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BWGAN-GP: An EEG Data Generation Method
for Class Imbalance Problem in RSVP Tasks
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Abstract— In the rapid serial visual presentation (RSVP)
classification task, the data from the target and non-target
classes are incredibly imbalanced. These class imbalance
problems (CIPs) can hinder the classifier from achievingbet-
ter performance, especially in deep learning. This paper pro-
posed a novel data augmentation method called balanced
Wasserstein generative adversarial network with gradient
penalty (BWGAN-GP) to generate RSVP minority class data.
The model learned useful features from majority classes
and used them to generate minority-class artificial EEG
data. It combines generative adversarial network (GAN) with
autoencoder initialization strategy enables this method to
learn an accurate class-conditioning in the latent space to
drive the generation process towards the minority class.
We used RSVP datasets from nine subjects to evaluate
the classification performance of our proposed generated
model and compare them with those of other methods. The
average AUC obtained with BWGAN-GP on EEGNet was
94.43%, an increase of 3.7% over the original data. We also
used different amounts of original data to investigate the
effect of the generated EEG data on the calibration phase.
Only 60% of original data were needed to achieve acceptable
classification performance. These results show that the
BWGAN-GP could effectively alleviate CIPs in the RSVP task
and obtain the best performance when the two classes of
data are balanced. The findings suggest that data augmen-
tation techniques could generate artificial EEG to reduce
calibration time in other brain-computer interfaces (BCI)
paradigms similar to RSVP.

Index Terms— Rapid serial visual presentation (RSVP),
Wasserstein generative adversarial network (WGAN), data
augmentation, class imbalance problem, auto-encoder.
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I. INTRODUCTION

RAPID serial visual presentation (RSVP) based on elec-
troencephalogram is a well-established brain-computer

interface (BCI) paradigm for target recognition [1], [2],
in which subjects must make decisions about target images
from the image flow under high temporal sensitivity condi-
tions [3], [4]. Oddball, which randomly embeds rare “target”
class stimuli into a series of “non-target” classes, triggers
P300, which causes a “natural” extreme class imbalance prob-
lem (CIP). Acquiring sufficient data for training is essential
for deep learning. Unfortunately, electroencephalogram (EEG)
data are difficult to collect over long periods, and the data do
not compensate for the CIP. Lee and Wang considered class
imbalance as a main bottleneck factor contributing to the poor
performance of RSVP classification, and data augmentation
methods can help lessen the effects of CIP [2], [5], [6]. Data
augmentation mainly enlarges an existing dataset by generat-
ing and transforming original sample data, which is a promis-
ing approach in computer vision. Typical data augmentation
methods are geometric transformations, such as cropping,
flipping, and scaling. Unlike images, EEG signals are acquired
from multiple electrodes. As a result, EEG signals are often
highly spatial-temporal correlated [7]. Therefore, the geomet-
ric transformations that are useful for image data augmentation
do not apply to EEG signals. Nevertheless, some methods
are still available for data augmentation of EEG signals. The
data augmentation methods used for EEG include adding
Gaussian noise addition, segmentation, and a generation
model [8]–[10]. However, the first two methods cannot meet
artificial multi-channel EEG generation needs due to redundant
noise or information loss. The generation model seems to be
the only potential solution to this problem. Over-sampling
and upsampling are general data model generation meth-
ods, such as the synthetic minority over-sampling technique
(SMOTE) [11]–[13]. Generation adversarial network (GAN)
techniques have recently gained widespread attention and have
significantly improved EEG signals [14]–[16]. Hartmann et al.
generated a single-channel EEG with a GAN and achieved
excellent visual inspection [15]. Zhang et al. proposed a
conditional deep convolutional generative adversarial network
(cDCGAN), which network uses class label information with
conditional properties [17]. However, cDCGAN experimented
on only three channels (C3, Cz, and C4). Luo et al. intro-
duced a conditional Wasserstein GAN (cWGAN) framework
for EEG data augmentation. The model for which generated
power spectral density and differential entropy of EEG sig-
nals. This framework significantly improved the accuracy of
emotion recognition models [18]. However, most of the above
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models generate EEG signals by extracting spectral features
to generate spectrograms, then transforming them into EEG
signals by the inverse transform method. RSVP only has
significant differences in the time domain, with relatively little
helpful information, so data generation is more complex. Only
Panwar et al. have proposed to combine WGAN with gradient
penalty (WGAN-GP) and upsampling methods that can be
trained to synthesize EEG data for different cognitive events
(which abbreviated as WGAN-GP-RSVP) [19], [20]. Still, this
approach does not consider the CIP.

We focused on the CIP in EEG-RSVP data for this study.
GAN can generate high-quality artificial data through a large
amount of training data, but the minority-class data were rare
in the original EEG-RSVP. The ratio of the target (minority-
class) to non-target (majority-class) data was less than 1/10.
Therefore, the general GAN learns toward the majority class,
which aggravates the CIP. The data imbalance can cause mode
collapse in the training process. The novel idea is introduced in
this paper aimed at CIP, which generates minority-class EEG
signals of superior quality when trained with an imbalanced
RSVP dataset. This balanced WGAN model with a gradient
penalty (BWGAN-GP) combines an autoencoder and a GAN
to generate minority-class artificial EEG data. It learns the
majority-class features and controls the ratio of minority-
class data to majority-class data in the latent space. This
paper provides multiple perspectives of minority-class data
generation performance to explore the proposed method’s
effectiveness and robustness. This study also surveyed the
performance of BWGAN-GP when reducing the proportion
of training data to meet practical needs.

The paper is organized as follows. The background of CIP
and the concept of GAN are shown in section II. Section III
presents the information of subjects, RSVP paradigm, experi-
mental data acquisition, and preprocessing stage. In section IV,
the architectures for BWGAN-GP, experimental procedures,
and evaluation metrics are described. Section V, the experi-
mental results and multi-perspective analyses of the quality of
generating minority-class artificial EEG by BWGAN-GP are
presented. Finally, in section VI, the main results of this study
are summarized.

II. RELATED WORK

A. Class Imbalance Problem

A CIP involves challenging of classification problems
in machine learning, in which the distribution of data
across classes is biased or skewed [21], [22]. This result
poses a severe dilemma in prediction models using many
machine learning classifiers, as most are designed around
balanced classes. Class imbalance brings poor prediction per-
formance, especially for minority class data rarity or under-
representation. It makes the classifier more heavily weighted
toward the majority class, which causes minority class errors
that are more sensitive than those of the majority class.
Class imbalance problems can be described by the imbalance
rate (IR) [23], which is defined as the percentage of the number
of minority classes compared to the number of majority
classes. The IR can be calculated via Equation (1),

I R = Nminorit y−class

Nmajorit y−class
(1)

where Nmajorit y−class is the sample size of the majority class
and Nminorit y−class is the sample size of the minority class.
When I R = 1, the datasets are balanced. When I R < 1,
the value of the I R is smaller, so the datasets have a more
significant imbalanced level. In binary classification problems,
the majority class dominates the whole dataset, resulting in low
classification accuracy for minority classes, enhancing overall
classification performance. This study I R was used to measure
the degree of imbalanced classes in BCI paradigms. In our
collected RSVP dataset, I R is 1

24 .

B. The Rationale of GAN

The GAN proposed by Goodfellow utilizes adversarial plays
between two components, known as the Generator (G) and
the Discriminator (D), to learn the probability distribution of
the target data [24], [25]. By its mathematical definition, GAN
can be expressed through Equation (2). In GANs, G generates
artificial data, whereas D distinguishes which data are real
or generated. The real training data and artificial data by
generator G are defined as Pr and Pg . As the number of epochs
increases, the discriminator forces the generator to produce
improved generated data.

min
θG

max
θD

L
(
Pr , Pg

) = Ex∼Pr

[
log (D (x))

]

+ Ez∼Pg

[
log (1 − D (G(z)))

]
(2)

where E denotes the expectation operator, θG and θD are
the training parameters of the generator and discriminator,
and D(x) represents the probability of x sampled from real
distribution Pr . Respectively G(z) is the generated data by G
from a Gaussian vector z.

Wasserstein GAN (WGAN) uses Earth-mover’s distance
instead of Jensen-Shannon divergence of GAN to enhance the
training stability [26]–[28]. The WGAN can be obtained with
Equation (3)

W
(
Pr , Pg

) = inf
γ∼∏

(Pr ,Pg)
E(xr ,xg)

[
xr − xg

]
(3)

where �(Pr , Pg) is the set of the joint distribution of the real
and generated distribution, γ is the joint distribution, xr and xg

are real data and generated data, respectively. The WGAN still
has slow convergence throughout the whole training process.
The performance improvement is not very obvious compared
to the traditional GAN, so the problem mentioned above can
be solved by adding a regular term, gradient penalty, which is
a variant called WGAN-GP [29]. The details can be presented
in Equation (4)

W̃
(
Pr , Pg

)= Ex∼Pr [log(D(x))]+Ez∼Pg [log(1 − D(G(z)))]
+ λEx̂∼P(x̂)

[(∇x̂ D(x̂)2 − 1
)2

]
(4)

where λ is the value to balance between loss and regular terms,
the gradient penalty ensures that D(x) is under the K-Lipschitz
constraint and x̂ is the data between real and generated data.
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Fig. 1. The framework of the rapid serial visual presentation (RSVP) paradigm.

III. MATERIALS

A. Subjects

Nine graduate students aged 22–26 (including two female
students, all right-handed) participated in the experiment. The
Subject’information can be seen appendix Table. V. None
of them had experienced RSVP-BCI before. In addition,
no participant had any previous history of visual disorders,
neurological disease or injury. All subjects had a normal
or corrected-to-normal vision, signed the informed consent
agreement and received monetary compensation for his or her
participation. The Beijing Institute of Mechanical Equipment
review committee approved this experiment.

B. RSVP Paradigm

The stimulus images for the image dataset used in the RSVP
experiment were derived from street-view images collected by
the Computer Science and Artificial Intelligence Library of the
Massachusetts Institute of Technology. Subjects were required
to identify target images from a random stream of images
sequences.

The experimental design of data acquisition involved
three sessions. Each session contained 14 blocks, each had
2000 ms cross-marks indicating the experimental start time,
and 100 pictures (pixels) presented at a frequency of 10 Hz.
The duration of each block was approximately 5 minutes,
and the total number of images in the whole session was 4200.
The average rest time between two sessions was about 15 min
to alleviate the subjects’ fatigue. The subjects were required
to identify a target image from a session (the target image
showing a human from non-target images containing no human
count the number of the target image. The proportion of the
target image to the non-target image was 1:24. Fig. 1 shows
the RSVP paradigm framework.

C. EEG Acquisition and Preprocessing

The EEG was recorded through the Sysnamps2 system
(Neuroscan, Inc.) at a sampling rate of 1000 Hz, and EEG
data from this dataset were saved in “. cnt” format, with
all 64 Ag/Agcl electrode channel positions placed according

to the 10-20 system. The reference electrode was placed at
the left mastoid and electrode impedance was maintained
below 10k�. This system filtered EEG data from 0.1 Hz
to 100 Hz. To remove the power-line noise, EEG data were
filtered below 50 Hz. The two bad channels(M1 and M2) were
removed from the 64 channels since the electrode impedances
were higher than 10 k�.

The continuous EEG signals were bandpass filtered
between 2 Hz and 30 Hz during the preprocessing phase with
a fourth-order Butterworth filter. The data of each block were
segmented into EEG trials (each trial corresponds to a picture).
In our experiment paradigm, each subject has 14 blocks ×
100 trials EEG samples per session.

IV. METHODS

A. Architecture of BWGAN-GP

The most crucial aim of this paper was to propose a
novel EEG data augmentation method based on the GANs,
which effectively maintain the feature of original minority
class EEG signals. The general generative adversarial net-
works cannot generate high-quality EEG signals in imbalanced
conditions, and it is challenging to generate a rare class in
the RSVP dataset. Our proposed method borrowed balancing
ideals [30], [31] to produce synthetic minority class EEG
signals.

1) Pre-Input Autoencoder Training: An Autoencoder (AE)
enables the generator and discriminator to learn common
knowledge about all classes. The encoder converts the raw
EEG signals into a vector in latent space, and the decoder
translates the latent vector into constructed EEG signals.
The L2-norm loss is applied to train AE networks. Label
information is embedded in the latent vector to guide in the
later training of GAN.

2) Enhanced GAN Network Structure: In the GAN ini-
tialization, the generator and discriminator inherit the same
architecture and weights from the trained decoder and
encoder. Unlike the general generative network structure
in balancing GAN, our network structure is similar to
WGAN-GP-RSVP [19], which added bicubic interpolation and
bilinear weight initialization operations. The GAN network
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Fig. 2. The BWGAN-GP network structure is similar to WGAN-GP-RSVP [19].

Fig. 3. The output of discriminator between BWGAN-GP and WGAN-
GP-RSVP.

structure of BWGAN-GP is presented in Fig. 2. These upsam-
pling methods could improve the quality of generated EEG
data. The interpolation method can help the upsampling layers
of the AE and GAN network avoid monumental frequency
artifacts in time series signals, such as EEG signals.

3) The One Output in GAN Training: The discriminator
has only one output in our proposed method. Two outputs,
real/fake and categories label, conflict with each other when
there is class imbalance. The discriminators tend to associate
fake with minority-class real data, so the data generated is
often rewarded for generating data that looks real but does not
represent the minority class. The balanced design guarantees
that the minority class EEG signal will not be ignored. The
loss function of the discriminator is shown in Fig. 3.

4) The Loss Functions: BWGAN-GP is the idea of adding
balance to WGAN-GP. Since a specific class of labels is
required, it is a conditional GAN(cWGAN). The loss function
of discriminator can be described as shown in Equation (5),

L(D)
(
Pr , Pg, Yr , Y f

)
= −Ex,yr∼ Pr , Yr

[
log (D (x, yr ))

]
− Ez,y f ∼Pg,Y f

[
log

(
1 − D

(
G

(
z, y f

)
, y f

))]

+ λEx̂,yr ∼P(x̂),Yr

[(∇x̂,yr D
(
x̂, yr

)
2 − 1

)2
]

(5)

where Y f are fake labels. As the discriminators of tradi-
tional GAN, real labels are used to discriminate real or fake
data. If the dataset is unbalanced, the discriminator is more
biased toward the majority class, whereas BWGAN-GP will
randomly sample a fake label from the balanced datasets
generated by the generator. The loss function of the generator
can be expressed through Equation (6),

L(G)(Y f , Pg) = −Ez,y f ∼Pg,Y f [log(D(G(z, Y f )))] (6)

As can be seen, BWGAN-GP includes two parts, a pre-input
autoencoder and a GAN. The entire process of BWGAN-GP is
depicted in Fig. 4. First, an unbalanced RSVP dataset and class
labels information are used to train the autoencoder to learn
common knowledge about two classes. Second, the GAN early
process utilizes weights from encoder training to initialize the
discriminator of the GAN. In contrast, results from the decoder
can initialize the generator of the GAN. The reconstructed
EEG data from the decoder is given as input to the GAN,
which c good, stable solutions. Last, the GAN network is
trained to generate high-quality minority-class artificial EEG
signals.

B. Classifiers

We evaluated our method of data augmentation from differ-
ent classifiers. The EEGNet is considered a primary classifier,
but we used seven recently published classifiers to fairly com-
pare the quality of the generated data of different augmentation
algorithms, including HDCA [32], MDRM [33], MCNN [34],
BN3 [35], DeepConvNet [36], LeNet [37] and EEGNet [38].

• HDCA: A method used linearly to discriminate the
weights learned separately for the temporal and spatial
of EEG signals.

• MDRM: A classifier based on the Riemannian manifold.
It views each covariance matrix as a point in Riemannian
space. The features are obtained by using the geo-
desic class at the center. https://pyriemann.readthedocs.io/
en/latest/
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Fig. 4. The architecture of our proposed method (BWGAN-GP).

• MCNN: A CNN-based model proposed by Manor et al.,
we re-implemented the network as described in [34]

• BN3: A batch-normalization CNN model we
re-implemented the network. https://github.com/gibranfp/
P300-CNNT

• DeepConvNet: A deeply CNN model consisting of five
convolution layers with a softmax layer for classification.
https://github.com/mochakai/DeepConvNet

• LeNet: A general CNN architecture operated in ERP
applications, the network was re-implemented according
to [37]

• EEGNet is a CNN-based approach that achieves compa-
rable accuracy through deep convolution and separable
convolution architectures. https://github.com/vlawhern/

C. Experiment Design

Our study investigates the advantages of utilizing
BWGAN-GP with other augmentation methods for the
RSVP classification task and metrics analysis through four
approaches. Then, we validated the efficiency of the proposed
algorithm. Fig. 5 shows the whole experimental procedure.
First, BWGAN-GP was used to generate minority data to
find the optimum proportion of data sizes for each class to
produce the best classification performance. Then, with this
optimal proportion, we implemented our proposed algorithm
utilizing different classifiers, thus investigating the robustness
of the new algorithm. Finally, the appropriate amount of
artificially generated data needed to replace the original data
under balanced conditions was estimated.

Fig. 5. Experimental design flow of BWGAN-GP in RSVP data
augmentation.

D. Evaluation Metrics

However, it is not as easy for multi-channel EEG signals
to evaluate the quality of data generation. Some quantitative
methods, such as the Fréchet inception score and the Log-
likelihood distance from Gaussian mixture models [39], [40],
may produce bases that are far from the truth. So, we exper-
imented with some indicators to evaluate the quality of the
generated signal.

1) The Metrics of Classification Performance: Various clas-
sification performance metrics were used in this study.
We compared different methods using the area under the
curve (AUC) [41], Balanced-Accuracy [42], F1-score and
Cohen’s kappa coefficient [43] to evaluate the methods of data
augmentation.
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TABLE I
HYPERPARAMETERS OF THE GENERATE NETWORK MODEL

2) Analysis of Variance (ANOVA): Using ANOVA, differ-
ences in classification performance were compared among
various algorithms. Statistical significance was defined as
p < 0.05 [44].

3) Visual Inspection: Data were evaluated directly through
visual inspection to examine the similarity of the generated
data with the original data in a single channel. The quality of
the data generated can be fairly evaluated.

4) Uniform Manifold Approximation and Projection (UMAP):
High-dimensional samples of augmented data are mapped to a
two-dimensional space by UMAP, which enables visual obser-
vation of the distribution after the data augmentation [45].

V. RESULTS AND DISCUSSION

A. Experimental Setup and Parameters

In this experiment, we compared a total of three methods
of data augmentation: SMOTE [11], WGAN-GP-RSVP [19],
BWGAN-GP, and EEG signals without augmentation as a
baseline—original (imbalanced). The hyperparameters of the
generation model are shown in Table. I. The method of
SMOTE is a general method for solving CIPs in many areas.
To our knowledge, WGAN-GP-RSVP is the only method of
generating multi-channel RSVP EEG data. So, these methods
can more convincingly evaluate the performance of our pro-
posed generative model.

We conducted a five-fold cross-validation strategy to eval-
uate classification performance. All data were downsampled
at 64 Hz for later experiment use in the augmentation method,
and the data were normalized (mean of 0 and variance of 1).
All blocks in each session were unified into one dataset during
the experiments. We divided the data in the dataset according
to 80% and 20% of the training and test sets. The training
data were used to generate artificial EEG data using different
augmentation methods. The testing set was used for classifier
training.

The batch size of the training classifier was set to 128,
λgp was set to 1.0, and the network was optimized with
Adam optimizer. The time window number of the HDCA
was set to 4. In the last experiment, the training set was fed
with the augmented model in different proportions to explore
how much data needs to be generated to meet real-world
needs. In contrast, the test set remained the same as in all
experiments. All models were tested and trained on a computer
with an NVIDIA 1080Ti GPU, Xeon E5-2643 v4 CPU, and
32G RAM.

Fig.6 denotes the BWGAN-GP training process. Fig.6(a)
shows that the discriminator loss of BWGAN-GP did not
perform well for the first 20 epochs and increased the loss.

Fig. 6. BWGAN-GP model training visualization. (a) The loss of
discriminator, (b) The loss of generator, (c) The loss of gradient penalty,
(d) The accuracy of the discriminator.

However, the loss of all subjects decreased rapidly after
20 epochs and converged after approximately 40 epochs.
Fig.6(b) shows that generator loss converged rapidly after
approximately 100 epochs. Both of these losses gradually
approached zero. Fig.6(c) shows the loss of the gradient
penalty (GP). The GP is the part of the loss which meets
the Lipschitz continuity condition and makes the descent
smoother. The loss of GP close to zero indicates that the dis-
criminator’s parameters are limited in a small distribution, thus
effectively speeding up the convergence rate and stabilizing
the training more stable. Fig.6(d) shows the discriminator’s
accuracy, the value close to 0.5, which indicates that the
discriminator cannot distinguish between the generated and
the real data. All of the diagrams illustrate that BWGAN-GP
had successfully reached Nash equilibrium.

B. Overall Classification Performance Improvement of
BWGAN-GP With the Same Classifier

We used EEGNet to evaluate the classification performance
using different data augmentation methods to ensure a fair
comparison. The results are shown in Table. II. All augmen-
tation methods added numerous minority-class data points to
the original majority-class data, thus achieving class balance.

In Table. II, the average AUC of the BWGAN-GP
algorithm was 94.43±2.18%, ± means standard devia-
tion, which was higher than that of the WGAN-GP-RSVP
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TABLE II
AUC VALUES OF EEGNET CLASSIFIER AT RSVP DATA CLASS

BALANCE WITH DIFFERENT AUGMENTATION METHODS

Fig. 7. Classification performance indices for different data augmen-
tation methods, the ∗ sign indicates statistical significance between
the marked method and BWGAN-GP in each group (∗, p < 0.05,∗∗, p < 0.01, ∗∗∗, p < 0.001).

(91.96±2.20%), SMOTE (90.93±3.07%) and original (imbal-
anced) (90.70±3.13%). It suggests that our proposed aug-
mentation model can improve the performance of the RSVP
classifier and implies that BWGAN-GP can generate higher
quality minority-class data.

As seen in Table II, both WGAN-GP-RSVP and
BWGAN-GP obtained better AUC values than SMOTE,
indicating that implementing a GAN is a more effective
method for data augmentation when performing RSVP
tasks. SMOTE does not perform well as there was original
(imbalanced) in Subject 3 and Subject 7, due to this
interpolation method having only a change in amplitude. The
generated minority-class signal is recognized as non-target
due to its low amplitude. Appendix Table VI∼VIII also
shows the Balanced-Accuracy, F1-score and kappa values
under different enhancement methods.

The overall results are presented in Fig.7. It can be seen
that the data augmentation method significantly improved
the values of Balanced-Accuracy, F1-score and kappa value,
despite the slight change in AUC. This indicates that the
data augmentation method can alleviate the challenges posed

Fig. 8. Comparison of the real (FPz channel) and generated minority-
class EEG in the single-channel in subject 1. (a) Real signal trial.452,
(b) Gen signal trial.631, (c) Real signal trial.1439, (d) Gen signal trial.80,
(e) Real signal trial.1979, (f) Gen signal trial.4. The blue colour represents
the real signal (1st row), and the green colour represents the generated
signal (2nd row).

by unbalanced data and improve the classification ability of
EEGNet. The ANOVA results showed statistical differences
in AUC between the different data augmentation models with
EEGNet. The results of comparison of BWGAN-GP with the
original(imbalanced) was F = 7.65, P < 0.05, SMOTE was
F = 6.93, P < 0.05, and WGAN-GP-RSVP was F = 5.10,
P < 0.05. The ANOVA result of kappa value has a significant
difference, while the Balanced-Accuracy and F1-score have no
significant difference between BWGAN-GP and WGAN-GP-
RSVP. It indicates that there is not much difference between
BWGAN and WGAN-GP-RSVP in augmenting data on some
subjects under the EEGNet classifier.

This study also uses the visual inspection of RSVP under a
single channel to explain the quality of the generated minority
class EEG signals. Experiments were conducted to compare
the real EEG and the artificial data generated by BWGAN-GP
for Subject 1. Fig. 8 represents the real EEG signal
(FPz channel) and the generated EEG signal corresponding
to the target image.

The channel of Fpz was selected because this channel
is important for the RSVP task [46], which shows that
BWGAN-GP can generate a higher-quality EEG signal in
Subject 1. Fig. 8 shows that the proposed model can learn the
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Fig. 9. An example of Real and generated data visualizations of different
RSVP data augmentation methods. (a) EEG sample from Real data
(no augmentation), (b) EEG samples from SMOTE generated and real,
(c) EEG samples from WGAN-GP-RSVP generated and real, (d) EEG
samples from BWGAN-GP generated and real. The Red colour points
represent the target, blue colour points represent the non-target, and
green colour points represent the generated target(minority-class).

distribution trend of real minority-class data and generate new
artificial data rather than simply replicate the original data,
thus overcoming the problem of the replicated operator caus-
ing mode collapse. These results offer promise in exploring
directions in EEG generation.

To compare the performance of the different augmentation
methods, we used the UMAP flow structure [45], which
mapped the multi-channel EEG signals into two-dimensional
space, as shown in Fig. 9.

In Fig. 9, 1024 random points from all data used UMAP
for visualization were similar to t-SNE. However, UMAP
can simultaneously compare the distribution of different
algorithms and effectively preserve more details [45], [47],
as shown in Fig.9. The raw EEG signal is shown in Fig. 9(a)
revealed that the RSVP dataset class was unbalanced. The
distribution of the target data points was very sparse, while
the non-target data point was a large number. In Fig. 9 (b),
in SMOTE method, most of the generated points are sur-
rounded by the red colour points but performed poorly in the
classifier, possibly due to the low diversity of the solutions.
Lashgria et al. reported that the SMOTE augmentation method
is weak for EEG generation [8]. Fig. 9(c) and Fig. 9(d)
show the artificial EEG signals generated from the WGAN-
GP-RSVP and BWGAN-GP. BWGAN-GP can capture real
minority-class data features generate most artificial synthetic
data around raw data points. In contrast, WGAN-GP-RSVP
cannot generate a better initial solution because it does not
discriminate between fake and minority real data, which

Fig. 10. The average AUC value of data augmentation methods for the
EEGNet classifier at different IR values.

leads to its inability to generate higher quality minority-class
EEG data.

C. Effect of the Imbalance Rate (IR) in Different Data
Augmentation Methods

We explored the performance of three augmentation meth-
ods under different class proportions while still using EEGNet
as the classifier. The IR (Imbalance Rate) value were 0.2, 0.4,
0.6, 0.8 and 1. In this experiment, all training samples in the
real EEG were used. The original EEG and the generated
minority-class data formed a new minority-class dataset to
compare the majority-class real data. Fig. 10 indicates the
performance of EEGNet under different proportions of two
classes.

Fig. 10 shows that when the IR was 0.6, SMOTE had
the best performance in itself, with the best AUC value of
91.08±1.30%. It indicates the SMOTE is already at a stopping
point when the IR value reached 0.6, and the classification
results achieved the best value. When IR were 0.8 and 1, the
performance dropped. This result may be because SMOTE
is merely a linear replication operation that cannot generate
better solutions to improve the classification performance.

In contrast, WGAN-GP-RSVP and our proposed
BWGAN-GP methods achieved the best classification results
when the IR was 1, WGAN-GP-RSVP had the best AUC value
of 91.96±2.20%, and the BWGAN-GP reached 94.43±2.19%.
However, when the two data classes were extremely
imbalanced, WGAN-GP-RSVP did not perform well because
WGAN-GP-RSVP was less likely to produce reasonable
solutions. This result also demonstrates that autoencoders
in BWGAN-GP increase the possibility of generating better
artificial data and improving the algorithm’s classification
ability. Appendix Table IX shows the classification
performance of other metrics at different data class ratios.

D. The Performance of Different Augmentation Methods
Under the Seven Classifiers

To further illustrate the performance of our proposed aug-
mentation model without relying on a particular classifier,
we compared the performance of the above augmentation
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Fig. 11. F1-score and balanced-accuracy value of data augmentation
methods under the seven classifiers. (a) The AUC value. (b) The
balanced-accuracy value.

model on different classifiers. We evaluated the robustness
of the BWGAN-GP for minority-class data augmentation
using seven classifiers: HDCA, MDRM, MCNN, BN3, EEG-
Net, DeepConvNet and LeNet. Fig. 11 shows the AUC and
Balanced-Accuracy for different classifiers.

Fig. 11(a) shows that BWGAN-GP had the best classi-
fication performance among seven classifiers. The average
of AUC value in HDCA (77.86±6.14%), LeNet (81.33±
4.72%), MDRM (84.19+5.01%), MCNN (90.01±3.33%),
BN3 (91.76±2.55%), DeepConvNet (93.58±1.82%) and
EEGNet (94.43±2.18%). The results obtained from
BWGAN-GP and EEGNet reached the best classification
performance in our dataset. It may be because EEGNet
was designed with a depth-wise convolution layer and a
separable convolution layer, which is more specific to the
EEG features extracted. It also showed that BWGAN-GP
had a significant advantage over all seven classifiers. Our
proposed augmentation model has good robustness.

Fig. 11(b) shows the value of Balanced-Accuracy with
different classifiers. The three augmentation methods improved
the value of balanced accuracy in all five deep learning

TABLE III
DIFFERENT RATIOS OF TRAINING DATA INPUT TO BWGAN-GP

TABLE IV
AUC VALUES OF DIFFERENT RATIOS OF TRAINING DATA WHEN USING

BWGAN-GP FOR THE EEGNET CLASSIFIER

models(MCNN, BN3, DeepConvNet, LeNet and EEGNet).
At the same time, machine learning methods(HDCA and
MDRM) showed no significant improvement. Traditional
methods require threshold adjustment to depend on subject,
which does not exist in deep learning. This may be the
explanation why data augmentation is significant on deep
learning methods and almost fails on traditional. The F1-score
and kapp values are shown in Appendix Fig. 12 and Fig. 13.

E. Effect of Different Proportions of Training Data

An attempt was made to explore whether the training data
could be reduced with the generated data in a practice scenario.
We designed the following experiments, in which 20%, 40%,
60% and 80% of the raw training data were taken as input in
BWGAN-GP to generate artificial data, as shown in Table. III.

Table. III demonstrates the number of training data input
to BWGAN-GP and the number of minority classes of data
generated. For a more precise representation, an example is
presented. When the training data was 20%, the number of
majority class data was 645, while the minority-class training
data just was 27, as input in BWGAN-GP. Therefore, the
number of minority-class artificial data was 618 for balanced
classes when BWGAN-GP was used.

Table. IV shows that when only approximately 60% of
the training data into BWGAN-GP as input, the average
AUC value reached 87.81±3.97%. In comparison, the average
AUC value of the original training data was 90.7±3.13%.
Only 60% of the experimental data acquisition must be



260 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE V
SUBJECT’S INFORMATION OF RSVP DATASETS

TABLE VI
BALANCING ACCURACY VALUES OF RSVP DATA CLASS BALANCED IN DIFFERENT AUGMENTATION METHODS ON EEGNET CLASSIFIER

obtained when allowing a slight reduction in the AUC. This
result is meaningful because it can reduce subjects’ training
time through generating minority class artificial data from
BWGAN-GP.

Starting from 80% of the training data, the average AUC
was 91.11±1.70%, which exceeded that of the imbalanced
original data. It indicates that the balanced new dataset was
better than the original dataset regarding classification perfor-
mance. The result may be because BWGAN-GP learns class
labels and generates high-quality minority-class data, which
alleviates CIPs. Overall, the proposed method can improve
the classification performance of the RSVP task.

We also can see from Table. IV that the proposed generative
model often mode collapses under the training conditions of
a few minority-class data samples since these data do not
provide sufficient information for the algorithm to function
correctly. Hence, the availability of a certain amount of data
is a precondition to ensure that the generative model can be
trained effectively. Other metrics of classification performance
are shown in Appendix Table. X.

F. The Limitations and Prospects of Our Work
This study demonstrates that the proposed data augmenta-

tion method is promising for improving RSVP classification
task performance, yet there are still several limitations:

1) Qualitative Criteria: Qualitative criteria for generating
artificial data quality in multi-channel EEG data are still
lacking, and some criteria in the image domain are not suitable
for EEG generation quality studies. Furthermore, research
on some quantitative measurement methods would be more
helpful in generating high-quality multi-channel EEG signals.

2) Single Structure: Our proposed BWGAN-GP still draws
on the WGAN-GP-RSVP network structure, and we will
consider combining the proposed model with a more efficient
network structure in the future.

3) Mode Collapse Still Exists: Despite the improved AUC
obtained for the overall classification, the above method,
although having improved overall classification results, still
suffers from mode collapse in the case of a tiny amount of
data. In feature work, combining other techniques with GAN
provides alternative solutions to CIP, such as cost-sensitive
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TABLE VII
F1-SCORE VALUES OF RSVP DATA CLASS BALANCED IN DIFFERENT AUGMENTATION METHODS ON EEGNET CLASSIFIER

TABLE VIII
KAPPA VALUES OF RSVP DATA CLASS BALANCED IN DIFFERENT AUGMENTATION METHODS ON EEGNET CLASSIFIER

Fig. 12. F1-score value of data augmentation methods on seven
classifiers.

learning [48], moving the threshold [49], and downsampling
methods [50] are also worth investigating. We believe that
the BWGAN-GP model proposed in this study can help

Fig. 13. Kappa value of data augmentation methods on seven classifiers.

improve the RSVP task’s classification performance and gen-
erate better quality artificial EEG data. This work can also be
extended to related BCI paradigms, such as P300 signals, face
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TABLE IX
METRICS VALUES OF DIFFERENT AUGMENTATION METHODS ON EEGNET CLASSIFIER AT DIFFERENT IR VALUE

TABLE X
AVERAGE METRICS CLASSIFICATION PERFORMANCE VALUES OF DIFFERENT PROPORTIONS OF

TRAINING DATA TO GENERATE EEG SAMPLES BY BWGAN-GP ON EEGNET CLASSIFIER

recognition and other class imbalanced applications of EEG
signal classification.

VI. CONCLUSION

This study aimed to develop a novel data augmentation
approach to address CIPs in the RSVP task. We first presented
the data augmentation method generated for minority-class
data and evaluated the RSVP task’s classification performance.
The results indicated that the BWGAN-GP approach con-
tributed to better overall classification performance. In most
cases, the class-wise performance improved, as reflected by
a better classification metrics value. We also investigated
the effect of artificial data generated on the experimental
calibration stage. The results suggested that the proposed
BWGAN-GP could alleviate CIPs by generating the minority-

class data of EEG signals, further improving classification
performance and reducing calibration time in the RSVP tasks.

APPENDIX

See, Tables V–X and Figs. 12 and 13.
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