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Recognizing Continuous Multiple Degrees of
Freedom Foot Movements With Inertial Sensors
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Abstract— Recognition of continuous foot motions is
important in robot-assisted lower limb rehabilitation, espe-
cially in prosthesis and exoskeleton design. For instance,
perceiving foot motion is essential feedback for the robot
controller. However, few studies have focused on perceiv-
ing multiple-degree of freedom (DOF) foot movements.
This paper proposes a novel human-machine interac-
tion (HMI) recognition wearable system for continuous
multiple-DOF ankle-foot movements. The proposed system
uses solely kinematic signals from inertial measurement
units and multiclass support vector machines by creating
error-correcting output codes. We conducted a study with
multiple participants to validate the performance of the
system using two strategies, a general model and a subject-
specific model. The experimental results demonstrated
satisfactory performance. The subject-specific approach
achieved 98.45% ± 1.17% (mean ± SD) overall accuracy
within a prediction time of 10.9 ms ± 1.7 ms, and the general
approach achieved 85.3% ± 7.89% overall accuracy within
a prediction time of 14.1 ms ± 4.5 ms. The results prove
that the proposed system can more effectively recognize
multiple continuous DOF foot movements than existing
strategies. It can be applied to ankle-foot rehabilitation and
fills the HMI high-level control demand for multiple-DOF
wearable lower-limb robotics.

Index Terms— Foot movement, continuous recognition,
inertia sensors, wearable robotics.
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I. INTRODUCTION

OVER the past few decades, researchers have made
great efforts to design and implement robot-assisted

lower-limb devices such as anthropomorphic exoskeletons and
prostheses to enhance or recover human capabilities. Com-
pared with the many developments in the mechanical config-
uration and hardware-level controller, challenges still exist in
human-machine interaction (HMI) at the high level of the con-
trol hierarchy. One crucial problem that needs to be given more
attention is quickly perceiving the user’s motion intention to
coordinate with the device relatively efficiently and safely [1].

In particular, perceiving ankle-foot motions is one chal-
lenge of HMI high-level control in robot-assisted lower limbs.
A human foot can supply multiple DOFs to provide flexibil-
ity in foot movements. Meanwhile, a human central control
system regulates ambulation. Sensory control from the spine
and brain makes a human respond quickly to maintain bal-
ance during locomotion, including perceiving, adjusting, and
reacting to the environment. Unlike the movements of a human
foot, existing anthropomorphic exoskeletons and bionic robots
lack the flexibility for fine motor control and, therefore, cannot
imitate human foot movement [2]–[6]. Since HMI serves an
essential tool for humans to control machines through natural
and intuitive behaviors [7], [8], we expected some wearable
lower-limb robotics with an HMI system. The system could
quickly perceive the user’s foot movement intent to achieve
the goal so that wearable robotics can fit the user and work
more in concert with the user’s movements.

Recent user mode recognition of wearable lower-limb
robots has mainly focused on terrain or gait pattern recog-
nition [1], [9]–[14]. To adapt to the natural movements of
a human body, it is vital to design wearable robots in
terms of the range of motion and the DOFs accompanied
by continuous locomotion. Unfortunately, current wearable
lower-limb robotics mostly provide a single DOF for the foot.
Only a few can provide two DOFs for the foot. Although
the Berkeley Lower Extremity Exoskeleton (BLEEX) fea-
turing three DOFs at the ankle, only one DOF, the ankle
plantar/dorsiflexion, is actuated [15], [16]. Furthermore,
there is limited human motion mode recognition research
on continuous foot gestures or multiaxial foot movements
[1], [17]–[19]. Scott et al. designed a study performing foot
gesture recognition involving 2-DOF foot movement under
static conditions [19]. Gregory and Ren tried different strate-
gies to recognize continuous multiaxial ankle-foot motions
based on surface electromyography (sEMG) data. The motions
to be predicted were in two DOFs, the sagittal plane (foot
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dorsiflexion and plantarflexion), and the frontal plane (foot
eversion and inversion) [17].

Moreover, in robot-assisted mode, users wear exoskeletons
on the existing limbs compared to prostheses. Exoskeletons
must work in concert with the user’s intrinsic limb movements.
In particular, orthoses are a unique exoskeleton device to assist
individuals suffering from limb pathology and work consistent
coordination [20], making the movement recognition HMI
control strategy more important. However, current research has
developed only a paucity of recognition HMI control strategies
for exoskeletons but for prosthetic devices. Primarily, there
are limited studies about mode recognition HMI of ankle-foot
orthoses (AFOs) [1], [21]–[35]. Thus, there is a compelling
need to design a mode recognition for HMI high-level control
wearable systems into AFOs to improve patient engagement
during physical therapy. Hence, in pursuing an imitation that
approaches the natural functions of a human foot and to
develop HMI with intuitive feedback control for wearable
lower limb robotics, especially for AFOs, this paper proposed
an HMI wearable system to recognize multiple DOFs of fine
ankle-foot movements during a continuous locomotion mode.
We designed this study to improve a user’s experience with
ankle-foot rehabilitation in the future.

We organized the rest of this paper as follows: Section II-A
gives a brief description of natural human foot movements
to introduce the recognition target motion definitions in
this study. After describing the system design (Section II-B)
and how we conducted the experiments (Section II-C),
Section II-D illustrates the algorithm protocol, including two
distinct recognized model-designed strategies. We presented
the experimental results in Section III and discussed them in
Section IV. Finally, a conclusion is provided in Section V.

II. METHODS

A. Target Motions Definition

In this paper, we described and defined the foot’s move-
ments according to the anatomical position and anatomical
plane (Fig. 1(a)). The anatomical position is the point of
reference for all movements.

Normal walking consists of plantarflexion and dorsiflexion
of the foot occurring in the sagittal plane to generate successful
forward bipedal locomotion (Fig. 1(a, b)). A human foot can
supply other DOFs for more flexibility of foot movements
than most other mammals. Eversion of the foot moves it away
from the midline, while inversion moves it toward the midline
(Fig. 1(c)). The foot subtalar joint formed between the talus
and calcaneus controls both inversion and eversion, which
occur in the frontal plane (Fig. 1(a)). Abduction moves the
foot laterally away from the body’s midline, while adduction
is the opposite action (Fig. 1(d)). These are movements in
the transverse plane [36], Fig. 1(a). The ankle joint plays an
important role in foot mechanics, and the tibia and fibula of
the leg and talus of the foot form the ankle joint, which plays
a vital role in foot mechanics.

B. System Description

Fig. 2 (the system configuration) and Fig. 3 (the system
layout) show our sensor design, a fully portable and wear-

Fig. 1. (a) The anatomical plane used in this study and (b-d) the foot
movements defined in the study.

Fig. 2. (a) A female subject wearing the system. (b) A male subject wear-
ing the system. (c) Customized multicell insole, (d) real-time monitoring,
and (e) power bank powering the control box.

able wireless system for measuring plantar pressure and foot
dynamics data. The system has all logic elements required
for monitoring continuous dynamics signals in real-time
(Fig. 2(d)) based on the force and inertial sensor readings
onboard. The system consists of two sensing insole units, four
inertial measurement units, and a control box unit designed by
our team. To ensure that the sensor was in the correct position
for each subject during each trial, we utilized footwear to
locate the sensor units with two configurations available (one
for female Fig. 2(a) and the other for males Fig. 2(b)). Our
system is convenient to carry and wear and a user can don it
in less than two minutes.

Each sensing insole unit consists of a multicell piezoresis-
tive sensor and a logic unit. The customized multicell insole
features sixteen piezoresistive sensors that capture most of the
area of the plantar forces (Fig. 2(c)). An ADC amplifies and
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Fig. 3. System layout.

digitizes the signals and then feeds the signals to a 32-bit
ARM Cortex-M4 Processor in the logic unit. The inertial
measurement unit (IMU) has 9-DOF. The IMU units are
located along the midline of the foot, one placed above the
center of the lateral cuneiform and the intermediate cuneiform,
and the other tied above the talus and the bottom of the tibia.

A 3.7 V Li-Po battery independently powers all sensor
units. The sensing units collect signals at 100 Hz and wire-
lessly sends them to a power-bank powered control box via
Bluetooth® technology (Fig. 2(e)). The control box contains a
32-bit ARM Cortex-M7 Processor, synchronizing the sensing
units’signals and sending them to the user computer over a
WLAN using a Wi-Fi module. The user can wear the control
box unit or locate it within a 50 m range from the user.

C. Experimental Protocol

The Local Ethics Committee of Peking University approved
the protocol for this study, and all subjects provided informed
consent before the experimental session.

1) Participants: Data were collected from seven healthy
adult individuals with no musculoskeletal or neurological
conditions. Four females and three males (mean height 1.69 m,
range 1.62-1.83 m; mean weight 63.1 kg, range 52-81 kg) were
included.

2) Procedures: Subjects, based on sex, chose the corre-
sponding system configuration as we described in the previous
section (Fig. 2(a, b)).

Fig. 4 shows the protocol of the experiment. We instructed
each volunteer and showed examples of what they should do
in each foot session by demonstration. Then, we allowed the
subject to exercise and familiarize each foot movement session
under the instructor’s supervision before starting the experi-
ment. It is assumed the volunteers’feet have three-dimensional
coordinate axes, as shown in Fig. 1. In Session 1, abduction:
for each step, the foot rotates around the vertical-axis and
laterally away from the body’s midline during movement.
Session 2, adduction: for each step, the foot rotates around the
vertical axis and laterally toward the body’s midline during
locomotion. Session 3, eversion movement: for each step,

Fig. 4. Experimental protocol.

Fig. 5. (a) The experimental environment; (b) Recording an ongoing
trial.

the sole tilts outwards, rotating around the sagittal axis, and
away from the body’s midline. Session 4, inversion: the sole
tilts toward the body’s midline, rotating around the sagittal
axis during movement. After the familiarization sessions,
participants conducted five different mode sessions: abduction,
adduction, eversion, inversion, and normal walking, includ-
ing dorsiflexion and plantarflexion. Each mode type session
included one trial with two-minute breaks and then another
trial. Furthermore, the participant rested for 5 minutes between
sessions to avoid fatigue. Each trial started with a six-second
calibration, and subjects walked along a 50 m straight-line
path at a self-selected, comfortable pace.

As shown in Fig. 5, each trial was labeled by the instructor
based on video references. Foot dynamics captured from
both IMUs and pressure insoles were continuously monitored
during the trial by our wireless real-time interactive system
(Fig. 2(d)). To ensure a complete experiment, the technician
could interrupt and restart the trial if anything went awry.

D. Algorithm Protocol

Fig 6 shows the flowchart of the model design strategy.
1) Preprocessing: The 100 Hz raw signals from the sensors

were fed to our custom preprocessing algorithm. First, the
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Fig. 6. Flowchart of the recognition model design.

algorithm picked up the working channels from the raw
signals. Then, a 0.1-second sliding window was used to
continuously detect and replace the outliers in the working
channels of the data. A Gaussian filter was applied to reduce
noise, and the continuous quadratic trend in the signals from
the IMU sensors caused by drift was removed. Finally, the
signals were normalized.

After preprocessing, the signals were split into two sets,
one for stride segmenting and the division of dorsiflexion
and plantarflexion based on the plantar force captured from
the sensing insole and another for foot movement mode
recognition using the foot dynamic signals from the inertial
sensors. The mathematical model is presented in (1) and (2).⎧⎨
⎩

ForceLeftfoot
i = [
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i , F2

i , F3
i , . . . , F j

i
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i = [

F1
i , F2

i , F3
i , . . . , F j

i

]
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]
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where i is the current data point and n is the number of
data points within the signals. F j

i of each matrix of plantar
force is a column of the data points corresponding to the j-th
piezoresistive sensor of the multicell sensing insole. x j

i of each

IMU matrix corresponds to the j-th particular dynamics signal,
such as, x1(Y aw)

i , which is a column of data points for the
yaw angle signal.

2) Feature Selection: Based on our preliminary experiments,
the preprocessed IMU signals were better using a 75% overlap
1.2-second sliding window. Each x j

i in (2) was converted into
an N-by-120 matrix x j

N×120 representing N samples, and each
sample contained 120 data points representing a 1.2-second
time duration of kinematic signal information, such as,

x1(Y aw)
i

Sliding W indow����������⇒ x1(Y aw)
N×120 ,

where N = samples. We tried many features, such as the dif-
ference and mean absolute values (MAVs) [12], [17], and five
time-domain features were chosen for minimal computational
cost and memory consumption to be calculated from each
sample of IMU signals. The features are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

feature1 = mean(x)

feature2 = std(x)

feature3 = maximum(x)

feature4 = minimum(x)

feature5 = mean( di f f erence(x) )

(3)

where x stands for x j
N×120. The arithmetic mean measures

the central tendency of the dynamic signals. The standard
deviation is used to measure the spread of the dynamic signals.
The maximum, minimum, and difference find the peaks in the
continuous dynamics signals.

3) Movements Mode Recognition: We customize a multiclass
support vector machine (SVM) by creating an error-correcting
output code (ECOC) model for continuous foot movement
recognition [37], [38]. The ECOC method streamlines the
model to multiple binary SVMs using a one-vs.-one design.
Then, the combination of the resulting classifiers is used
for recognition. The idea is to design a robust construction
consisting of several nonlinear separating hyperplanes for a
quick and accurate response. The mathematical algorithm
model is presented below:

After the feature selection procedure, we have a N × p size
matrix for each IMU unit · · · · · · (2). N represents the samples,
while p represents the featured variables in each IMU matrix.

XI MU =
⎛
⎜⎝

x1(Y aw f eatured1)1 · · · xp
1

...
. . .

...

x1(Y aw f eatured1)N · · · xp
N

⎞
⎟⎠ , p, N ∈ N

(4)

A nonlinear separating multidimensional hyperplane is
defined by equation f (x) for parameters β0 and αN by divid-
ing multidimensional space into two halves using p features.
One can easily determine on which side of the hyperplane
a test observation lies by simply making use of both the
magnitude and the sign of f (x) · · · · · · (5)

f (x) = β0 +
∑
p∈S

αN K (x, xN ) (5)
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Fig. 7. Simulated real-time recognition processes. Each solid blue dot
represents an observation. The red stars represent an error prediction
of the corresponding observation. The purple dashed-dotted line repre-
sents the standard deviation of the prediction time for all observations in
a real-time prediction trial. The red dashed line represents the average
prediction time for all observations in a real-time prediction trial.

x is an observation sample with the p-featured variables.
K (x, xN ) is a polynomial kernel of degree d, where d is a
positive integer · · · · · · (6)

K (x, x�
N ) = (1 +

p∑
k=1

xNkx�
Nk)

d (6)

S is the collection of indices of the support points and defined
by αN being nonzero, which is the inner product of two
observations xN , x �

N given by

�x, x�
N � =

p∑
k=1

xNk x�
Nk �= 0 (7)

We implemented two alternative recognition approaches as
described below. Fig. 7 shows the process of simulated real-
time recognition. 1) Subject-specific recognition approach:
This approach independently applied each subject’s data set,
which learns from the training data set of a specific subject
and fits a set of coefficients of a recognition model tailored
to that subject. We then selected the best learning model
with the most negligible loss for that specific subject. Given
each individual’s data set had a small number of observations,
to achieve the most reliable and accurate subject-specific mod-
els, we applied a tenfold cross-validation model assessment
method to evaluate the subject-specific model [38], [41]. The
tenfold cross-validation assessment method randomly divided
the data set into ten subsets, nine subsets used for training,
and the one remaining subset used for testing. The evaluation
process used different training and test subsets each time,
repeating the model evaluation process ten times. Finally,
we evaluated the picked model recognition ability under
simulated real-time conditions using a new data set for each
subject.

Fig. 8. Continuous autodivision of strides. The black dotted lines
represent the beginning of a stride, and between two adjacent black
dashed lines represent a gait cycle. The solid blue line represents the
heel pressure after autosignal processing. The solid red line represents
the toe pressure after autosignal processing.

2) General recognition approach: The general recognition
model learned the fitted model for each subject based on
the data sampled from all the subjects. Given the extensive
data set of the general approach, we chose holdout valida-
tion [38], [41]. To achieve the most reliable and accurate
model, we increased the randomness of the partition fraction
based on multiple trials. We expanded the fraction range of
the random data for validation to 10-30%. Thus, we applied
the corresponding 90-70% random partition holdout validation
on all subjects’data sets. That is, we used random 90-70%
data sets for training and the other 10-30% data sets for
testing. Then, we selected the best learning model with the
most negligible loss for all subjects. Finally, we evaluated
the trained model recognition ability under simulated real-time
conditions by using a new data set for each subject.

III. RESULTS

A. Signal Sources of the System Information

Our threshold-based method combined with plantar pressure
signals from the customized multicell insole determined the
gait cycle and labeled the foot movement modes. Fig. 8 shows
the result of the continuous autodivision strides procedure for a
random trial described in Section II-D. Note that our system
can detect the contact of the toe and heel with the ground,
thereby segmenting each stride successfully.

Fig. 9 and Fig. 10 show plots of the six-mode distribution
curves of one side of a foot’s normalized raw dynamic signals
and the three-angle channels of the IMU units. We can see
from Fig. 9 and Fig. 10 that except for dorsiflexion and plan-
tarflexion, which look similar, the raw dynamic signals from
each channel of the IMU unit vary in the most different foot
movement modes. Both figures imply that the combination of
the dynamic signals we chose was able to distinguish most
of the different foot modes. However, we still need to ensure
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Fig. 9. The six-movement mode distribution curve of the total subject
normalized raw dynamic signals. The three angle channels of the left foot
cuneiform IMU unit are plotted.

Fig. 10. The six-movement mode distribution curve of the total subject
normalized raw dynamic signals. The three angle channels of the left foot
talus tibia IMU unit are plotted.

efficient feature selection to distinguish the subtle differences
of confusing modes in continuous locomotion for the model
to produce accurate recognition results.

B. Validity and Reliability
Based on our experiment described in

Sections II-C and II-D, Fig. 11 shows the overall recognition
results for each subject using the two approaches. Table I
shows the recognition confusion matrix, presenting the
results of the mean and standard deviation across all
subjects for six modes of continuous multiple-DOF foot
movements under the two approaches. We performed two
one-tailed (upper tail) t-tests with a 99% confidence level
((1 − α) · 100%, α = 0.01) to test the statistical significance
of the system recognition accuracy effects for two approaches
separately. The one-tailed t-test is often used in hypothesis
testing to determine whether an approach has an effect on our
observing interests. A statistical t-test is relatively common
in the statistical inference community. We test against the
alternative hypothesis that the system’s recognition accuracy

Fig. 11. Each subject’s recognition overall accuracy results for the two
model design strategies, the general approach, and the subject-specific
approach.

steadily tends in one direction of effect greater than 1/2
[42], [43]. For the subject-specific approach, the total subject
overall recognition accuracy in the three rotation DOFs along
the three planes varied from 96.15 to 100% (98.45% ± 1.17%,
mean, and SD) (p < 0.0001). For the general approach,
total subject overall recognition in the three rotation DOFs
along the three planes accuracy varied from 79.46 to 95.27%
(85.3 ± 7.89%, mean, and SD) (p < 0.0001). The test
statistic revealed that the system prediction accuracies have
high statistical significance (p < 0.0001). In addition, before
the t-test, to check the normality assumption of the t-test,
we conducted the normality test for the null hypothesis
that the recognition accuracy of either approach obeys
normal distribution. Under the subject-specific approach,
recognition accuracy accepts the null hypothesis (p = 0.35)
and obeys normal distribution. Under the general approach,
recognition accuracy also accepts the null hypothesis (p =
0.47) and obeys normal distribution. The results implied that
both approaches with our system could effectively identify
continuous multiple-DOF foot movements.

Fig. 12 shows each recognition mode summary statistic
result from the distribution across all subjects by the two
approaches. We also performed a two-tailed paired t-test with
a 99% confidence level ((1 − α) · 100%, α = 0.01) to test
the statistical significance of the difference in recognition
accuracy of our two approaches (p = 0.0026). The two-
tailed t-test is often used in hypothesis testing to determine
whether the interest groups of two approaches differ without
specifying direction. The null hypothesis is that the recognition
accuracy population of the two approaches comes from the
same distribution [42], [43]. The test statistic found a highly
statistically significant difference in the recognition accuracy
of the two approaches (p = 0.0026).

C. Prediction Time

Table II shows the simulated real-time recognition time
results of the two approaches of all strides across all subjects.
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TABLE I
THE CONFUSION MATRIX OF THE RESULTS OF THE TOTAL SUBJECT FOOT MOVEMENTS DETECTION OF THE TWO APPROACHES (MEAN SD)

Fig. 12. Box plots for each foot movement mode recognition accuracy
for the two strategies.

TABLE II
RECOGNITION TIME OF THE TEST RESULTS FROM THE TOTAL

STRIDES OF ALL SUBJECTS

We conducted another two one-tailed (lower tail) t-tests with
a 99% confidence level ((1 − α) · 100%, α = 0.01) to test
the statistical significance of the system recognition time
efficiency for two approaches separately. The one-tailed t-test
often provides more power to detect an effect, which whether
an approach influences the observing of our interests. We test
against the alternative hypothesis that the recognition time
population of the system steadily tends in one direction of
effect less than 1.2 seconds [40], [42]. For the subject-specific

Fig. 13. Box plots for the prediction time analysis. The inside figure at
the right corner shows for the overall prediction time comparisons of the
two approaches of all subjects strides.

approach, the simulated real-time recognition time of strides
across all subjects varied from 7.6 to 25.2 ms (10.9 ± 1.7 ms,
mean, and SD) (p < 0.0001). For the general approach,
the recognition time varied from 9.3 to 55.4 ms (14.1 ±
4.5 ms, mean, and SD) for all subjects (p < 0.0001). Before
the t-test, to check the normality assumption of the t-test,
we conducted the normality test for the null hypothesis
that both approaches system recognition time obeys normal
distribution. Under the subject-specific approach, the system
recognition time also accepts the null hypothesis (p = 0.31)
and obeys normal distribution. Under the general approach, the
system recognition time accepts the null hypothesis (p = 0.12)
and also obeys normal distribution. The test statistic revealed
that our proposed system has a high statistical significance for
an adequate recognition time (p < 0.0001).

From the boxplot, Fig. 13 gives insight into the recognition
time distribution. Similarly, we also performed a two-tailed
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paired t-test with a 99% confidence level ((1−α) ·100%, α =
0.01) to test the statistical significance of the recognition
time difference of our two approaches (p = 0.0002). The
statistical inference community often used the two-tailed t-test
to determine whether the interest groups of two approaches
differ without specifying direction. The null hypothesis is that
the recognition time population of the two approaches comes
from the same distribution [42], [43]. The test statistic found
a high statistical significance of the difference in recognition
time of the two approaches (p = 0.0002).

IV. DISCUSSION

The level and speed of an individual to adapt to the
operation of a wearable device are strongly related to the
control method of the HMI. Therefore, a supervisory mode
recognition system’s ability to respond to the user’s motor
intent determines the degree of optimal coordination and
system efficiency. The study presented in this paper experi-
mentally verified the feasibility of our proposed recognition
system that captured the user’s continuous multiple-DOF foot
movements accounting for three degrees along three planes
based on a solely kinematic signal source. In addition, the
study experimentally compared the results of two approaches
for guidance in future multiple-DOF wearable lower-limb
rehabilitation robotics. It fills the demand for a recognition
HMI control strategy of multiple-DOF wearable lower-limb
rehabilitation robotics design, especially in AFOs.

A. System Analysis

Currently, no published studies have reported continuous
three-DOF ankle-foot movement recognition, especially in
HMI recognition control strategies for an AFO. The two
existing studies on ankle-foot recognition [17], [19] both
lack one DOF in the study, and neither calculates prediction
time. Scott et al. study involves 2-DOF foot movement at
approximately 86% recognition accuracy. The study lacks one
DOF in the frontal plane also has no continuous locomo-
tion recognition mode [19]. Gregory and Ren tried differ-
ent strategies to recognize continuous multiaxial ankle-foot
motions and yielded the highest intent prediction accuracy of
77.2%. The study only contains 2-DOF foot movements and
lacks one DOF in the transverse plane (foot abduction and
adduction) [17].

Our study has more DOFs with recognition of more foot
movement modes during continuous locomotion. Meanwhile,
our proposed system obtained better results in terms of accu-
racy [17], [19]. Additionally, compared with studies using a
user’s surface electromyography (sEMG) sensor [17], sEMG
sensors rely on direct contact with human muscles to obtain
stable and clear human muscle excitability; therefore, they are
not suitable for individuals with limb insufficiency or limb
pathology such as muscle atrophy. IMU signals can overcome
these shortcomings.

As section III-A presents the raw signals of our proposed
system, and our designed system’s sensor position and sig-
nal source are validated to show the recognition potential.
We applied a feature-selection technique and an algorithm to

the normalized raw signal output from the designed system to
further improve the system recognition effects. Specific fea-
tures can capture the subtle difference of helpful information
in dynamic signals and keep the model from being distracted
by irrelevant information in the dynamic signals that will not
impact recognition results. Our experimental results verified
that the IMU dynamic signal combined with the algorithm
and selected features through our system could effectively
recognize continuous multiple-DOF foot movements. Com-
pared with Gregory and Ren, who used six sEMGs in total,
three sensors were placed on each leg [17]. Our proposed
system has the advantage of convenience and practicality
while also guaranteeing higher accuracy. Besides, our system
gives out the calculation for the prediction time of each
step than the previous study [17], [19]. The system can
quickly perceive multiple degrees of freedom of the foot
movement states during continuous locomotion. Our HMI
multiple-DOF recognition system satisfies the high level of
the control hierarchy in robot-assisted lower-limb devices.
Users with our proposed system could control the devices
more intuitively and efficiently. Our proposed system could
also fill up the human ankle-foot motion monitoring demand.
The system could assist the therapist, healthcare workers, and
patients in diagnosis, treatment, and rehabilitation, such as gait
abnormalities detecting, further observing pathological gaits
for diagnosis, and robot-assisted home healthcare. Traditional
methods are often limited by space and time. Coupled with
our fully portable and wearable wireless system, the users get
more choice and free themselves to address more aspects of
their work and life.

B. Subject-Specific Approach vs. General Approach
As shown in the results of section III-B, the subject-specific

approach maintains high stability and accuracy through recog-
nition of all foot movement modes. The general approach has
lower accuracy and relatively large fluctuations in a few foot
movement modes, especially in recognizing the dorsiflexion
mode. This confusing recognition may be caused by different
individuals having unique movement habits. To summarize, the
subject-specific approach yielded significantly better recog-
nition results and was much more stable than the generic
approach for all analyzed parameters.

As shown in the results of section III-C, we verified that
the system responds quickly enough compared to an average
adult stride time of 1.2 seconds under both approaches [39],
[40]. We also found that the subject-specific model has a
significantly shorter response time than the general model.
We can see from Fig. 13 that there were no apparent trends
or differences in the recognition of each foot movement
mode. In summary, the system can provide a fast recognition
response. The results also revealed that the recognition time
has no significant trends for different foot movements. The
subject-specific model can respond more quickly than the
general model.

As discussed above, both our proposed general and
subject-specific strategies are better than previous works [17],
[19]. Our proposed system can recognize more DOFs con-
taining more foot movements under a continuous locomotion
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mode with a higher accuracy and calculate the prediction time
for each step. We also evaluate the system performance of
the two approaches under simulated real-time conditions. The
experimental results show the high potential of the system
using the subject-specific approach. The subject-specific model
yielded better recognition performance for all analyzed para-
meters than the generic model. The reason behind this may be
that individuals have different body physical conditions and
unique foot movement habits. Our study results imply that
choosing a subject-specific approach in future multiple-DOF
lower-limb HMI rehabilitation device designs may be more
effective.

C. Limitations

Our proposed system can recognize continuous multiple-
DOF ankle-foot movements much more accurately than pre-
vious works [17], [19]. Although the accuracy is relatively
decreased in the general model, this could be due to the
differences in individual body physical conditions and move-
ment habits. Overall, the significant results obtained with our
proposed system provide further evidence that our systems
can represent valid continuous multiple-DOF foot movement
recognition.

Some design features of our system can be improved
in the future. The accuracy of the general model still has
room to improve. The subject-specific approach often implies
a high cost. Generalizing the model can reduce industrial
manufacturing costs. Although the general model is relatively
less effective than the subject-specific model for each specific
user, it still has considerable value. Since the general model
can meet most users’general demands at a low cost, users
can use it immediately for emergencies. If the user met
conditions in the future, users could also choose a subject-
specific model. Currently, this is a pilot study for validating the
effectiveness of our proposed recognition wearable system for
continuous multiple-DOF foot movements accounting for three
degrees along three planes. In future work, we will primarily
explore ways to increase the general approach recognition
accuracy. In addition, it will be interesting to probe the system
performance on different terrains. Another improvement we
can make in the future is to reduce the number of sensors
used rather than using two IMUs in each foot. Therefore, our
future study will further simplify the system but maintain a
high accuracy.

V. CONCLUSION

In this work, we first presented a proposal of an HMI
recognition wearable system for continuous multiple-DOF
foot movements accounting for three degrees along three
planes. The experimental results of all subjects validated the
system’s effectiveness with satisfactory recognition accuracy
and recognition time. Experimental results also demonstrated
that the subject-specific approach outperformed the general
approach in all analyzed evaluation results, including validity,
reliability, and recognition time. Our study supplements the
demands of multiple-DOF lower-limb rehabilitation robots,
which are strongly related to the HMI control of AFOs and

provides insights into future wearable rehabilitation device
protocol designs in the foot and ankle.
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