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Adaptive Single-Channel EEG Artifact Removal
With Applications to Clinical Monitoring
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Abstract— Electroencephalography (EEG) has become
very common in clinical practice due to its relatively low
cost, ease of installation, non-invasiveness, and good tem-
poral resolution. Portable EEG devices are increasingly
popular in clinical monitoring applications such as sleep
scoring or anesthesia monitoring. In these situations, for
reasons of speed and simplicity only few electrodes are
used and contamination of the EEG signal by artifacts is
inevitable.Visual inspectionand manual removal of artifacts
is often not possible, especially in real-time applications.
Our goal is to develop a flexible technique to remove EEG
artifacts in these contexts with minimal supervision.We pro-
pose here a new wavelet-based method which allows to
remove artifacts from single-channel EEGs. The method
is based on a data-driven renormalization of the wavelet
components and is capable of adaptively attenuate arti-
facts of different nature. We benchmark our method against
alternative artifact removal techniques. We assessed the
performance of the proposed method on publicly available
datasets comprising ocular, muscular, and movement arti-
facts. The proposed method shows superior performances
on different kinds of artifacts and signal-to-noise levels.
Finally, we present an application of our method to the
monitoring of general anesthesia. We show that our method
can successfully attenuate various types of artifacts in
single-channelEEG. Thanks to its data-driven approach and
low computational cost, the proposed method provides a
valuable tool to remove artifacts in real-time EEG applica-
tions with few electrodes, such as monitoring in special care
units.

Index Terms— Electroencephalography (EEG), artifact
removal, wavelet transform, quantile normalization.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a non-
invasive procedure to monitor brain activity by record-
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ing electrical signal from electrodes placed on the scalp of
a patient. Compact, portable and easy-to-use EEG devices
are now routinely used for clinical needs. For example, EEG
is employed to monitor the depth of general anesthesia [1],
a method pioneered by the introduction of the bispectral
index (BIS) in the 90s [2]. Today, more than ten EEG
monitoring devices for anesthesia monitoring are available
on the market [3]. Similar devices are used for automatic
monitoring and scoring of sleep [4] or for evaluating neu-
rological disorders in intensive care units (ICUs) [5], [6].
Outside of the clinical setting, ambulatory electroencephalog-
raphy (AEEG) allows the acquisition of EEG data through a
portable device which can be carried by the patient and can
record up to 72 hours of activity. With the fast development
of telemedicine, EEG recordings can even be sent in real-time
for remote interpretation [7]. Tele-EEG systems are partic-
ularly useful for hospitals which do not dispose of resident
neurophysiologists [7]–[9].

All these EEG monitoring applications are made possible by
the little to no supervision needed to operate the device and the
ease of installation even by non-technical staff. The downside
of operating in these diverse and uncontrolled conditions
is the possible contamination of the signal by extraneous
sources. This is especially common for devices operating in
intensive care units, epilepsy monitoring units, or the operating
room [10]. Since signal intensity in scalp EEG is weak
(typically 20μV to 100μV amplitude in adults [11]), even
small variations of the electric signal can produce visible
artifacts on the EEG traces. Examples are eye movements and
blinks, muscular or cardiac activity, motion of electrodes or
cables, skin perspiration, and interferences caused by electrical
devices such as pacemakers [11], [12].

While artifacts can be recognized and sampled out by visual
inspection when the analysis is performed offline by practition-
ers, they pose a major problem in monitoring devices which
operate in real-time and unsupervised. In most cases artifacts
can be detected quite reliably by localizing non-physiological
high voltages or frequencies. Typically, clinical monitoring
devices include some artifact detection and they obviate
the problem by temporarily suspending the monitoring and
resuming it only after the ratio between artifacted and clean
signal drops below a given threshold. During anesthesia, this
interruption deprives the medical staff of relevant information
and may delay decision making. It is thus desirable to assure
the continuity of monitoring even in the presence of artifacts.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6291-3898
https://orcid.org/0000-0001-9854-5014


DORA AND HOLCMAN: ADAPTIVE SINGLE-CHANNEL EEG ARTIFACT REMOVAL 287

Several methods have been proposed for EEG artifact
removal. In this work, we focus on those methods which are
suitable for single-channel recordings. In fact, EEG monitoring
devices designed for ICUs or the operating room typically
provide only one to four electrodes [3]. One of the most
common techniques is blind source separation (BSS) via
independent component analysis (ICA) [13], [14]. Based on
the principle that brain activity is independent of artifactual
sources, in ICA-based artifact removal the EEG signal is
decomposed into a set of independent sources and the artifac-
tual ones are selectively suppressed. This procedure is semi-
automated as it requires identification of artifactual sources.
The identification can be performed by visual inspection, but
automated classification methods are also available [15], [16].
The quality of ICA decomposition is highly dependent on
the preprocessing procedure [17]. Although good results can
be achieved by applying high-pass (or band-pass) filters
before ICA, this filtering procedure may also remove relevant
information [17], [18]. Although source separation techniques
require multiple channels, they can be used on a single-channel
in association with wavelet transform (WT) or empirical
mode decomposition (EMD). The decomposition by WT or
EMD allows to split a one-dimensional signal into multiple
components which are then used as a multichannel input
for BSS. Examples of this approach are WICA [19], EMD-
ICA [20], and EMD-CCA [21]. However, one major drawback
of source separation techniques such as ICA is that they cannot
be applied on-line [14]. Although some real-time applications
have been proposed by recurrently computing ICA on a sliding
window [22], [23], no efficient on-line algorithm is today
available. Moreover, the performances of ICA are affected by
the length of the signal [24]: on one hand, a too short signal
can prevent reliable separation of sources; on the other hand,
when the signal is too long, the properties of the sources can
change in time leading to improper isolation of the artifacts.
These limitations make ICA and similar BSS-based methods
unpractical in the context of real-time continuous monitoring.

An alternative to ICA are wavelet-based methods. The
effectiveness of the wavelet transform (WT) at capturing time-
frequency patterns at multiple scales has made it a common
technique in various noise removal tasks, with applications
ranging from images [25], audio [26], to physiological sig-
nals [27]–[29]. The WT decomposes a signal into multiple
sets of coefficients representing time-frequency patterns of the
signal. Denoising a signal is typically achieved by threshold-
ing the wavelet coefficients, eliminating those corresponding
to noise. Due to their flexibility, efficiency, and robustness,
wavelet-based methods have been widely used for EEG artifact
removal. Compared to blind source separation, the WT has
a low computational cost, can be applied on-line, and does
not require multiple channels. Wavelet-based methods can be
very efficient at eliminating artifacts when the chosen wavelet
basis allows good separation of the signal from noise [13].
Today, methods can combine wavelet decomposition with
ICA [19], [30], [31].

Other methods, such as adaptive filtering [32], multichannel
Wiener filtering [33], spatial filtering [34], were not considered
here as they are not suitable for single-channel EEG or require

auxiliary signals which are generally not available in clinical
monitoring applications.

In this article, we introduce a wavelet-based method called
wavelet quantile normalization (WQN) which allows to elim-
inate transient artifacts [10], [11] from single-channel EEGs.
The method consists in normalizing the wavelet coefficients of
artifacted intervals, using temporally adjacent uncontaminated
signal as a reference. This approach is relevant for continuous
monitoring during general anesthesia and coma, where we
expect a temporal continuity of the power distribution of the
signal. The parameters used in the WQN method are estimated
from the EEG signal itself with no prior human intervention.
In this work, we consider the segmentation of artifactual
epochs to be known. This requirement can be alleviated by
using an appropriate artifact detection algorithm [15], [16],
similarly to those employed in BSS-based methods, making
WQN artifact removal completely automated. Most EEG mon-
itoring devices already include artifact detection algorithms
so that automated analysis can be suspended when the signal
quality is degraded.

This paper is organized as follows. In section II we intro-
duce the notation and the discrete wavelet transform (II-A),
we briefly present the classical wavelet denoising approaches
which we used to benchmark our method (II-B), and finally
we present the wavelet quantile normalization method (II-C).1

In section III, we describe the validation datasets and
methodology: we briefly present the datasets used for
benchmarking (III-A), the performance metrics (III-B), and
the parameters used in the comparison (III-C). In section IV
we discuss the results and present potential application to
anesthesia monitoring. Finally, we present our conclusions in
section V.

II. METHODS

A. Discrete Wavelet Transform

We decompose the EEG signal x into time-frequency com-
ponents using the discrete wavelet transform (DWT). The
DWT coefficients are obtained by decomposing the signal
onto an orthogonal basis obtained by dilating (scaling) and
translating in time a wavelet function ψ(t) and scaling func-
tion φ(t) [35], [36]. The DWT can be computed efficiently
with Mallat’s pyramidal algorithm, implemented by means of
a hierarchical set of subband filters [37].

The DWT decomposition of the signal x(t) to the level M
is defined as [35]:

x(t) =
∑

n

cM,n φM,n(t)+
M∑

m=1

∑
n

dm,n ψm,n(t), (1)

where

ψm,n (t) = 2−m/2ψ
(
2−m t − n

)
, (2)

φm,n (t) = 2−m/2 φ
(
2−m t − n

)
, (3)

1The Python code implementing WQN and the benchmarks will be made
available at https://github.com/holcman-lab/wavelet-quantile-normalization
(DOI 10.5281/zenodo.4783450).
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Fig. 1. Threshold functions. A Soft thresholding (eq. 7). B Hard
thresholding (eq. 6).

and cm,n = 〈
x, φm,n

〉
and dm,n = 〈

x, ψm,n
〉

are the approxima-
tion and detail coefficients at level m. The scalar product is
defined by � f, g� = ∑

t∈Z
f (t) g(t).

The DWT conserves energy so that:

�x�2
2 =

∑
n

�cM,n�2
2 +

M∑
m=1

∑
n

�dm,n�2
2. (4)

B. Denoising by Wavelet Thresholding

Wavelet denoising methods rely on the assumption that
artifactual components can be well isolated when the signal
is represented in a wavelet basis. Denoising is performed by
identifying and removing the wavelet coefficients associated
with artifacts. For that goal, the signal is first decomposed
onto a wavelet basis via DWT. Then, the wavelet coefficients
are either removed or attenuated by a thresholding procedure.
Finally, the corrected signal is recovered by inverting the
wavelet transform.

The main challenge of this approach is therefore the
selection of the appropriate threshold. While this could be
done by manual inspection of the wavelet coefficients, this
is unpractical in most applications. Various approaches for the
automatic selection of thresholds of wavelet denoising have
been proposed [38]–[41]. A common choice is the universal
threshold [42] defined as:

θU = σ
√

2 ln N , (5)

where σ is the standard deviation of the wavelet coeffi-
cients w and N is the number of coefficients. The value
of σ can be estimated from the data using the median
absolute deviation (MAD) estimator σ = k ·median (|w|) with
k ≈ 1.4826 [38].

Threshold values can be calculated separately for each DWT
level. This procedure extends the universal threshold (eq. 5) to
signals which are only weakly stationary and are correlated in
time [41]. This is relevant in EEG artifact removal applications
where stationarity is not guaranteed [43], [44]. In that case,
eq. 5 becomes θm = σm

√
2 ln Nm where σm and Nm refer to

the wavelet coefficients at level m.
The thresholding procedure is usually carried out by apply-

ing a hard or a soft thresholding function on the wavelet
coefficients w, defined as follows:

λhard(w) =
{
w, if w < θ

0, otherwise
(6)

λsoft(w) =
{
w, if w < θ

θ, otherwise,
(7)

where θ is the chosen threshold (see Fig. 1).
An alternative approach is the surrogate-based artifact

removal method (SuBAR) [43], where time-varying thresholds
are defined by considering the statistical deviation computed
over an ensemble of surrogate time series. The surrogates
are randomly generated via the iterative amplitude-adjusted
Fourier transform (IAAFT) algorithm [45], [46] to produce
stationary time series which have the same distribution as the
original signal and a similar power spectrum. This method
effectively amounts to detecting deviations from stationarity
in the EEG signal and correct them via thresholding of the
wavelet coefficients with the function λsoft (eq. 7).

C. Wavelet Quantile Normalization

As an alternative to wavelet thresholding, we develop here
a novel renormalization technique for the wavelet coefficients
which allows to adaptively attenuate artifactual components.
The proposed technique allows to flexibly remove artifacts
of different nature without requiring manual adjustments. The
main idea of the method is that in most monitoring contexts
the brain rhythm does not change dramatically during short
time intervals (e.g. <1 s). For example, in clinical monitoring
of anesthesia brain activity is mostly controlled by hypnotic
drugs. These drugs take effect gradually, producing brain
waves patterns with a timescale of minutes [1]. We can
thus consider that the distribution of energy across frequency
bands is continuous and that there are no abrupt changes in
the power of a band. We do not expect such continuity for
transient brain activity, such as the response to an external
stimulus [6]. Applying the proposed method in those situa-
tions would be inappropriate as it would probably attenuate
genuine brain activity. In the following, we shall focus on
continuous monitoring of the brain, where changes in the
activity happen gradually. Under this continuity condition, the
statistical characteristics such as the distribution of energy
across frequencies of a short EEG fragment will be similar
to the signal immediately preceding or following it.

The WQN method works as follows. First, artifacts in
the EEG signal are segmented (Fig. 2A) with an appropriate
detection algorithm [15], [16], [47]–[49]. For each artifact,
we construct a reference signal by considering some short
portions of the EEG immediately before and/or after the
occurrence of the artifact (Fig. 2B). Both the artifact and
the reference segments are then decomposed via an M-level
DWT (Fig. 2C), obtaining the coefficients d (art)

m , c(art)
M and

d (ref)
m , c(ref)

M . For uniformity of notation, we denote all coef-
ficients as wm = dm for m = 1, . . . ,M and wM+1 = cM .

For each level m = 1, . . . ,M +1, we compute the empirical
cumulative density function (CDF) F (ref)

m , F (art)
m of the ampli-

tude of the wavelet coefficients wref
m for reference and artifact

(Fig. 2D) defined by

Fm(x) = 1

Nm

Nm∑
n=1

|wm,n |< x , (8)
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Fig. 2. Diagram of proposed artifact removal method. A Input EEG signal (single-channel). B Artifact segmentation. C Decomposition with DWT
on M levels. D Estimation of empirical cumulative density functions and transformation Tm (eq. 9). E Normalization of wavelet coefficients (eq. 10).
F Reconstruction from corrected wavelet coefficients (eqs. 11–13). G Artifact-corrected EEG signal.

where |w|< x is the indicator function which takes value 1 if
|w| < x and 0 otherwise. We can transform the wavelet coef-
ficients wart

m of the artifacted segment so that their distribution
of amplitude will match that of the reference segment. This
mapping is provided by the transformation Tm defined as

Tm(x) = F (ref) −1
m

(
F (art)

m (x)
)
, (9)

where F (ref) −1
m indicates the inverse of F (ref)

m . Tm transforms
the wavelet coefficients w(art)

m so that their amplitude distribu-
tion (and thus equivalently their energy distribution) becomes
identical to that of w(ref)

m (see appendix). This transformation
adaptively attenuates high-power artifactual coefficients. Since
we are only interested in reducing the power of artifacts,
we restrict the normalization of coefficients to prevent ampli-
fication. Thus, we define the normalization function

λm(w) = w · min

{
1,

Tm (|w|)
|w|

}
, (10)

which maps a coefficient w from w
(art)
m to its possibly atten-

uated value (Fig. 2E). Due to the energy conservation of
the wavelet transform (eq. 4), attenuation of the wavelet
coefficients leads to a reduction in the energy of specific time-
frequency components of the original signal. We define the

corrected coefficients as:
d (corr)

m,n = λm

(
d (art)

m,n

)
, m = 1, . . . ,M; (11)

c(corr)
M,n = λM+1

(
c(art)

M,n

)
. (12)

Finally, we reconstruct the corrected version of the artifacted
segment by inverting the DWT as in eq. 1, using the corrected
coefficients (Fig. 2F):

x (corr)(t) =
∑

n

c(corr)
M,n φM,n(t)+

M∑
m=1

∑
n

d (corr)
m,n ψm,n(t). (13)

This algorithm can be applied to every artifacted signal
interval to recover a corrected EEG (Fig. 2G). For real-time
applications, this procedure can be applied on short (e.g. 1 s)
EEG fragments, only requiring a small buffer containing the
distribution of the reference coefficients.

III. VALIDATION

A. Datasets for Benchmarking

To validate the proposed method, we compare its per-
formances on both unmodified and semi-simulated EEG
recordings using publicly available datasets [47], [50], [51].
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Each dataset comprises an artifacted EEG signal and a corre-
sponding reference EEG signal used as ground truth. Artifact
detection labels are given as input to the different algorithms.

1) PhysiobankMotion Artifacts Dataset [47], [52]: This dataset
contains 24 EEG recordings. The EEG signal was acquired
by two closely placed electrodes producing highly correlated
signals. The cable of one electrode was pulled at intervals
of roughly 2 minutes to produce random artifacts, while the
other electrode was kept still. Artifact removal can then be
applied on the signal produced by the contaminated electrode,
while the other channel is used as a ground truth reference.
We filtered both channels in the range 0.1 Hz to 100 Hz with
a Butterworth forward-backward filter of order 4 and down
sampled to 256 Hz. Labelling of the artifacts was performed
by thresholding the difference between the reference and the
artifacted electrode. Recordings 10, 20, 21 were partially
excluded after visual inspection revealed artifacts in the refer-
ence channel.

2) Semi-Simulated EEG/EOG [50]: This dataset contains
55 recordings from 19 EEG electrodes (200 Hz) and an equal
number of EOG signals. The EOG signals are combined lin-
early to the EEG signal [50] to produce artifacted recordings.
We modified the dataset to obtain 30 seconds recordings where
the central 10 seconds are corrupted by EOG and marked as
an artifact. Recording 36 was excluded after visual inspection.

3) Denoise-Net [51]: This dataset includes thousands of
2-second epochs of EEG, EOG and EMG recorded at 256 Hz.
We combined the clean EEG epochs with EOG and EMG
to produce simulated datasets with 3400 artifacted epochs.
These epochs were produced by summing one second artifact
signal (EOG, EMG, or EOG+EMG) to the second half of
the clean epoch. The amplitude of the artifact was rescaled
to obtain SNR values in the range −20 dB to 5 dB (Fig. 3).
A limitation of this dataset is that the clean and artifacted
epochs are independent and there is no guarantee that they
belong to the same subject.

B. Performance Metrics

We employed different metrics to evaluate the performances
of the artifact removal methods. Benchmarks were run with
Python 3.9.7 on a Linux workstation equipped with an Intel
Xeon Gold 5218R CPU (2.10 GHz).

1) Change in Signal to Noise Ratio: We define the metric
�SNR as the change in the signal to noise ratio (SNR) before
and after artifact removal. We only consider the signal epochs
which were labeled as artifacted. The calculation of �SNR is
defined as [21]:

SNRbefore = 10 log10
Var(x0)

Var(x (art) − x0)
, (14)

SNRafter = 10 log10
Var(x0)

Var(x (corr) − x0)
, (15)

�SNR = SNRafter − SNRbefore, (16)

where Var(·) is the variance estimator, x0 is the ground truth
signal, x (art) is the artifacted signal, and x (corr) is the signal
obtained after artifact removal.

Fig. 3. Noise reduction (ΔSNR) for varying level of simulated signal-to-
noise ratio (SNR). A Simulated EMG dataset. B Simulated EOG dataset.

2) Normalized Mean Squared Error: The normalized mean
squared error (NMSE), in decibels, is defined as:

NMSE = 10 log10

∑
i

∣∣∣x (corr)
i − x0,i

∣∣∣2

∑
i

∣∣x0,i
∣∣2 , (17)

where xi is the i-th sample of the signal x . Similarly to the
definition of �SNR, we only consider signal epochs which
are labeled as artifacted.

3) Change in Correlation: We defined the change in correla-
tion �R before and after the artifact removal as:

�R = Rafter − Rbefore, (18)

where Rbefore and Rafter are the Pearson correlation coefficients
between the ground truth and the signal before and after
artifact removal respectively.

4) Improvement in Spectral Coherence: We defined the
improvement in coherence Icoh before and after the artifact
removal as:

Icoh = (Cafter − Cbefore)/(1 − Cbefore), (19)

where Cbefore and Cafter denote the average magnitude squared
coherence estimates in the 0–40 Hz band, calculated between
the ground truth and the signal before and after artifact removal
respectively.
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TABLE I
RESULT ON VALIDATION ON DIFFERENT DATASETS FOR THE

PROPOSED WQN METHOD, WAVELET HARD THRESHOLDING

(WT-HARD), WAVELET SOFT THRESHOLDING (WT-SOFT), SUBAR,
EMD-ICA, AND EMD-CCA METHODS. THE VALUES ARE OBTAINED

BY AVERAGING OVER ALL RECORDINGS IN A DATASET. ΔSNR AND

NMSE VALUES ARE IN dB. THE BEST PERFORMANCE FOR

EACH METRIC IS HIGHLIGHTED IN BLACK

5) Execution Time: The execution time (see Table II) was
calculated using a sample of duration 30 s at 256 Hz taken
from the Physiobank dataset [47]. Each method was repeatedly
applied to the same EEG sample, selecting the fastest run
out of 10. All methods except SuBAR were implemented
in Python and included in the published code. The original
Matlab implementation provided by the authors was used for
the SuBAR method [43].

C. Methods Parameters

We compare (Table I) our proposed wavelet quantile nor-
malization method against the classical wavelet thresholding
and the SuBAR method [43]. We implement the wavelet
thresholding as described in section II-B, using the universal
threshold defined in equation 5 separately for each decompo-
sition level. Estimation of the standard deviation σm values is

obtained by the MAD estimator σm = 1.4826 ·median (|wm |).
We report the results for both hard and soft thresholding
functions. The SuBAR method is applied on 30 s windows
with no overlapping, using 1000 surrogates. For all tested
methods, we used the symlet wavelet family with 5 vanishing
moments [35], as it was found to be suitable for EEG artifact
removal [43] and allows us to perform a direct comparison
with the SuBAR method. In all cases, the correction was only
applied on regions which were labeled as artifactual. EMD-
CCA and EMD-ICA were implemented according to [21].
Up to 10 intrinsic mode functions were obtained from EMD
and used as input for the CCA or ICA source separation. Arti-
factual sources were removed according to the methodology
described in [21]: sources which, upon removal, increased the
correlation to the reference signal were considered artifactual
and thus suppressed. While this method cannot be employed
in practice, since the reference signal is unknown, it ensures
that the effectiveness of artifact removal is independent of the
source classification strategy.

IV. RESULTS AND DISCUSSION

A. Artifact Removal Effectiveness

To validate the effectiveness of the WQN method we
benchmarked it against alternative artifact removal algo-
rithms which are suitable for single-channel EEG recordings:
wavelet thresholding (with both soft and hard thresholding
functions), EMD-ICA, EMD-CCA [21], and surrogate-based
artifact removal (SuBAR) [43]. We included artifacts of dif-
ferent nature (movement, ocular, muscular) using datasets
of semi-simulated and real EEGs (section III-A), where we
used a ground truth signal to evaluate the performances of
artifact removal algorithms. We quantified the reduction of
artifactual components using the normalized mean squared
error (NMSE), the gain in SNR (�SNR), the change in
correlation (�R), and the improvement in spectral coherence
(Icoh), obtained by comparing the output of the artifact removal
algorithms to the ground truth signal (section III-B). We note
that in some cases, an algorithm can show an improvement
in terms of �SNR and NMSE but at the same time destroy
the structure of the signal, losing the information content of
the data. This is particularly the case for high-power artifacts.
To avoid this effect, we consider the change in correlation
(�R) and coherence (Icoh) as well as NMSE and �SNR.
Since a degradation of the signal will coincide with a lower
correlation to the ground truth, we consider that a simultaneous
improvement in �SNR, �R, and Icoh is a solid indication of
reliable artifact removal. In particular, improvement of coher-
ence allows to detect possible spectral distortions introduced
by the artifact removal.

We found that WQN performed better among the tested
methods in terms of SNR and NMSE, producing the highest
increase to signal to noise ratio (�SNR) and the lowest
normalized mean squared error on all datasets. WQN also
outperformed the other methods in terms of improvement of
the correlation and coherence, confirming absence of infor-
mation loss or spectral distortion. For the tested data, the
performances of the SuBAR method were lower to those of
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wavelet thresholding. This result can be understood because
the SuBAR was designed to remove short, isolated artifacts
and was reported to be ill-suited for large EOG artifacts [43].
EMD-ICA and EMD-CCA showed better performances in
removing ocular and motion artifacts, but were significantly
outperformed by wavelet-based methods in the case of high-
frequency muscular artifacts. This result confirms that ICA
and similar BSS methods might not be optimal in removing
EMG activity [13], [53]. Our tests also revealed problems
in the convergence of the FastICA algorithm when applied
to the 2-second EEG samples from the Denoise-Net data,
highlighting the limitations of this method for short time
windows. The benchmark results are shown in Table I.

We then investigated how the performances depend on the
initial signal-to-noise level. To test this, we rescaled the ampli-
tude of the artifacts in the Denoise-Net datasets (sec. III-A.3)
to obtain SNRs between −20 dB (large, powerful artifacts)
and 5 dB (small artifacts). In Figure 3 we show the �SNR
for the various initial SNR values on muscular and ocular
artifacts. WQN consistently outperformed the other methods
in the case of muscular artifacts, showing higher �SNR for
all initial SNR levels. In this case, SuBAR outperformed soft
wavelet thresholding for weak muscular artifacts (Fig. 3A).
For ocular artifacts, EMD-based methods and WQN showed
the best performances, with WQN significantly outperforming
other methods for low SNRs (< −10 dB).

In Figure 4 we show three examples of corrected artifacts
obtained with the WQN method: motion artifact (Fig. 4A), eye
blink (Fig. 4B), and muscular activity (Fig. 4C). The results
show a significant reduction of the artifacts without distortion
of the EEG signal, highlighting the flexibility and robustness
of the proposed method.

B. Computational Complexity

We consider a single-channel EEG signal of length N sam-
ples. The computational complexity of a M-level discrete
wavelet transform is O(M N) [37], [56]. In wavelet threshold-
ing algorithms, the threshold value is typically fixed before-
hand or can be determined in O(N) time based on the
signal statistics (such as the universal thresholding presented
in eq. 5). Thus, the leading term in computational complexity
is O(M N) of the DWT decomposition.

A similar result holds for the proposed WQN algorithm.
The M-level DWT can be performed in O(M N) operations.
For an artifact of length Nart, the empirical cumulative dis-
tribution is obtained by sorting the coefficients with a cost
of O(Nart log Nart). The total computational complexity can
thus be given as O(M N + Kart Nart log Nart) for Kart artifacts
of maximum length Nart. Since the number and length of
artifacts is typically limited, the computational complexity will
be dominated by the O(M N) term. In practice, the WQN
algorithm can be faster than WT since the DWT has to be
computed only on short fragments of the signal around the
artifact.

In the SuBAR method [43] the leading term of
computational complexity comes from the generation of
Fourier surrogates via Iterative Amplitude Adjusted Fourier

Fig. 4. Example of artifact removal via WQN (original signal
in black, corrected signal in blue). A Motion artifact. B Eye blink
artifact. C Muscular artifact (EMG). (The samples were obtained from
datasets [47], [60], [61].)

Transform (IAAFT) [45]. Each iteration of the IAAFT algo-
rithm requires the computation of Fourier transform and
sorting of the coefficients, with both operations requiring
O(N log N) time. The generation of Ksu surrogates has thus
a computational complexity of O(Ksu Kit N log N) where Kit
is the number of iterations of IAAFT.

EMD-based methods such as EMD-ICA and EMD-CCA
require the decomposition of the signal as a sum of intrinsic
mode functions (IMFs). Although EMD is commonly reported
to be computationally demanding [57], its order of complexity
is O(N log N) [57], [58]. Moreover, if only the first M IMFs
are considered, the complexity becomes O(M N) [56], [57],
making it equivalent to the M-level DWT. In our empirical
measures of the CPU time (Table II), the EMD-based algo-
rithms remain significantly slower than wavelet decomposition
(∼300 ms versus 3 ms respectively). ICA is commonly imple-
mented via the FastICA algorithm which has computational
cost O(KitM2 N) [55], [56] where Kit is the number of
algorithm iterations. CCA can be efficiently implemented by
singular value decomposition with complexity O(M2 N) and
typically outperforms ICA [21], [59].

We then compared the performances of practical imple-
mentations of the algorithms by measuring the CPU time
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TABLE II
COMPUTATIONAL COSTS FOR A SIGNAL OF LENGTH N USING M

LEVELS OF DECOMPOSITIONS. THE EXECUTION TIME IS THE

EMPIRICAL CPU TIME REQUIRED TO ANALYZE

30 s EEG SIGNAL AT 256 Hz

required to analyze a 30-second EEG sample taken from
the Physiobank dataset [47]. WQN and wavelet thresholdings
showed similar performances (2 ms and 3 ms respectively) and
were superior to EMD-based and SuBAR algorithms (314 ms
for EMD-CCA, 419 ms for EMD-ICA, and 31 s for SuBAR).

In conclusion, we found that the computational cost of the
WQN method is comparable to that of wavelet thresholding
and that both are significantly faster than EMD and surrogate-
based methods. The computational complexity and the CPU
execution time for each algorithm are summarized in Table II.

C. Application to Anesthesia Monitoring

We present an application of WQN to the monitoring of
general anesthesia. In this context, spectral measures of the
EEG such as the spectral edge frequency (SEF) or the alpha-
to-delta ratio (ADR) are routinely used by anesthesiologists to
control the depth of anesthesia. Artifacts caused by inadvertent
motion of the electrodes can alter the signal spectrum and
make these measures unreliable (Fig. 5A-B). Depending on
the duration of the time window on which the spectrum
is calculated, a single artifact can affect the output of the
monitoring for up to one minute. In Figure 5 we present
an example of the EEG spectrogram of a patient during
the maintenance phase of general anesthesia, showing how
artifacts (purple arrows) can negatively affect the calculation of
the SEF95 (Fig. 5B). WQN can be used to recover a corrected
spectrum (Fig. 5C) and to obtain a more robust estimation of
spectral measures such as the SEF, improving the reliability
of anesthesia monitoring.

D. Limitations of the Proposed Method

The WQN method assumes gradual change of the brain
activity, suppressing patterns which are associated to abrupt
power changes. While this proved to be effective for several
types of artifacts (Table I), the assumption cannot be extended
to contexts where artifacts are associated to other transient
activity. An example are epileptic seizures which provoke sud-
den changes in the EEG power due to abnormal brain activity
and are simultaneously associated to muscular or movement
artifacts. Application of WQN in these cases would attenuate
the epileptic patterns together with the artifactual components,

Fig. 5. Example of artifact removal for EEG during anesthesia.
A Original EEG (black line) and WQN-corrected EEG (blue line) of a
patient under general anesthesia. B Spectrogram and Spectral Edge
Frequency at 95% (SEF95, black line). Artifacts are visibly contaminating
the spectrum (purple arrows) and corrupting the SEF95 calculation.
C Spectrogram and SEF95 after artifacts were removed using Wavelet
Quantile Normalization. The EEG signal was extracted from the VitalDB
dataset [62].

potentially causing loss of important clinical information.
Overcoming this limitation would require a spatio-temporal
model to separate abnormal patterns of epileptic and artifactual
origin [63], an issue closely related to the detection and
classification of epileptic seizures.

V. CONCLUSION

In this work we presented and validated an artifact removal
algorithm which can operate on single-channel EEG. The pro-
posed WQN method is data-driven and requires no auxiliary
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input, parameter tuning or any human intervention. In our tests,
WQN consistently outperformed comparable algorithms when
applied on artifacts of different nature (Table I, Fig. 3 and 4)
and for different signal-to-noise ratios. Moreover, we showed
that the proposed algorithm has a similar computational cost
to wavelet thresholding algorithms and that its performances
are compatible with real-time applications. The characteristics
of the method make it particularly suited for anesthesia moni-
toring and other special care unit applications where only few
electrodes are available and analysis has to be performed in
real-time.

We presented an example of application to general anes-
thesia (Fig. 5), showing how the WQN method could be
used to improve the reliability of EEG monitoring. Future
work includes the development and integration of an artifact
detection algorithm, making WQN a fully automated technique
to reduce artifacts in unsupervised EEG devices.

APPENDIX

PROBABILITY TRANSFORMATION

Consider a random variable X , with probability density
function fX , i.e. X ∼ fX . We would like to generate random
variables distributed as fY , i.e. we want to find a monotonic
transformation T such that Y = T (X) ∼ fY . We obtain T
in two steps. First, using the probability integral transform,
we map X to a uniform random variable U = FX (X) ∼
Uniform(0, 1), where FX is the cumulative density function
of X . Then, with the inverse integral transform we map U
to Y , obtaining Y = F−1

Y (U) ∼ fY . Combining the two steps,
we finally define

T = F−1
Y ◦ FX . (20)
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