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Abstract— Targeted stimulation of nervous system has
become an increasingly important research tool as well as
therapeutic modality, and the stimulation signal acquisition
based on the expected signal needs a closed-loop system.
Due to the difficulty of biological experiments, the real-time
simulation of neural activity is of great significance for the
mechanism analysis and the performance improvement of
neuromodulation techniques. This paper proposes a real-
time hardware experimental platform for closed-loop elec-
trophysiology. The platform integrates a neural computing
module and a real-time control module on TMS320F28377D
digital signal processors (DSP), and it reserves a program-
mable interface for users to call the required modules and
set module parameters simultaneously. The platform has
high compatibility and can be used for closed-loop electro-
physiological experiments with different models, different
control algorithms and different clamps. We implement the
thalamocortical relay neural computing model and iteration
improves proportional-integralalgorithm on the platform for
experimental verification in this paper. The neuron firing
waveforms of the DSP platform and the MATLAB R2020b
simulation waveforms are consistent. Under the same phys-
iological time, the simulation speed of DSP platform is
3 times faster than that of the Intel Core i5-8400 CPU com-
puter, and the neural firing rate of DSP platform is due to the
real-time. This platform can be used as a tool to explore the
working mechanism of the nervous system. It may promote
the development of neuroscience, especially the field of
closed-loop neuroscience.

Index Terms— Hardware experimental platform, closed-
loop electrophysiology, neural computing model, thalamo-
cortical relay neural, iterative learning control.

I. INTRODUCTION

THE human brain is a complex system of nearly
100 billion neurons and their synaptic connections.

Exploring the working mechanism of the nervous system is not
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only an essential work of neuroscience but also a field with
excellent exploration spaces at present [1]–[3]. For example,
understanding the pathogenesis of nervous system diseases
such as Parkinson’s disease and the modulation mechanism
of deep brain stimulation (DBS) on the nervous system will
significantly improve the role of neural modulation technol-
ogy in clinical treatment of nervous system diseases [4]–[8].
In addition, exploring the working mechanism of neurons will
substantially promote the development of high-performance
brain-like computing and a new generation of artificial
intelligence [9]–[11].

Electrophysiological techniques based on in vivo or in vitro
neural tissue provide a method to study the information
processing mechanism of the nervous system [12]–[14]. Using
the neural electrophysiological system and neural network
in vitro culture technology, researchers can synchronously
record the electrical activity signals of neural networks for
a long time and apply various electrical stimuli to the neural
network, which provides convenience for studying the input-
output relationship of neural networks [15]–[19]. However,
most such systems can only realize the fixed stimulus mode
in open-loop form, explore the neural response under con-
stant conditions, and lack the ’stimulus-response’ feedback
system, which partly limits the further research on the working
mechanism of the nervous system [20], [21]. Moreover, the
effect of open-loop stimulation is unstable since personalized
control parameters need to be determined by the physician’s
experience in clinical treatment, and parameters need to be
constantly adjusted as the condition progresses.

At the same time, closed-loop neuroscience has become a
new idea to solve this problem [22], [23]. The combination
of electrophysiological experiments and closed-loop mode can
easily obtain the stimulus pattern corresponding to the desired
neural activity [24]–[26]. The closed-loop electrophysiology
system has the potential to provide a theoretical basis for
choosing stimulus patterns for neural activity modulation.
Proportional-integral (PI) control, fuzzy control, predictive
control, and other algorithms have been successfully applied
to obtain the optimal stimulus signal [26]–[30].

The software simulation is the primary tool in the past
research of nervous system research, which still has many
problems, such as calculation speed and practical usage.
In contrast, hardware technology has the advantages of con-
venience, speed, accuracy, operation in real-time scale, high
operation efficiency, and convenience for practical application.
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Fig. 1. Schematic of closed-loop electrophysiology experiment platform. The closed-loop electrophysiology experiment platform models the
neural activities, and then uses the data that generated by the artificial neurons to verify and modulate the control strategies. Then the control
strategies could be used into clinical treatment of nervous system disease and the exploration of the brain’s mechanism.

Also, electronic neurons can be used in experimental research
of neural networks, neural prostheses, detection and treatment
of nerve diseases, and other fields [15], [31]–[33].

Therefore, this paper presents a closed-loop electrophys-
iological platform to provide a tool for researchers to find
suitable stimulation and exploring mechanisms in the nervous
system. The model simulation experiments are used to replace
physiological experiments, and the platform is implemented on
digital signal processor (DSP). The platform has high com-
patibility and can be used for closed-loop electrophysiological
experiments with different models, different control algorithms
and different clamps. Moreover, by using models that quan-
titatively reflect the characteristics of neurons, more explo-
rations can be executed about the brain-machine interface, the
pathological study of nervous system diseases, the treatment
of nervous system diseases, and so on through the system.

The major contributions of this study are as follows:
(1) This paper presents a compatible closed-loop electro-

physiological experiment platform for different experiments
and implements it on DSP.

(2) A user interface that matches the platform is designed
based on Visual Studio 2019, which can set the parameters of
the algorithm and model.

(3) Hodgkin-Huxley-model-based thalamocortical (TC)
relay neuron is implemented on the platform, and different
experiments are designed to validate the system and the model.

Accordingly, this paper is organized as follows.
In section II, brief introduction of the system and the
hardware implementations of the TC relay neuron models
are presented. Section III shows the detailed structure of the
DSP-in-loop experimental system, and the control results
of the system are illustrated. Finally, section IV gives the
conclusions.

II. METHODS

A. System Framework Description

Figure 1 shows the framework of closed-loop electrophys-
iology experiment platform. First, the activity of real brain
is analyzed to extract the critical information to build arti-
ficial neurons, which can map the activity of real neurons.

Fig. 2. The cortico-basal ganglia-thalamocortical loop. TC relay
neuron connects the motor-cortexes. The inhibitory current of BG is
stronger in parkinsonian state.

Many neuron models and neural network models have been
developed and verified based on physiological experiments
for research [34]–[36]. After the modeling, the digital signal
generated by artificial neurons containing real neurons’ activity
will be fed into the closed-loop controller after the signal
processing units. Subsequently, the stimulation signal will be
sent to the modeled artificial neurons based on the feedback
variable and the desired signals. Different experiments can be
carried out on the platform to modulate the control strategy
and the feedback variable, which helps to achieve better
performance of controller. After that, the modulated controller
can be used to stimulate real neurons in the future. In such
a way, the activity patterns of the neurons and the control
strategy to stimulate neurons can be explored, which will
contribute to the study of neuroscience and the treatment of
neural diseases.

B. TC Relay Neuron and Its Conductance-Based
Biophysical Model

Figure 2 depicts the basal ganglia (BG)-thalamus cir-
cuit model, which is a significant structure spanning the
telencephalon and diencephalon regions of the nervous sys-
tem. The BG-thalamus circuit plays a vital role in behavioral
selection, working memory, and other cognitive functions [37].
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Fig. 3. The detailed structure of the four-channel algorithm using fourth-order Runge-Kuta. (a) The iterative equation of membrane potential
and gated variables. (b) The detailed structure of the four types of ionic current in the TC neuron model.

TC neurons play a relay function between the cortex and
thalamus in the BG circuit, responsible for both the functional
relay of sensory information from the external surroundings to
the cortex and the communication interface between cortical
regions [38].

Proposed by Rubin and Terman, the TC neuron model is
a single-compartment conductance-based model [39]. Many
previous studies have verified and analyzed the model, which
can better describe the activity characteristics of TC neurons
[40], [41]. A set of Hodgkin-Huxley differential equations can
interpret the dynamic characteristics of the TC relay neuron
model, and the time evolution equation of membrane potential
V is shown in the equation (1):

Cm
dV

dt
= −INa − IK − IT − IL − IGi→T C + IS M (1)

where Cm represents the membrane capacitance, and V repre-
sents the TC neuron membrane potential. INa , IK , IT , and IL

represent Na+ current, K+ current, low threshold T-type Ca2+
current, and leakage current, respectively. IGi→T C represents
inhibitory synaptic current that from Globus Pallidus inter-
nus (GPi) of BG to thalamic nucleus. Finally, IS M indicates
the random or cyclical excitatory input information from the
cortex to the thalamus.

The detailed descriptions and explanations about ion chan-
nels, gated variables, and excitatory input are in Appendix A.

C. The Implementation of the Closed-Loop
Electrophysiological System

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (n + 1) − V (n) = V1(n)

6
+ V2(n)

3
+ V3(n)

3
+ V1(n)

6
V1(n) = �t ∗ f (V (n), h(n),wT h(n))

V2(n) = �t ∗ f (V (n) + 1

2
V1(n), h(n) + 1

2
h1(n), . . .

wT h(n) + 1

2
wT h1(n))

V3(n) = �t ∗ f (V (n) + 1

2
V2(n), h(n) + 1

2
h2(n), . . .

wT h(n) + 1

2
wT h2(n))

V4(n) = �t ∗ f (V (n) + V3(n), h(n) + h3(n), . . .

wT h(n) + wT h3(n))
(2)

The fourth-order Runge-Kutta is used to discretize the
TC relay neuron model, which can approximate complex
curves in a solving step size to obtain high computational
accuracy through four-step piecewise approximation of dif-
ferential equations. There are three blocks for the derivatives
of the variable V and ω in their corresponding equations. The
nonlinear ordinary differential equation of V is discretized into
Equation (2). Where n represents the number of iterative steps.
Δt represents the timestep in the fourth-order Runge-Kutta
method which is also the discrete-time parameter.

In this work, Δt is the same both in the discrete process of
MATLAB stimulation and DSP based experiments, which is
0.02 ms. The detailed structure of the four-channel algorithm
using fourth-order Runge-Kutta is as Figure 3.

The discrete analysis of two gating variables h and ω is
described in Appendix B.

III. RESULT
A model-based closed-loop electrophysiological system is

developed, as depicted in Figure 4 (a). The system mainly
includes host PC, DSP-based neuron model, closed-loop con-
troller and corresponding signal transmission and detection
circuit. Figure 4 (b) shows the signal flow graph of the closed-
loop electrophysiological system.

The platform is implemented on TMS320F28377D DSP
platform, which has two TMS320C28x 32-bit CPUs.
Compared with field programmable gate array (FPGA),
DSP has independent multiplier hardware, and multiplication
instructions can be completed in a single cycle [42]. Therefore,
DSP is faster calculating floating-point operation in neural
network and control algorithm, and has better implementation
ability of complex algorithm. The CPU of DSP can perform
single-precision floating-point operation at 200 MHz, thus
the chip takes 5 ns to perform an addition or multiplication
operation. And the time that DSP takes to execute the code
that calculates the difference equation of TC relay neuron
once is about 450 clock cycles. Therefore, the calculated
time of DSP is 0.23 µs, which is 3 times faster than that
in MATLAB R2020b simulation. In MATLAB, the simulation
step is set to 20 µs. Using this chip can meet the real-time
requirements of the platform, and the calculation time of the
platform is much shorter than the simulation step time, so that
the implementation of multiple neurons can be extended on
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Fig. 4. The overview of the closed-loop electrophysiology platform structure. (a) The prototype of the closed-loop electrophysiological system,
mainly includes host PC, DSP-based neuron model, closed-loop controller and corresponding signal transmission and detection circuit. (b) The signal
flow graph of the closed-loop electrophysiological system.

this platform due to the excellent computing performance and
scalability of DSP.

There are two DSPs in the platform. The first DSP realizes
a high-precision virtual neuron that reflects the dynamic char-
acteristics of the real neuron. The other DSP acts as the digital
closed-loop controller, which receives neural activity informa-
tion from the virtual neuron and then sends stimulation after
algorithm calculation. The simulated neural activity signals
of the artificial neuron is transmitted into a digital-to-analog
converter (DAC) to generate analog rhythmic firing signals.
Simultaneously, the artificial neuron receives the stimulation
signals of the controller via analog-to-digital converter (ADC)
to simulate the neural activity after receiving the stimulation.
The 12-bit DAC converts 12-bit digital signals to analog
signals, so the maximum decimal number corresponding to
digital signals is 4095. And the clock frequency of the DAC
is the same as the main frequency of the C28x core, which
is 200 MHz. The 12-bit ADC converts analog signals to 12-
bit digital signals and sends the digital signals to the result
register. The maximum clock frequency of ADC is 3.5 MHz,
and there is an independent sample-and-hold circuit to keep the
signal constant for each ADC. In this work, the setting time
of DAC is 1 µs, so that the throughput of DAC is 1 Msps.
The ADC takes 15 ADC clock to sample and 10 ADC clock
to convert signal, and the ADC clock frequency is 3.5 MHz,
so that the sampling frequency is 140kHz. Both ADC and
DAC can meet the needs of system.

The host PC sets and monitors the vital parameters of both
models and the controller. The hardware platform and host
PC are connected by serial communication interface (SCI),
guaranteeing the high-speed bidirectional data transmission.
The SCI is a full duplex serial communication interface and the
host PC can transmit data with DSP in both directions through
RS-232 interface. However, the SCI data buffer registers can
only send up to 8-bit binaries at a time, whereas the data is
32-bit floating-point in high-precision DSP. Therefore, 32-bit

Fig. 5. The user interface of the closed-loop electrophysiology
system. On the left panel of user interface, the control strategies and
models can be switched, and the corresponding parameters can be set.
The crucial signals can be monitored and saved on the right panel of
user interface.

TABLE I
THE CORRESPONDING PARAMETERS OF TC RELAY NEURON MODEL

floating-point data needs to be converted to string-type data,
split up and sent one by one before data transfer. The user
interface of the system has been implemented using Visual
Studio 2019 as shown in Figure 5. The user interface consists
of the following four functions: (1) showing the waveforms,
(2) setting the parameters of the model, (3) changing the
control strategy, (4) saving the data of the waveforms.
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Fig. 6. The implementation of TC relay neuron on the closed-loop electrophysiology system. The hardware platform consists of the controlled
model and the controller. The host PC sets the parameters and monitors the vital signals of models. V is the membrane potential, ω is the gating
variable, Ve is the stimulation signal. TC relay neuron model in parkinsonian state is designed as the controlled neuron due to its abundant dynamics,
and the normal TC relay neuron in DSP2 generates the desired signals.

Fig. 7. The membrane potential V of TC relay neuron both in
parkinsonian state and normal state. (a) MATLAB simulation diagram.
(b) Analog oscilloscope picture generated by the hardware platform.

A. Verification and Testing of TC Relay
Neuron Implementation

According to Equation (A.1), the corresponding parameters
of TC relay neuron model are shown in Table I, and the
corresponding parameters can be set in the user interface as
Figure 5 depicts. The inhibitory synaptic current IGi→T C is
crucial to the dynamic properties of TC relay neuron. When
the value of IGi→T C is large, TC relay neurons will have many
firing failures and rebound cluster firing behaviors, which
destroys their ability to secondary excitatory information in
the sensorimotor cortex. Therefore, the models with different
IGi→T C values can simulate different degrees of pathological
behavior of real TC relay neuron.

The TC relay neuron models are implemented on the closed-
loop electrophysiology platform, as Figure 6 depicts. DSP1
realizes a parkinsonian TC relay neuron model, which also
contains the excitatory input current generation part. DSP2 acts
as the digital closed-loop controller, which receives neuron
activities (V , ω, etc.) and sends the stimulation signals Ve.
The host PC sets the parameters and monitors the crucial
signals of models and the controller. TC relay neuron model
in parkinsonian state is designed as the controlled neuron
due to its abundant dynamics, and the normal TC relay

Fig. 8. The open simulation of TC relay model. Ve is the stimulation
signal, V is the membrane potential. (a) The square stimulation waves.
(b) The impulse stimulation waves. (c) The triangle stimulation waves.
(d) The sine stimulation waves.

neuron in DSP2 generates the desired signals. The implemen-
tation results are shown in Figure 7, where the waveforms
generated by the hardware platform are consistent with the
MATLAB simulation. Figure 7 (a) is a MATLAB simulation
diagram of TC relay neuron’s membrane potential (V ) both
in parkinsonian state (IGi→T C = 4, upper) and normal state
(IGi→T C = 0, below), and Figure 7 (b) is the correspond-
ing analog oscilloscope picture generated by the hardware
platform. The error between the neuron firing waveforms of
the hardware platform and the MATLAB software simulation
waveforms is 0.0101, which is calculated by Normalized Mean
Square Error (NMSE) method:

NMSE =

N∑
n=1

( f (n) − ∧
f (n))

2

N∑
n=1

( f (n))2

(3)

The stimulation signals Ve in Equation (A.1) are applied
to TC relay neurons in the form of electric fields, and
the injected current stimulation equivalently perturbs the
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Fig. 9. Desired stimulation signals acquisition based on membrane
potential V clamp. (a) Membrane potential (V) waveform. (b) Gating
variable (ω) waveform. (c) Stimulation signal (Ve) waveform. (d) Corre-
sponding hardware waveforms of membrane potential (V) and stimulation
signal (Ve).

membrane voltage of TC relay neurons, affecting the mag-
nitude of the respective ion channel currents. To explore the
effect of stimulation signals on the model, different open-
loop stimulations are applied to TC relay neuron model in
parkinsonian state, as Figure 8 shows. By changing the type
and the parameters of the stimulation signal Ve, different
outputs of membrane potential can be obtained, which verifies
the control effect of Ve.

However, the desired outputs based on different
requirements are hard to obtain by open-loop stimulation. And
different algorithms are required depending on different clamp
characteristics and requirements in the electrophysiology
experiments. So, the control effect and the applicability of the
open-loop stimulation are unstable due to the personalized
controlled models in clinical application. Therefore, a closed-
loop system is necessary for electrophysiology research.

B. Hardware Closed-Loop Electrophysiological
Experiments

1) Desired Stimulation Signals Acquisition Based on Mem-
brane Potential Clamp: PI control law is applied to control
the TC relay neuron based on the membrane potential. The
stimulation signal Ve is applied to the parkinsonian neuron
as a form of external stimulation. In Equation (A.1), Ve =
kpe +ki

∫
e, where kp and ki are the proportional and integral

gains, e is the error between the membrane potential V of the
desired neuron model and that of the controlled neuron model.
In Figure 5, the parameters of PI controller (kp = 5, ki = 0.1)

Fig. 10. Desired stimulation signals acquisition based on ω clamp.
(a) Membrane potential (V) waveform. (b) Gating variable (ω) waveform.
(c) Stimulation signal (Ve) waveform. (d) Corresponding hardware wave-
forms of membrane potential (V) and stimulation signal (Ve).

and the pathological parameter (IGi→T C = 4) are set in the
user interface on the host PC.

As depicted in Figure 9, the membrane potential V and
gating variable ω of the controlled parkinsonian TC relay
neuron model is consistent with those of desired normal TC
relay neuron model after receiving the stimulation signal Ve.

2) Desired Stimulation Signals Acquisition Based on Gating
Variable Clamp: In order to research the conductance, synaptic
currents as well as architecture of neurons, different clamps
are needed to monitor and stimulate neurons. The closed-
loop electrophysiology system can also meet the need by
changing the clamp to different variables and adjusting the
control strategy on the host PC. In this experiment, the clamp
is changed to gating variable ω. In Equation (A.1), Ve =
kpe +ki

∫
e, where kp and ki are the proportional and integral

gains, e is the error between the gating variable ω of the
desired neuron model and that of the controlled neuron model.

As shown in Figure 10, the membrane potential V and
gating variable ω of the parkinsonian TC relay model can also
be adjusted to the normal state by the stimulation signal Ve.
Furthermore, the amplitude of the ω based stimulation signal is
smaller than the stimulation signal using membrane potential
clamp. More clamps can be selected on the platform, which
affect the controller to generate different stimulation signals
allowing us to choose the proper stimulation due to the needs.

However, the parameters of PI controller are adjusted based
on the trial-and-error method, and the search for suitable
parameters requires adequate experience of the user.
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Fig. 11. The comparison of stimulation performance in different
iterative cycle. (a) Membrane potential (V) waveform and stimulation
signal (Ve) waveform in different iteration cycles (n). (b) Correspond-
ing hardware waveforms of membrane potential (V) and stimulation
signal (Ve).

C. Performance Test of Closed-Loop Electrophysiology
Platform Under Different Complex Situations

1) Desired Stimulation Signals Acquisition Using
Proportional-Integral Iterative Learning Control: Due to
the high nonlinearity and complexity of nervous system, the
established model usually has many uncertain and unknown
factors, and the appropriate parameters are difficult to find.
When the parameters of PI controller are not suitable,
the performance of the simple PI control algorithm is not
satisfactory. Since neuronal firing is periodic, the proportional-
integral iterative learning control (PI-ILC) algorithm can be
used to achieve more effective control of neurons, which is
shown in Equation (4):

Ve(n + 1) (t) = kVe(n) (t) + k pen+1 (t) + ki

T∫
t=0

en+1dt

en+1 (t) = yd (t) − yn+1 (t) (4)

where T is the time window length of each iteration cycle,
Ve(n)(t) is the feedback signal in the nth iteration cycle,
yn+1(t) is the output signal, and yd(t) is the expected signal.
kp and ki are the proportional and integral gains of the
corresponding PI control law [43], [44].

The control strategy can be switched to PI-ILC on the host
PC, the clamp is fixed as membrane potential (V ), and the
parameters of PI-ILC controller are set to an unsuitable value
(k p = 1.5, ki = 0, etc.). The ek+1(t) in Equation (4) is the
error of membrane potential V in the (n+1)th iteration between
the normal TC relay neuron and the parkinsonian TC relay

Fig. 12. The error between the controlled and desired membrane
potential under different iteration numbers and iterative control
parameter The error decreases with the increase of the number of
iterations, which is faster with larger iterative control parameter k.

neuron, and Ve in Equation (A.1) in nth iteration cycle is
Ve(n)(t) that calculated by Equation (4).

As Figure 11 depicts, when the number of iterations n =
1, only PI control works, the control effect is less than
satisfactory. By combining the ILC idea with the classical
PI control, the controller superimposes the prior information
acquired in the last cycle T and the output stimulation signal
Ve of the PI controller to continuously modify the stimulation
signal waveforms applied to the TC relay neurons to obtain the
continuous attenuation of the system tracking error informa-
tion. With the PI-ILC control strategy, the membrane potential
can track the desired signal gradually without changing the
parameter of controller when the number of iterations n = 10.

Figure 12 illustrates the trend of the mean error between
the controlled membrane potential and desired membrane
potential with the number of iterations, and the error decreases
with the increase of the number of iterations. Moreover, error
decreases faster with larger iterative control parameter k and
reaches smaller value after 10 iterations.

2) Different Desired Stimulation Acquisition to Achieve Differ-
ent Desired Firing Modes: The time patterns issued by neurons
can encode different information, which is called as time
coding. An important type of time coding is the coding of basic
information based on the variation of action potential peaks,
called the interspike intervals (ISI) code in neuron discharge
string [45], [46].

The ISI of the firing sequence of neurons is often very
irregular, but this irregular sequence interval is considered an
essential source of neural coding information. At present, the
ISI coding method has been widely used to analyze neuronal
firing activity. However, the stimulation to achieve different
ISI firing mode is hard to obtain. The closed-loop electro-
physiology system can also be used to obtain the appropriate
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Fig. 13. The simulation to achieve different desired firing modes.
(a) Membrane potential (V) waveform. (b) Gating variable (ω) waveform.
(c) Stimulation signal (Ve) waveform. (d) Corresponding hardware wave-
forms of membrane potential (V) and stimulation signal (Ve).

Fig. 14. The error of PI and PI-ILC control under different patho-
logical parameters. Pathological parameter is the value of the inhibitory
synaptic current IGi→TC.

stimulation. The ISI of desired model can be changed on the
host PC to simulate different firing mode, and the PI-ILC
control strategy can be used as the control strategy on the
platform.

The ek+1(t) in Equation (4) is the error of the membrane
potential V in the n + 1iteration between the desired TC relay
neuron and the parkinsonian TC relay neuron, and the Ve

in Equation (A.1) in nth iteration cycle is Ve(n)(t). As is
depicted in Figure 13. By using PI-ILC control strategy, both
the membrane potential and gating variable of the controlled
model can follow the different desired model well without
changing the parameters of controller. The stimulation that
generates desired firing mode Ve can be obtained by using the
closed-loop electrophysiology, which helps us to encode more
information in future neuroscience exploration.

3) The Accuracy of Stimulation Effect Using Different Con-
trol Strategies: As the disease condition progresses, the
update of control parameters may not be timely, resulting in

unsatisfactory control effect. The influence of this disturbance
on control effect can also be reduced by using PI-ILC. The
value of pathological parameter IGi→T C can simulate different
degrees of pathological behavior of real TC relay neuron,
and the value of IGi→T C bigger the disease condition worse.
By changing IGi→T C from 0 to 5 and keeping kp = 5,
ki = 0.1 unchanged, we compared the control effect of PI
and PI-ILC control strategies with Error = 1

m

∑m
i=0 |e| in

Figure 14. Where m is the number of total simulation steps
and e is the mean error between the membrane potential V
of the desired neuron model and the controlled neuron model.
It is evident that the control strategy based on PI-ILC has better
robustness and can track desired signals in more complex situ-
ations. Furthermore, other different complex control strategies
can be extended on the closed-loop electrophysiology system
due to different needs in the future.

IV. CONCLUSION

This paper presents a real-time hardware experiment plat-
form for closed-loop electrophysiology. The platform is imple-
mented on TMS320F28377D DSP, and a corresponding pro-
grammable user interface has been designed based on Visual
Studio. By using the user interface on host PC, the platform
is elastic for users to change models, clamps, desired firing
modes, and control strategies to design different experiments.
The TC relay neuron model and PI-ILC control are imple-
mented to test and verify the platform in this paper, and
the method of TC relay neuron modeling has been discussed
in detail to adapt to the platform. We design experiments
with different control strategies, different clamps, and dif-
ferent desired firing modes, and the platform can meet the
needs of different experiments well. By using the system,
researchers can design different experiments on digital neurons
to substitute the biological experiment, and the critical data
of the target neuron can be stored for the corresponding
analysis. The platform is highly compatible, and more neuron
models and control strategies can be implemented on the
platform to find the appropriate stimulation. Moreover, the
correlative work has revealed that the single neuron control
scheme can also contribute to the control of neural populations
[47], [48], so the system proposed in this study may promote
the development of nervous system disease modulation and
closed-loop neuroscience.

APPENDIX A
THE DETAILED DESCRIPTIONS AND EXPLANATIONS

ABOUT ION CHANNELS, GATED VARIABLES,
AND EXCITATORY INPUT

Ion channel current equations can be described as follows:

INa = gNam3∞h (V − Ve − ENa)

IK = gK 0.75(1 − h)4 (V − Ve − EK )

IT = gT p2∞ (V ) ω (V − Ve − ET )

IL = gL (V − Ve − EL) (A.1)

where Ve is the control voltage that applies to the ion chan-
nels. gi and Ei (i ∈ {Na, K , L, T }) represent the maximum
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ion channel conductance and the equilibrium back potential,
respectively. P∞(V ) describes the maximum osmotic pressure
of the low threshold T-type Ca2+ channel membrane.

The gated variables h and ω satisfy the first-order dynamic
characteristics:

dh

dt
= h∞ (V ) − h

τh (V )
dω

dt
= ω∞ (V ) − ω

τω (V )
(A.2)

where X∞ ∈ {h∞, ω∞} stands for the voltage sensitive steady
state variable, τx ∈ {τh, τω} is the time constant of each ion
channel gating variable.

Furthermore, the steady-state values and time constants of
each ion channel variable in the thalamic neuron model can
be described by the equation:

h∞(V ) = 1

1 + exp
( V +41

4

) bh(V )= 4

1 + exp
(− V+23

5

)
ω∞(V ) = 1

1 + exp
( V +84

4

) ah(V )=0.128 exp

(
− V + 46

18

)

m∞(V ) = 1

1 + exp
(− V+37

7

) τh(V )= 1

ah(V ) + bh (V )

p∞(V ) = 1

1 + exp
(− V+60

6.2

) τω(V )=28 + exp

(
− V + 25

10.5

)

(A.3)

IGi→T C is negative with a considerably small value in
normal state, while it is much bigger under the abnormal state.
A set of periodic rectangular waves are used to describe IS M

here, whose expression is as follows:

IS M = AS M H

(
sin

(
2π t

ρS M

))(
1−H

(
sin

(
2π t+DS M

ρS M

)))

(A.4)

where, parameters AS M , ρS M and DS M are respectively the
amplitude, period, and pulse width of the rectangular wave.
H (x) takes Heaviside step function form, when x < 0,
H (x) = 0; When x > 0, H (x) = 1; When x = 0, H (x) = 0.5.

APPENDIX B
THE DISCRETE ANALYSIS OF TW

GATING VARIABLES h AND ω

The discrete analysis of the two gating variables h and ω
are as equations show.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(n + 1) − h(n) = h1(n)

6
+ h2(n)

3
+ h3(n)

3
+ h1(n)

6
h1(n) = �t ∗ f (V (n), h(n))

h2(n) = �t ∗ f (V (n) + 1

2
V1(n), h(n) + 1

2
h1(n))

h3(n) = �t ∗ f (V (n) + 1

2
V2(n), h(n) + 1

2
h2(n))

h4(n) = �t ∗ f (V (n) + V3(n), h(n) + h3(n))

(B.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(n + 1) − ω(n) = ω1(n)

6
+ ω2(n)

3
+ ω3(n)

3
+ ω1(n)

6
ω1(n) = �t ∗ f (V (n), ω(n))

ω2(n) = �t ∗ f (V (n) + 1

2
V1(n), ω(n) + 1

2
ω1(n))

ω3(n) = �t ∗ f (V (n) + 1

2
V2(n), ω(n) + 1

2
ω2(n))

ω4(n) = �t ∗ f (V (n) + V3(n), ω(n) + ω3(n))

(B.2)
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