely diverse people, from expert
therapists to patients with different disabilities and diseases.
Moreover, collected rehabilitation data may originate from
constrained lab/gymnasium environments, indoor/outdoor, and
home-based settings. Furthermore, based on the therapist’s
prescription, rehabilitation exercises may need to perform with
a variable number of repetitions. As a result, different users
task a different amount of time to perform the same exercise
with the same number of repetitions. (2) Explicit guidance:
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Fig. 2. GCN based end-to-end models using (a-b) vanilla STGCN and (c-d) extended STGCN for rehabilitation exercise assessment. ‘TC, @ and
© denote temporal convolution, concatenation and element-wise multiplication, respectively. (b) and (d) illustrate the detailed components of the

green STGCN block of (a) and (c), respectively.

Existing exercise assessment approaches converts this task
as a classification [43], [44] or regression [1], [2] problem.
However, they do not provide any explicit guidance about
where (body-joints) to emphasize or attend to improve the
assessment quality.

We first describe the preliminaries of a vanilla STGCN
adapted to address rehabilitation exercise assessment task.
Then, we show that it can predict a baseline assessment
score, but it cannot fully address the challenges mentioned
earlier.

1) Exercise Assessment With Vanilla STGCN: We illus-
trate the network in Fig. 2(a) and (b). We represent human
body-joints at each video frame as graph, G = (A, V,¢E)
where, V is set of vertex (body-joints), £ is a set of edges
(connection of body-joints) and A € RV*V is the adjacency
matrix of the graph G. For spatial configuration partitioning,
we dismantle A into several matrixes Ag, where A +1 =
> Ak, representing the adjacency matrix of hop k. The initial
conditions are A4yp = I and A; = A. To extract dependencies
from body-joints, we forward the skeleton data of a video, V €
R7*N*C o STGCN block. Initially, we perform temporal
convolution over the input skeleton sequences using kernel T'*.
Then, we concatenate the input and the temporal features to
extract spatial feature. All he initial processing can be written
as:

Z=XaT"QV) )

Here, Z < R7Z XNx(C+C") g processed video representation,
where, C# is the number of filter used in temporal convolution,
® and @ denote the temporal convolution and concatenation
respectively. To extract spatial features from the topological
structure of human skeleton, we perform graph convolution on
Z and for the kth hop adjacency matrix, 4, using the update
rule of GCN [42] is:

Gy = O'(AkZWk) 3)

1 1

where, Ay = D,:Z(.Ak + I)D;Z, D is a diagonal degree
matrix, Wy is the learnable weight matrix and ¢ is an
nonlinear activation function. This equation performs lin-
ear transformation on the feature space and then aggregate
the neighbour information using the normalize adjacency
matrix. Then, we implement three Temporal Convolutional
Layers (TCNs) with same padding and kernel I'}, Flz and
Fé correspondingly to extract different level of temporal
features. To recognize movement patterns at different levels
of abstraction, we concatenate both higher and lower level
features. The operations involve: f! = I ®Gy, f2 =T f!,
fP=Ti®f?and fi = f'® f2® f3, where f; represents the
spatio-temporal features extracted from the kth hop. Finally,
we concatenate outputs from each hop.

Y=/i®L®...0 [k “)

The output of the STGC block, Y € RZ*NxCou  here,
Cour = 2?21 ka is a 3D tensor. In experiment, we stack
multiple STGCN blocks to extract more complex features.
Next, we apply a global average pooling to the output of the
last STGCN, Y/, and calculate the feature vector Ypool € RCour
is further processed by a series of Fully Connected (FC) layers
to predict a continuous assessment score.

2) Issues With Vanilla STGCN: The extracted spatio-
temporal features, Yoo can provide a baseline assessment
score, but there is scope for improvement. In Fig. 2(a),
one can notice that the global pooling layer before the FC
layers ignores sequential dependencies resided among the
spatio-temporal features across frames/body movements. Thus,
users performing the same exercise at different pace (slow
or fast) extract different spatio-temporal features. This issue
becomes more critical in regression-based learning. Further-
more, different exercises pay particular emphasis to specific
joints. But, vanilla STGCN treats all body-joints equally.
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It cannot provide the role/importance of joints in predicting
the assessment score.

B. Our Extension

In this subsection, we extend the vanilla STGCN for
the rehabilitation exercise assessment task to address the
issues mentioned above. We include two components to
address variable-length processing and calculating the role of
body-joints to guide users explicitly.

1) Variable-Length Processing: We employ an LSTM
instead of global pooling layers (see Fig. 2(c)). It has some
benefits over pooling. (1) LSTM captures sequential depen-
dencies presented in spatio-temporal feature vectors. It is
inherently designed to extract discriminative features that
have accumulated over time. This subtle information plays
an important role in predicting the correctness score of an
exercise. Smoothness, for example, is an important criterion
for scoring a given exercise. We must examine the tempo-
ral features (velocity, acceleration) overall conjugative time
frames to discern the smoothness of a movement (see Table VI
for experimental evidence). Using a pooling layer instead of
an LSTM may fail to extract the smoothness information. (2)
Pooling layers take average or maximum response for prede-
fined window size. It may lose some subtle features neces-
sary for predicting correctness score. Instead, LSTM searches
for more meaningful regions from these extracted features.
We reshape, Y to Y, € R7 *NCour where Y is the output from
the last STGCN. The input to the LSTM is Y. € RNCour | the
tth sequence of Y,. Considering the characteristics of the reha-
bilitation exercise data and regression-based problem instead
of classification, LSTM fits better instead of global pooling.
LSTM considers the variation of spatio-temporal features over
the temporal dimension, whereas global pooling breaks the
sequential nature of data. Therefore, it helps variable-length
processing and allows users to perform the same exercise at
different paces.

2) Role of Body-Joints: The role of each joint is different in
each exercise. For example, in the squatting exercise (Ex 5),
the ankle, knee, spine, and shoulder play an important role,
whereas, in the lifting arms exercise (Ex 1), the elbow, spine,
thumb, and wrist joint are more significant than the rest of the
joints. We want to emphasize that capturing this joint role is
crucial in determining exercise quality (Table VI). However,
vanilla STGCN (in Eq 3) treats all body joints equally. This
joint role should change depending on temporal and spatial
context while assessing rehabilitation exercise. It motivates us
to implement the self-attention module where we treat each
joint differently depending on its role in a given exercise.
To calculate the role of individual body-joints depending on
the both temporal and spatial context, we replace the Ay with
a trainable self-attention map, (M € RZ*N*NY a5 follows:

G = o ($(Ar © My)ZWy) )

where, O represents the Hadamard product, A = A+ 1
and ¢(-) is the normalizing factor. Fig. 2(d) illustrates the
attention-guided STGC block. We improve STGCN by mod-
ifying the adjacency matrix dynamically with a self-attention
map calculated from ConvLSTM layers. Let, Qr = ZW; €
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N s
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< o1
2 a
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c
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1 Loo
0245 51012141618202228
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() (b) ©

Fig. 3. Visualization of attention maps (red circles) and the role of body
joints for five exercises. The larger circle represents the higher role of
that joints. (a) Average attention map (Mﬁ) and joint role (x fg) of expert
users. (b) and (c) left: Role (x ) of joints when patients score high and low
respectively, right: the role difference (d!) from the expert representing
where (violet circles) to emphasize to get better assessment score.

R7Z *xNxC’ expanded to Qy to RTXN“XC/, where, C’ = no
of convolutional filters, is the input to the ConvLSTM. The
operations at time ¢ are as follows:

ilt{ =o((W; *Q;( + U; *h;(_l + b;)

fl=0WrxQi+Uys*h" +by)

ok = o (Wo % QL+ Uy % hi ™' +b,)

g; = tanh(W, * Q) + U. * hi™' + b,)

= Hoq  +iiosg

h}, = o}, © tanh(c})
where, * is the convolution operation, ¢ represents the sigmoid
function, W;, Wy, Wy, W, U;, Uyr, Uy, U, € R!*! represent

the conv. kernels, b;, by, by, b are the bias parameter. The
number of kernels is the same as the number of joints
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in the skeleton graph. The final output from convLSTM
does not encapsulate any structural information. We inject
the graph structure by elementwise multiplication with the
adjacency matrix (Eq. 5). Then, we apply a normalizing
factor ¢(-). Mk = hi € RZ*N*N " is the self-attention
map where each row indicate the attention weights for a
body-joints with its neighbors. We can calculate the role of
the body-joints in assessing rehabilitation exercises. Fig. 3(a)
shows a self-attention map where we highlight the role of
body joints. The greater attention value demonstrates the
higher emphasis/role on that joint. Some joints may get the
same importance but contribute to both high and low scores
across trials. It means that those joints have little influence on
the overall score because subjects have moved them ideally,
and there is nothing much to improve scores by focusing
on those joints. On the other hand, some joints are more
prominent in determining low scores. Such joints are the ones
on which the patient should focus. We can calculate such
roles of joints for both expert and inexpert (possibly patient)
users. We notice that when a patient gets a low assessment
score (0-20), his/her joint-role pattern varies significantly in
comparison to the expert’s pattern (35-40). The joint role,
x € RT*N is computed by column-wise summation over
M; © A, where M; denotes the first hop attention map.
In Fig. 3(b) and (c), we calculate d' = x%, — x' to find this
pattern variation at time ¢. x, is calculated by averaging the
joint role of the expert therapists. Visualizing d’, a user can
know where to emphasize to achieve a better score in future
trails.

We train our proposed network using Huber loss because
of less sensitivity to outliers [45]. We simply forward a
test sequence of skeleton data (body-joints) to calculate a
continuous assessment score during inference. We employ the
Huber loss function which is defined as follows:

1 A A
. g(yi — )% lyi —Jil <0
L(yi =) = (6)
o(lyi — yil — 5); otherwise

where y is the true label and j is the predicted label. This
Huber loss uses the properties of both the Mean squared
loss and the Mean absolute deviation loss depending on a
parameter J. When the error (i.e., the difference between actual
and the estimated value) is less than a small value J, it acts
as the Mean squared loss. When the error is greater than J,
it approaches the mean absolute loss, which is less sensitive
to the outliers. The skeleton data captured by various pose
estimation algorithms (Kinectv2, Vicon, BlazePose, Video-
Pose3D) may contain incorporate incomplete, noisy or redun-
dant information of joint positions [46], [47]. This incomplete
or noisy skeleton data can deteriorate the performance, espe-
cially when some prominent joints are disturbed. They act as
outliers in the sample space. The Huber loss is less sensitive
to those outliers.

3) Inference: In inference, we utilize the same architecture
as shown in Fig. 2. For a test video X € R7*N*Cin where T
can be of any length, first we construct the skeleton graph. The
skeleton data can be extracted from pose estimation algorithm
or any motion-capture devices. For STGC block we use

TABLE Il
SUMMARY OF THE BOTH KIMORE AND UI-PRMD DATASETS

Feature UI-PRMD dataset [17] KIMORE dataset [16]
Reference Vakanski et al. (2018)  Capecci et al. (2019)
Year 2018 2019
Sensor Kinect v2 + Vicon Kinect v2
Modality Skeleton data RGB-D and skeleton data
No. of Subjects 10 78
No. of Exercises 10 5
Score range 0-1 0-50
TABLE Il
COMPUTATIONAL COST FOR KIMORE DATASET
Stace # of # of Execution Avg. time
€ Videos Parameters Time per video
Train 460 0.722 million 50.13 minutes -

Test 116 0.722 million 2.64 seconds 22.7 milliseconds

skeleton graph as the input. Inside each STGC block, first we
perform the temporal convolution operation and concatenate
with the original input namely Z € R7*N*(C+C7) Second,
inside each graph convolutional network we perform attention
guided graph convolution operation over Z. Finally there
are three temporal convolutional layers concatenated together.
There can be multiple stacked STGC blocks and after the last
STGC block there is multiple LSTM layers followed by a
dense layer to predict the final score.

IV. EXPERIMENT
A. Setup

1) Dataset: We experiment on two rehabilitation exercise
datasets. (1) Kinematic assessment of Movement for remote
monitoring of physical Rehabilitation (KIMORE) [16] dataset
includes RGBD videos and the ground-truth score annotations
of five types of exercises. It has two groups, control groups
(expert and non-expert) and a group with pain and postural
disorder (Parkinson, back-pain, stroke). The control group
includes 44 healthy subjects, from which 12 subjects were
physiotherapists and experts in the rehabilitation of back pain
and postural disorders, and the remaining 32 were non-expert
healthy subjects. The pain and postural disorder group con-
tain 34 subjects suffering from chronic motor disabilities.
(2) UI-PRMD [17] dataset contains ten rehabilitation exercises
collected from 10 healthy subjects using Kinect and Vicon
sensors. Each subject performed ten repetitions of the same
activity. The data includes positions and angles of full-body
joints. A summary of these two datasets is given in Table II.

2) Computational Cost: In Table III, we report train-
ing/testing time for the KIMORE dataset. The timing suggests
that our proposed method can provide results in real-time,
considering real-time skeleton data generation is available.
Note that the computational cost is measured using a single
Tesla K80 GPU.

3) Evaluation Process: Similar to [1], [2], [S], we evalu-
ate our model using mean absolute deviation (MAD), mean
absolute percentage Error (MAPE) and root mean square
error (RMSE) scores. The lower the score, the more accurate
is the predicted score. Mean Absolute deviation (MAD) is
an average of the absolute deviation between true values and
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predicted values. MAD, being a scale-dependent measure,
cannot be applied to compare methods that are applied to data
with different scales. On the other hand, Mean Absolute Per-
centage Error (MAPE), the percentage equivalent of MAD, is a
scale-independent metric. However, MAPE tends to infinity or
becomes undefined if the ground truth value equals O for any
sample in the data. Another widely used evaluation metric
is Root Mean Squared Error (RMSE) which is defined as the
square root of the squared error (no absolute deviation). RMSE
penalizes large errors due to the squared term. It is also a
scale-dependent metric like MAD. The equations of MAD,
MAPE and RMSE are given as follows:

1 n
MAD = - —5
n;w 3

y—y

| x 100

1 n
MAPE = —
"2

RMSE =

Here, n is the sample size and y and J are the ground-truth
and predicted value respectively.

4) Implementation Details': We train the model using Adam
optimizer for 1500 epochs with a learning rate of 0.0001. The
batch size is 3 and 10 for UI-PRMD and KIMORE dataset,
respectively. We use cross-validated hop size, k = 2. The out-
put space dimensionality of LSTM layers is 80, 40, 40, 80 fol-
lowed by a fully connected layer with linear activation.
According to the validation set, we choose the best model
to evaluate the model performance on the test set. We apply
a dropout mechanism with a dropout probability of 0.25.
Similar to [1], [42], we also report the 10-run result to
fairly evaluate the performance of our model against existing
works. We perform both training and testing ten times. After
each run, we store the performance metrics (MAD, RMSE,
MAPE) and finally take the average of stored results, ensuring
the reliability of our results. We implement our model using
tensorflow2.0. Similar to [6], we apply the Resnet mechanism
on each STGC block.

5) Hyper-Parameter Validation: We conduct hyperparameter
tuning on a separate validation set. We set the validation
split = 0.2 from the total training set inside the fit ()
method of tensorflow 2.0. The train-test-valadiation split is
shown in Fig. 4 (a). We validate the model for hop size
k within {1,2, 3}, the number of STGCN blocks within
{1,2,3,4,5}, the number of stacked LSTM layers within
{2, 3, 4, 5}, the learning rate within {1073, 1074, 10~2}. When
the model suffers from high variance, we can decrease the
hop size (k), STGCN, and LSTM layers, reducing model
complexity. In contrast, we can increase the values of those
hyper-parameters to lessen the bias problem. Based on those
validation experiments, we use k = 2, three STGC blocks,
four LSTM layers and learning rate 10~* for our final model.
After finding the optimal model, we conduct experiment

ICode and evaluation are available at: https://github.com/fokhruli/STGCN-
rehab
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Fig.4. (a) Train-test-val split on KIMORE dataset. (b) Performance of our
proposed model on different values of §. The optimal § value is 0.1. (c)
Hyper-parameter validation on KIMORE exercise 5 (in MAD). The cross
(x) indicates the optimum point.

on ¢ sensitivity in Fig. 4(b). Fig. 4(c) shows the validation
results (MAD) of our method using different numbers of hop
size, STGCN blocks, and stacked LSTM layers for KIMORE
exercise 5. It shows that with the increase of STGCN block
number from 2 to 3, the performance is boosted, while further
increasing the block number leads to no significant improve-
ment. As we increase hop size from 1 to 2, the performance
is improved, but for hop size 3 the overall performance dete-
riorates since there is an influence of unnecessary joints dis-
rupting the informative features for larger neighborhood size.
Moreover, increasing the stacked LSTM layers, the model’s
overall performance continues to improve since LSTM is
better suited for extracting meaningful features from sequential
dependencies. As we increase the number of LSTM, the
performance increases significantly, but after 4 LSTM layers,
there is a slight improvement. Considering the computational
cost, we select LSTM layers to be 4.

B. Overall Result

We report our results on UI-PRMD and KIMORE datasets
in Table IV and V, respectively. Following the work [1], the
table mentions MAD performance on each of ten different
exercises included in UI-PRMD dataset. Similarly, we present
MAD, RMS, and MAPE results on five exercises of the
KIMORE dataset. Liao et al. [1] proposed a temporal pyramid
network to process the multiple-scale version of the movement
repetitions. The initial hierarchical layers in the model employ
for learning spatial dependencies in human movements and are
followed by a series of LSTM recurrent layers for modeling
temporal correlations in learned representations. Still, they
ignored the human skeleton’s topology information, failing
to extract the expressive power residing in spatial features.
On the other hand, Yan et al. [6] built a spatio-temporal graph
neural network (STGCN) while neglecting the sequential
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TABLE IV
RESULTS OF TEN EXERCISES (EX) ON THE UI-PRMD DATASET
USING THE EVALUATION METRIC MAD (LOWER
VALUES INDICATE BETTER RESULTS)

Ex  Ours Song Zhang Liao Li Shahroudy Du
et al. [46] et al. [48] et al. [1] et al. [49] et al. [50] et al. [51]
Ex1 0.009 0.011 0.022 0.011 0.011 0.018 0.030
Ex2 0.006 0.006 0.008 0.028 0.029 0.044 0.077
Ex3 0.013  0.010 0.016 0.039 0.056 0.081 0.137
Ex4 0.006 0.014 0.016 0.012 0.014 0.024 0.036
Ex5 0.008 0.013 0.008 0.019 0.017 0.032 0.064
Ex6 0.006 0.009 0.008 0.018 0.019 0.034 0.047
Ex7 0.011 0.017 0.021 0.038 0.027 0.049 0.193
Ex8 0.016 0.017 0.025 0.023 0.025 0.051 0.073
Ex9 0.008 0.008 0.027 0.023 0.027 0.043 0.065
Ex10 0.031 0.038 0.066 0.042 0.047 0.077 0.160
TABLE V

RESULTS OF FIVE EXERCISES (Ex) ON KIMORE USING THE
EVALUATION METRICS MAD, RMS, AND MAPE (LOWER
VALUES INDICATE BETTER RESULTS)

. Song Zhan, Liao Yan Li Du
Mewic Ex Ours , "G e el 1] el 16] et al [49] et al, 151]

Exl 0799 0977 1757 1141 0889 1378 1271

Ex2 0774 1282 3139 1528 2096 1877  2.199

MAD Ex3 0369 1.105 1737 0845 0604 1452  1.123

Ex4 0347 0715 1202 0468 0842 0675 0880

Exs 0.621 153 1853 0847 12184 1662  1.864

Exl 2024 2165 2916 2534 2017 2344 2440

Ex2 2120 3345 4140 3738 3262 2823 4297

RMS Ex3 0.556 1929 2615 1561 0799 2004 1925

Ex4 0.644 2018 1836 0792 1331 1078  1.676

Exs 1181 3198 2916 1914 1951 2575  3.158

Exl 1926 2605 5054 2589 2339 3491 3228

Ex2 1272 3296 10436 3976 6136 5298 6001

MAPE Ex3 0.728 2968 5774 2023 1727 4188 342l

Ex4 0.824 2152 3901 2333 2325 1976  2.5%4

Ex5 1591 49590 6531 2312 3802 5752 5620

nature of the spatio-temporal features because of using global
average pooling. Moreover, Song et al. [46] also proposed
a GCN to explore discriminative features that spread over
all skeleton joints using multi-stream information (occlusion,
jittering, etc.) and focus on the spatial context to learn the joint
attention. Zhang et al. [48] incorporated high-level semantics
of joints (joint type and frame index) into the network with
the help of joint- and frame-level modules to hierarchically
exploit the joint relationship. However, they fail to capture
strong sequential dependencies between consecutive frames
through several spatial and temporal maxpooling layers.
Du ef al. [51] did use temporal information but ignored
the spatial information. Li et al. [49] ignored both the topo-
logical structure and the sequential nature of human body-
joint features. Our model successfully outperforms existing
methods in the rehabilitation exercise assessment task on both
datasets. This success becomes possible because of the spatio
temporal graph network with learned anisotropic filters by
the self-attention mechanism that separately considers spatial
and temporal directions. Moreover, our model fully utilizes
the benefit of deep learning techniques, ensuring end-to-end
learning. For [6], [46], [48], [49], [51], we replaced the
last softmax layer with a fully-connected layer with linear

TABLE VI
ABLATION STUDY ON EX5 (EXERCISE 5) OF KIMORE DATASET.
WE INCREMENTALLY ADD MORE COMPONENTS TO COMPARE
THE PERFORMANCE (LOWER VALUES INDICATE
BETTER RESULT)

Is- Aggregation Has-TCN  Has-self

Stacked Style Concatenated attention MAD RMSE MAPE
No Global Pool No No 2.585 3.795 8.920
Yes  Global Pool No No 1.472 2.560 4.878
Yes  Global Pool Yes No 1.365 2.184 4.320
Yes LSTM Yes No 0.767 1.484 2.340
Yes LSTM Yes Yes 0.478 0.981 1.516
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Fig. 5. t-SNE [52] visualization of features for two exercise videos (Ex2
and Ex3) from KIMORE dataset by representing exercises in different
lengths. Our model extracts similar features from different lengths of the
same video.

activations. Other than that, we closely followed the proposed
implementation as described by the authors in the respective
papers.

1) Ablation Study: In Table VI, we report different variations
of GCN assessing rehabilitation exercises. We include or
replace different components to estimate the contribution of
them. Here, we experiment with and without stacked STGCN,
spatio-temporal feature aggregation style (global pool/LSTM),
the inclusion of concatenated TCN outputs, and self-attention
(ConvLSTM based joint role) components. First, we compare
a plain (without stacked) GCN vs. stacked GCN using global
pooling as feature aggregation and without using any other
parts. We notice performance improved in the stacked case
because of extracting more complex features. On top of the
stacked version, we add TCN feature concatenations men-
tioned in Sec. III-A. It helps to improve performance because
of considering temporal information. Results further improve
while replacing the global pool with LSTM (see Sec. III-B),
since it augments more spatio-temporal information. Finally,
we include the self-attention mechanism using ConvLSTM,
which is our final recommendation. We achieve the best results
in this configuration because of dynamically calculating the
role of different joints while assessing exercises.

2) Feature Visualization: After training our final model with
variable-length data, we also test our model with fixed-length
input. We create four fixed-length versions (100, 150, 170 and
200 frames) of the same test data. These fixed-length ver-
sions represent rehabilitation exercises performed at differ-
ent (slow/fast) pace and varying repetitions. We extract the
latent feature representation after the LSTM layer for both
variable-length and fixed-length test data as input. Fig. 5
shows those features using the 2D t-SNE plot of several
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Fig. 6. A visualization of how the role of joints varies with different exercises as determined by the attention-value computed by our method. For
example, in the lifting arm exercise (Ex 1), the elbow, spine, thumb, and wrist play a more important (strong/moderate) role than the rest of the joints.
Similarly, in pelvis rotation (Ex 4), spine base and wrist contribute more than other joints. These findings closely align with the KIMORE dataset
paper [16] that discusses the variation of role of joints in individual exercises as suggested by medical professionals.

TABLE VI
RESULTS FOR EVALUATING EXERCISE 5 OF THE KIMORE DATASET
WITH MAD, RMS, AND MAPE WHILE COLLECTING JOINT/SKELETON
DATA USING VARIOUS POSE ESTIMATION ALGORITHMS

. . Liao Yan Li Du
Metric  Algorithm —Ours ), /"1y of a1 (6] et al. [49] et al. [51]
BlazePose [12] 0971 4.043 3709 4548  6.309
MAD VideoPose3D [13] 1.855 2.554  3.084  3.546  4.669
Kinectv2 [11]  0.621 0.847 1218  1.663 1.864
BlazePose [12] 1.993 5991 5657  7.194  8.681
RMS VideoPose3D [13] 3.822 3.908 4943 5202 6012
Kinectv2 [11] 1180 1914 1951 2575  3.158
BlazePose [12] 3.081 15618 15917 20.897  25.816
MAPE VideoPose3D [13] 6.810 8.102 10790 11.964  14.750
Kinectv2 [11] ~ 1.591 2312 3802 5752  5.620

exercises from the KIMORE dataset. One can notice that our
model provides similar feature representations for different
input lengths. It tells that our model can successfully assess
physical rehabilitation exercises no matter how many repeti-
tions or how slowly users perform the movement.

3) Effect of Joints in Different Exercises: By analyzing the
natural topological structure of the human body and extracting
spatial information using attention-guided graph convolution,
we treat each joint differently based on spatial and temporal
context. It produces anisotropic filters that are more power-
ful than isotropic filters used in vanilla STGCN. In Fig. 6,
we show the effect of different joints (from expert users) on
individual exercises belonging to the KIMORE dataset.

4) Result Using RGB Camera: The KIMORE and UI-PRMD
datasets collect joint positions using Microsoft Kinectv2 [11]
and Vicon sensors. However, rather than solely based on
RGBD sensors, we also experiment with economically avail-
able RGB videos. We use pre-trained pose estimation algo-
rithms to extract the 3D pose of a human being. The
KIMORE dataset [16] provides RGB videos of patients
performing rehabilitation exercises. We validate the perfor-
mance of our model with two other pose estimator methods,
namely BlazePose [12] and VideoPose3D [13] trained on MS
Coco [53] and Human3.6M [54] datasets, respectively. Both
ways use RGB information to estimate the 3D pose of a

movement. In Table VII, we compare the performance of our
model with different pose estimation algorithms. Since the
Microsoft Kinectv2 sensor uses RGBD information to detect
human poses, it outperforms the other two pose estimation
algorithms based on RGB cameras.

V. CONCLUSION

In this paper, we propose attention guided GCN for assess-
ing physical rehabilitation exercises. Our model takes skeleton
data of human movement (represented as graph) as input
and predicts an assessment score indicating the quality of
the performed exercise compared to the prescribed version.
We modify the popular STGCN architecture to adapt it to
our regression-based problem setting. Our proposed network
carefully extracts discriminative spatio-temporal features to
facilitate variable-length exercise data. Besides, we propose
a self-attention mechanism to attend body joints differently
for various exercises. It also helps to guide users on which
body joints to emphasize to achieve a better assessment
score. Our model provides state-of-the-art performances on
two well-known physical rehabilitation datasets, KIMORE
and UI-PRMD. In addition to quantitative results, we present
qualitative illustrations (as guidance) to visualize the reasoning
about the predicted assessment score.
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