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Evaluation of Correlation Between Surface
Diaphragm Electromyography and Airflow Using

Fixed Sample Entropy in Healthy Subjects
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Abstract— In clinic, the acquisition of airflow with nasal
prongs, masks, thermistor to monitor respiratory func-
tion is more uncomfortable and inconvenience than sur-
face diaphragm electromyography (EMGdi) using electrode
pads. The EMGdi with strong electrocardiograph (ECG)
interference affect the extraction of its characteristic infor-
mation. In this work, surface EMGdi and airflow signals
of 20 subjects were collected under 5 incremental inspi-
ratory threshold loading protocols from quiet breathing
to maximum forced breathing. First, we filtered out the
ECG interference in EMGdi based on the combination of
stationary wavelet transform and the positioning of ECG
to obtain pure EMGdi (EMGdip). Second, the Spearman’s
rank correlation coefficients between EMGdi and EMGdip
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quantified by time series fixed sample entropy (fSampEn),
root mean square (RMS), and envelope were compared to
verify the robustness of the fSampEn to ECG. A comparative
analysis of correlation between fSampEn of EMGdi and
inspiratory airflow and the correlation between envelope of
EMGdip (EMGdie) and inspiratory airflow found that there
was no significant difference between the two, indicating
the feasibility of using fSampEn to predict airflow. Moreover,
fSampEn of EMGdi was used as characteristic parameter to
build a quantitative relationship with the airflow by polyno-
mial regression analysis. Mean coefficient of determination
of all subjects in any breathing state is greater than 0.88.
Finally, nonlinear programming method was used to solve a
universal fitting coefficient between fSampEn of EMGdi and
airflow for each subject to further evaluate the possibility
of using surface EMGdi to monitor and control respiratory
activity.

Index Terms— Diaphragm electromyography, airflow, sta-
tionary wavelet transform, fixed sample entropy, polynomial
regression analysis.

I. INTRODUCTION

THE surface electromyography signal (EMG) is an elec-
trical signal transmitted to the surface of the skin caused

by the change of action potential when the muscle under the
skin contracts. Although the time-domain waveform of the
EMG signal can reflect the activity and characteristics of the
muscle, it is chaotic [1]. It is usually necessary to extract
meaningful information of the EMG signal through feature
extraction. Root mean square (RMS) is the most commonly
used feature extraction method to obtain the amplitude of
muscle contraction, and its value can be used to determine
the performance of certain muscles [2], [3].

The diaphragm is the most important respiratory muscle [4].
Its electromyography signal (EMGdi) produced during breath-
ing reflects important physiological information of the respi-
ratory system, and is an important basis for the diagnosis of
respiratory diseases, such as chronic obstructive pulmonary
disease (COPD) and asthma [5]. Compared with inspiratory
flow and inspiratory pressure, EMGdi is the most effective
method to assess neural respiratory drive (NRD), especially
for patients with COPD [5], [6]. The acquisition of EMGdi
signal is classified into invasive and body surface detection [5].
Surface electrode acquisition method has been used in clinical
respiratory monitoring for its non-invasive, convenient and
cheap advantages [7]. However, the surface EMGdi is a
micro-electric signal, and it is affected by power frequency
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interference [8], motion artifact [9], EMG of other respiratory
muscles [10] and electrocardiographic (ECG) signal [11] dur-
ing the acquisition process. The amplitude of the ECG is much
higher than EMGdi and its main frequency band overlaps with
the EMGdi [12], which has an adverse effect on the evaluation
of EMGdi amplitude using RMS.

Several studies divided into two ways have shown how to
filter out the interference of the ECG signal in the EMGdi.
One is to increase the collection of the ECG signal and use
it as a reference input to filter out the interference of the
ECG signal by using shear substitution [13], adaptive noise
cancellation (ANC) [14] and event synchronization cancel-
lation (ESC) [15]. The other is to directly filter the ECG
signal through stationary wavelet transform [11], mathemat-
ical morphology [16], and non-linearly scaled wavelets [17]
on the EMGdi without ECG acquisition. Nevertheless, these
studies focused on the filtering effect of the ECG in EMGdi,
and did not perform further feature extraction and analysis
on it.

Recently, a new method called fixed sample entropy
(fSampEn), effectively weakening the interference of the ECG,
has been proposed to assess respiratory muscle function from
EMGdi [18], [19]. SampEn is an improved complexity mea-
surement method based on approximate entropy [20]. It is
robust to signals with impulsive noises, and can calculate a sta-
ble entropy value based on less data (1000-5000 points) [20].
Based on the SampEn, the value of the fSampEn is calculated
through a fixed tolerance value. In [18], it is an effective
method to use the fSampEn calculating the EMGdi to evaluate
the NRD. In practice, computer-simulated EMGdi with and
without ECG cannot truly reflect the actual collected EMGdi.
The robustness of fSampEn to ECG interference should be
confirmed based on the collected EMGdi.

As another important physiological signal reflecting the
human breathing state, the respiratory airflow signal is often
used in sleep monitoring [21] and ventilator triggering and
control technology [22]. The measurement methods of air-
flow including nasal prongs, mask, thermistor are effective
and reliable [23]. These methods involve varying degrees of
contact with the human body. Nasal intubation requires a
special catheter to be inserted into the trachea through the
nose. In order to prevent the leakage of gas from affecting the
measurement accuracy, the mask needs to be fastened to the
face. The thermistor detects the airflow requires the thermistor
to be placed in the nostril. From a clinical point of view, these
detection methods are uncomfortable for the human, especially
for infants and children, which will make them uneasy or even
intolerable. It is significant to explore monitoring schemes for
airflow to improve comfort and convenience in acquisition.

The aim of this work was to establish a quantitative cor-
relation between airflow and surface EMGdi to assess the
possibility of monitoring and controlling respiratory activity
with surface EMGdi. First, we filtered out the ECG interfer-
ence in EMGdi based on stationary wavelet transform. Second,
by calculating the correlation between fSampEn, RMS and
envelope of the EMGdi, the influence of the ECG in EMGdi
was analyzed. Finally, on the basis of analyzing the correlation
between the airflow, fSampEn and envelope, we proposed

a method for quantitative evaluation between fSampEn and
airflow.

II. MATERIALS AND METHODS

A. Data Acquisition

The test subjects for the acquisition of physiological signals
were 20 adults (10 males and 10 females, age: 25.3 ±
2.74 years old, weight: 66.35 ± 14.19kg, height: 170.15 ±
9.10cm) with no heart, lung and nervous system diseases.
Before participating in the experiment, all subjects simply
understood the process and purpose of the experiment, then
signed the informed consent form. The Biology and Medical
Ethics Committee of Beihang University (reference number
BM20210155) and human subjects have approved these data
collection.

The physiological signal (EMGdi and airflow) acquisition
system was composed of hardware, software and a subject.
The EMGdi was acquired by the physiological signal ampli-
fication module (FE234, Quad Bio Amp, ADInstruments,
Sydney, Australia) with high performance differential ampli-
fiers. Then the amplified EMGdi was recorded by the physi-
ological recorder (PL3516, PowerLab 16/35, ADInstruments,
Sydney, Australia) and transmitted to the PC software (Lab
Chart 8, ADInstruments, Sydney, Australia) for reading, dis-
playing and processing. The right diaphragm of the experimen-
tal subject was selected to obtain the EMGdi, which required a
pair of measuring electrodes and a reference ground electrode.
A pair of electrodes (positive electrode and negative electrode,
spacing: 20mm) were placed separately at the intersection of
the anterior axillary line and the sixth and eighth intercostals,
with the positive electrode above the negative electrode [24].
The reference ground electrode was on the xiphoid process of
the chest wall. After finding the electrode location, the scrub
(Nuprep Skin Prep Gel, Weaver and Company, Aurora, USA)
was used to rub the skin sufficiently cleaned with alcohol
to reduce the skin/electrode impedance [24]. The disposable
button-type body surface electrodes (diameter: 50mm, diame-
ter contact with skin: 10mm, AC resistance: ≤3k� (10Hz),
Heal Force, ShangHai, China) with hydrogel Ag/AgCl for
sensing and viscous element were chosen to record the surface
EMGdi.

The signal transmission wire that collected EMGdi con-
nected to the electrode pads were glued and fixed on the skin
surface with medical tape to reduce the artifacts of breathing
movement. The sampling rate of the EMGdi signals in the
LabChart software were set to 2000Hz [18], [24], and the
filter bandwidth to 10-1000Hz. During the EMGdi signals
collection process, the subject sit on a chair with his hands
on knees and quietly received breathing instructions from the
instrument operator. In addition, a key point in the experiment
was to avoid verbal communication with the subject to keep
the environment quiet and avoid interference.

Subjects in the experiment needed to complete 5 different
breathing tasks, including Quiet breathing, Forced breath-
ing I, Forced breathing II, Forced breathing III and Forced
breathing IV. During data collection process, the respiratory
rate of each breathing task was 15 times per minute. For
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each subject, we first collected the inspiratory airflow for 90s
and obtained average peak inspiratory airflow (af1) in Quiet
breathing state of the specified inhalation time and expiration
time. Secondly, continuous 90s of breathing airflow under
the state of maximum forced breathing (Forced breathing IV)
was acquired to get the average peak of inspiratory airflow
(af5). The other three peaks of inspiratory airflow (Forced
breathing I, Forced breathing II, Forced breathing IV) were
superimposed on the basis of the previous breathing task
with a difference of 25% of (af5 − af1). The collection time
for each breathing task was 90s and the subject rested for
5 minutes after completing it. During the acquisition process,
the subjects needed to keep their eyes fixed on computer screen
(LabChart) with visual feedback to control breathing time,
and peak point of inspiratory airflow. According to the degree
of breathing effort, the EMGdi and airflow of five different
breathing exercises were recorded. The airflow of different
breathing modes were measured by the gas mass flow sen-
sor (Bilateral measurements, Range: −300L/min-300L/min,
CAFS4000B series, Consensic, USA). The physiological sig-
nal recorder obtained the output voltage value of the sensor
and displayed it on LabChart. The airflow sensor connected to
a ventilator tube with a mouthpiece was fixed on an adjustable
height tripod. In order to prevent the airflow out of the nasal
cavity from affecting the measurement accuracy during the
test, a nose clip was required to tighten the nasal cavity.
Moreover, subjects needed to perform appropriate exercises
to prevent airflow from leaking out of the mouth before test.
The sampling rate of the airflow was the same as the EMGdi,
and the LabChart recorded both signals at the same time. All
data was collected during one visit. Continuous 60s EMGdi
signals and airflow signals were used for calculation and
analysis in resluts. Fig. 1 depicts the collected airflow signals
(a) and EMGdi signals (b) of a healthy subject in five different
breathing states for intercepting three breathing cycles. The
processing of all recorded data was performed in MATLAB
(v. R2019b, Natick, MA, USA).

B. Processing of EMGdi and Airflow

1) Estimation of Respiratory Cycle: A moving average filter
was used to smooth the measured airflow signal, and its
window width was 1399. The calculation of the respiratory
airflow period was based on the zero-crossing criterion [24],
[25]. It meant that airflow greater than the zero threshold was
the inhalation phase, opposite was the exhalation phase. The
intersection of the respiratory airflow and the zero threshold
could be defined as the starting point of inspiration or res-
piration. The airflow signals of three breathing cycles in five
breathing states of a subject were separately intercepted shown
in Fig. 1.

2) Filtering of ECG Interference in EMGdi Signal: After using
a 3th Chebyshev Type I filter with a cut-off frequency of
15-400HZ (passband attenuation: 3db, stopband attenuation:
15db) to preprocess collected EMGdi signal, the remaining
signals were mainly QRS complexes of ECG with the charac-
teristics of larger magnitude and concentrated distribution [11].
ECG in EMGdi signal was filtered by combining ECG inter-
ference location and wavelet threshold filtering [11], [26].

The position of ECG and the range of ECG interference was
based on the characteristics of wavelet correlation coefficient.
After thresholding the wavelet coefficients in the range of
ECG interference, the reconstructed EMGdi signals would
effectively filter out the ECG. The steps of using discrete
stationary wavelet transform to filter out ECG in EMGdi were
as follows.

a) Stationary wavelet decomposition: We defined EMGdi as
S and the stationary wavelet decomposition formula of it was
expressed as follows.{

ai+1 = H [i]ai

di+1 = G[i]ai
(1)

where, a0 = S, ai+1 is the approximate coefficients, di+1 is the
detail coefficient, H [i], G[i] are the low-pass filter and high-
pass filter coefficients respectively. The corresponding signal
reconstruction formula is expressed as follows.

ai = Rε(ai , di ) (2)

where Rε is refactoring the average operator.
According to the sampling frequency of the EMGdi

(2000Hz) and the frequency of the ECG signal (0-50Hz),
a 5-scale wavelet decomposition was performed on the EMGdi
to obtain approximate coefficients and detail coefficients. The
wavelet coefficient of each layer is represented by Wx(i, j).

Where, x is the approximate coefficient or the detail coef-
ficient, expressed by a or d , i is the wavelet coefficient of the
i-th layer, j is the abscissa of the wavelet coefficient.

b) Location of ECG signal position: The square of the
low-frequency coefficient (coef(j) = |Wa(5, j)|2) was used
to distinguish the EMGdi from the ECG interference [27].
The expression of ECG peak position (Pos(j)) detection to
determine edge of ECG interference peak can be written as
follows.

coef ( j) > k ×
n∑

j=1

coef ( j)
/

n (3)

where, n is the length of the EMGdi, k is the threshold
proportional constant, the value is 20-40. If the coefficient
coef(j) is greater than k times its average value (th = k ×

n∑
j=1

coef ( j)
/

n), then point j is considered to be near the ECG

peak. Second we found the position point where the position
point j corresponds to the maximum value of the wavelet
coefficient is the ECG peak position.

c) Wavelet threshold denoising and wavelet reconstruction:
The threshold is selected according to the Donoho algo-
rithm [28], which is determined by the wavelet transform
coefficient Wx (i, j) and the expression is as follows.

λ = √
2 ln Nmedian(|Wx (i, j)|)/0.6745 (4)

where N is the length of the signal.
The peak position of the ECG signal (ploc( j)) determine

the average cycle length of the ECG (Tecg). The interference
interval before and after the ECG peak can be expressed as
[ploc( j) − 0.24 × Tecg , ploc( j) + 0.16 × Tecg] [27].
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Fig. 1. The collected airflow signals (a) and EMGdi signals (b) of a healthy subject in five different breathing states for intercepting three breathing
cycles. The five different breathing states refer to Quiet breathing and four breathing states (Forced Breathing I, Forced Breathing II, Forced Breathing
III and Forced Breathing IV) that gradually increase the degree of exertion.

The ‘inverse’ hard threshold filtering [29] of the ECG signal
can be expressed as

W x(i, j) =
{

Wx (x, j) |Wx (i, j)| < λ

0 |Wx (i, j)| ≥ λ
(5)

where, W x (i, j ) is the processed wavelet coefficient.
After the wavelet coefficients are processed, the wavelet

reconstruction is performed to obtain the final signal after
noise reduction (EMGdip).

C. Quantification of EMGdi

1) Fixed Sample Entropy and RMS: The sample entropy,
proposed by Richman and Moorman, is a time series complex-
ity measurement method [20]. It has strong anti-noise ability
and consistency, and can obtain a stable entropy value using
fewer data segments [20]. The lower signal sample entropy
means the higher sequence self-similarity and lower sequence
complexity. Fixed sample entropy (fSampEn) was developed
based on the sample entropy algorithm, which was used to
weaken the influence of the ECG noise in EMGdi signal. For
an EMGdi with a section length of N, m-dimensional vectors
(Xi, Xj, i, j ≤ N-m) were reconstructed. Maximum value of
the distance between vector Xi and vector Xj marked as dij
was calculated. Then for the similarity tolerance r, we counted
the number of dij less than r as C, and calculate the ratio of
it to the total number of vectors (N-m), so as to calculate the
average of all vectors (A). Also the vector dimension to m +
1 was changed and we repeated the above steps to get B. The
value of sample entropy was expressed as

SampEn(m, r, N) = − ln

(
Am(r)

Bm(r)

)
(6)

Three main parameters needed to be determined in the cal-
culation of sample entropy were the time series length (N),
the vector dimension (m), and the similarity tolerance(r)
respectively [30].

fSampEn was calculated based on the moving window and
the fixed similarity tolerance r value in each window by
using MATLAB. We used fSampEn to separately evaluate

EMGdi (with ECG) and pure EMGdi without ECG (EMGdip)
in different breathing states. The time length of the moving
window was 1s and the overlap rate was 90%. On the basis of
the previous study [24], m value was taken as 1. r value was
set as 0.3 times the standard deviation of EMGdi (with ECG)
and EMGdip for each subject in 5 different breathing state.

The RMS of the EMGdi and EMGdip were also calculated
using a moving window. The length of the moving window
and the overlap rate were 1s and 90% respectively.

2) Envelope of EMGdi Signal Without ECG: Previous stud-
ies [31] have shown that the envelope of the EMG signal can
reflect the characteristics of different actions, and is smoother
and more stable than the original signal. The pure EMGdi
without ECG (EMGdip) signal in different breathing states was
processed by a FIR high-pass filter with a cut-off frequency
of 30 Hz and underwent full-wave rectification [32]. Then a
low-pass FIR filter with a cut-off frequency of 2.5 Hz was
used to implement envelope detection [7]. Finally, we used the
sliding median filter method to obtain the smooth envelope of
EMGdi without ECG (EMGdie).

D. Prediction of Respiratory Airflow

The fSampEn of EMGdi with 1-s moving window was used
to predict the respiratory airflow based on polynomial fitting
method. The amplitude of EMGdi increases during inhalation,
but has no change during exhalation. Therefore, the fSampEn
(fs) was used to predict the airflow (afp) in the inhalation
phase. In polynomial fitting, a higher order means a better fit
between data points. Taking into account the characteristics
of airflow and fSampEn and the accuracy of the calculation,
a fifth-order polynomial was applied to predict the airflow. The
relationship of them can be expressed as

a f p = f ( f s) =
∑

ci f si (7)

where, afp and fs are respectively the airflow and fSampEn of
EMGdi during the inhalation phase of each breathing state for
all subjects, ci is the fitting coefficient, i = 0, 1, 2, 3, 4, 5.

The nonlinear programming method was used to solve the
same fitting coefficient of a subject in 5 breathing states. For
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a subject in inhalation phase of each breathing state, initial
values and peak points of fSampEn of the EMGdi signal (fs)
and actual airflow (afa) were extracted. The 5th order polyno-
mial fitting relationship between fs and afa were established
respectively. Therefore, 10 fitting constraint relations were
constructed. The objective function is the minimum sum of
the difference between the predicted airflow (afp) and actual
value (afa). The onset of the inspiratory airflow of each subject
in each breathing state were zero. However, the corresponding
initial values of fSampEn of EMGdi were different and not
zero. Setting onset of sample entropy of surface EMG to zreo
is a common method in the detection of the starting point of
the EMG signal [33]. Therefore, we shift the corresponding
fSampEn curve downward in inspiratory phase to make the
onset value of fSampEn of EMGdi zero. The airflow and
fSampEn of EMGdi of a breathing cycle in the inhalation
phase under 5 different breathing states for a subject was used
to calculate a fitting coefficient. The mathematical model for
solving a single fitting coefficient of a subject in five breathing
states were described as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min g(ci ) = min
∑

(a f p − a fa)
2

= min
10∑

j=1

(

5∑
i=0

ci f s( j)i − a fa( j))2

s.t . a fa( j) =
5∑

i=0

ci f s( j)i ( j = 1, 2, · · · , 10)

(8)

where, g(ci ) is the objective function, afp is the predicted
airflow, afa is the actual measured airflow, fs(j) is initial
value of fSampEn of EMGdi signal at onset of inhalation
( j = 1, 2, . . . , 5) and peak value of fSampEn of the EMGdi
during inhalation ( j = 6, 7, . . . , 10) after the fSampEn of
EMGdi in the inhalation phase minus its onset value for a
subject in 5 breathing states. Sequential quadratic program-
ming (SQP) algorithm was used to solve the fitting coefficients
(ci ) in MATLAB. The upper and lower limits of coefficients
([−10e + 08, 10e + 08]) in the solver were adjusted to obtain
a fitting coefficient for a subject in 5 breathing state.

E. Statistical Analysis Method

The correlation coefficient was used to assess the consis-
tency between recorded data. Since the Lilliefors test judged
that not all recorded signals obey a normal distribution,
we used Spearman’s rank correlation coefficient (ρ) to evaluate
the correlation between two sets of parameters. The absolute
value of the correlation coefficient (ρ) reflects the strength
of the correlation [34], where very weak correlation for
0.0-0.19, weak correlation for 0.20-0.39, moderate correlation
for 0.40-0.59, strong correlation for 0.60-0.79, very strong
correlation for 0.80-1.00.

The correlation analysis method was used to analyze
the parameters mainly include (1) fSampEn of EMGdi and
EMGdip, (2) RMS of EMGdi and EMGdip, (3) EMGdie and
fSampEn of EMGdi, (4) EMGdie and fSampEn of EMGdip,
(5) RMS of EMGdi (EMGdi and EMGdip), (6) airflow and
fSampEn of EMGdi (or EMGdie). Significant differences
(p) between the fSampEn, breathing airflow, EMGdie and

RMS were analyzed by using the Mann-Whitney U test. If the
p -value is less than 0.05, it can be considered that the
correlation coefficients have statistically significant difference.

III. RESULTS

A. Evaluation of Airflow and EMGdi in Different Breathing
Status

Fig.2 illustrates (a) the EMGdip, (b) the EMGdie, and
calculation of (c) fSampEn and (d) RMS for EMGdi (blue
line) and EMGdip (red line) in 5 different levels of breathing
effort for a subject of 3 consecutive breathing cycles. In view
of time-domain waveform of EMGdip, it was found that the
ECG signal interference in EMGdi has been effectively filtered
out. The amplitude of the EMGdip, EMGdie, fSampEn and
RMS increases with the raise in the degree of breathing effort.
Comparing the fSampEn values in 1-s moving window before
and after filtering out the ECG signal, it can be obtained
that although the numerical values are different, the waveform
shapes of the two are basically the same. The ECG signal
has a strong influence on the RMS value of the EMGdi
signals in the moving window. The waveform and value of
the RMS of EMGdi with and without ECG interference are
completely different. After filtering out the ECG signal with
higher amplitude, the value of RMS and fSampEn of EMGdip
have opposite trends. RMS values become smaller, and the
fSampEn values increases.

Furthermore, the value of EMGdip in the time domain
diagram increase significantly during inhalation, and its value
remains unchanged and close to zero during exhalation. The
EMGdie, fSampEn, and RMS waveforms of EMGdip seem
extremely similar and are consistent with the breathing move-
ment.

B. Assessment of the Respiratory Characteristics of All
Subjects in Different Breathing States

In order to clarify the differences in the respiratory char-
acteristics of all tested subjects, statistical calculation of the
respiratory parameters (respiratory cycle, inspiratory time, and
EMGdie) of them was implemented. Average breathing cycle
values range from 3.8157s to 3.9283s in different breath-
ing (Quiet breathing: 3.8277 ± 0.2919s, Forced breathing
I:3.8157 ± 0.3488s, Forced breathing II: 3.8607 ± 0.2891s,
Forced breathing III:3.9242 ± 0.3653s, Forced breathing
IV:3.9283 ± 0.3531s). Mean inspiratory time values range
from 1.9246s to 2.0909s at different levels of breathing
effort (Quiet breathing: 2.0821 ± 0.2649s, Forced breathing
I:2.0909 ± 0.1822s, Forced breathing II: 2.0716 ± 0.2092s,
Forced breathing III:2.0241 ± 0.2515s, Forced breathing
IV:1.9246 ± 0.2377s).

Fig.3 (a) and (b) respectively show mean and standard
deviation of maximum airflow and EMGdie of all subjects’
continuous 60s breathing under different exertion levels
(B1: Quiet breathing, B2: Forced breathing I, B3:
Forced breathing II, B4: Forced breathing III, B5: Forced
breathing IV). It was observed that as the degree of breathing
effort rises, the maximum airflow and the envelope of
EMGdie signal also increases. Mean maximum airflow
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Fig. 2. Time series of envelope, fSampEn, and RMS of EMGdi before and after filtering out ECG interference in a subject shown in Fig. 2. (a)
pure EMGdi without ECG signal (EMGdip), (b) Envelope of EMGdi without ECG (EMGdie), (c) fSampEn and (d) RMS of EMGdip (red line) and
EMGdi (blue line). EMGdip: pure EMGdi without ECG interference, EMGdi: EMGdi with ECG interference, EMGdie: envelope of EMGdi without ECG
interference.

Fig. 3. (a) Maximum respiratory airflow and (b) envelope of EMGdi without ECG (EMGdie) under gradually increasing forced breathing (B1: quiet
breathing, B2: Forced Breathing I, B3: Forced Breathing II, B4: Forced Breathing III, B5:Forced Breathing IV). The data points represent mean and
standard deviation of the maximum respiratory airflow and envelope of EMGdip (EMGdie) of all subjects under different respiratory tasks for 60s.
EMGdie: envelope of pure EMGdi without ECG.

values range from 40.5941 L/min to 87.4308 L/min with
gradual increases in respiration (Quiet breathing: 40.5941 ±
5.6088 L/min, Forced breathing I: 50.8494 ± 6.4299 L/min,
Forced breathing II: 62.2392 ± 9.2074 L/min, Forced
breathing III: 73.8775 ± 12.3292 L/min, Forced breathing IV:
87.4308 ± 15.1972 L/min). Average EMGdie values range
from 288.9516 to 569.0587 in 5 types of breathing with
increasing exertion (Quiet breathing: 288.9516 ± 59.9717,
Forced breathing I: 339.6872 ± 82.5625, Forced breathing
II: 406.3561 ± 64.6795, Forced breathing III: 485.9518 ±
89.6925, Forced breathing IV: 569.0587 ± 90.8824). The

differences in the respiratory characteristics of different
subjects did not disturb the sorting of respiratory airflow and
EMGdi signal values under different forced breathing states.

C. Influence of ECG on EMGdi

Fig. 4(a) explains the mean and standard deviation of ρ val-
ues between fSampEn and RMS of calculation about EMGdi
and EMGdip for all subjects completing gradually increasing
forced breathing tasks. The value of ρ was used to appraise
the influence of ECG signal on the fSampEn and RMS. It was
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Fig. 4. (a) Mean and standard deviation of spearman’s correlation coefficient (ρ) of fSampEn and RMS and (b) MSE of fSampEn and RMS over
EMGdi and EMGdip in all subjects under gradually increasing forced breathing (B1: quiet breathing, B2:Forced Breathing I, B3:Forced Breathing II,
B4: Forced Breathing III, B5:Forced Breathing IV). EMGdip: pure EMGdi without ECG.

TABLE I
MEAN SPEARMAN’S CORRELATION COEFFICIENT (ρ) BETWEEN FSAMPEN AND EMGDIe IN ALL SUBJECTS

UNDER GRADUALLY INCREASING FORCED BREATHING

TABLE II
MEAN SPEARMAN’S CORRELATION COEFFICIENT (ρ) BETWEEN RMS AND EMGDIe IN ALL SUBJECTS UNDER

GRADUALLY INCREASING FORCED BREATHING

observed that with the increase in the amplitude of the EMG
signal, the ρ values also increase accordingly. Compared with
fSampEn, the correlation ρ values of RMS between EMGdi
and EMGdip changes significantly. It means that ECG signals
interfere with the evaluation of the RMS of EMGdi and the
effect decrease as the amplitude of EMGdi increases. The
increase of breathing effort has no obvious effect on the
correlation ρ value of fSampEn before and after filtering ECG
of EMGdi. In all breathing states, the correlation value ρ
obtained by fSampEn was observed to be greater than 0.9.
At quiet breathing state (average maximum airflow: 40.5941 ±
5.6088 L/min), the weak correlation value of the RMS is
0.2514 ± 0.1240, while the fSampEn shows a very strong

correlation value of 0.9740 ± 0.0277. At forced breathing IV
state (average maximum airflow: 87.4308 ± 15.1972 L/min),
a strong correlation (0.7195 ± 0.1180) of RMS was observed,
and a very strong correlation (0.9964 ± 0.0033) of fSampEn
was found. The correlation values of fSampEn and RMS under
all breathing states are statistically significant (p < 0.05).
Fig.4 (b) represents normalised mean squared error (MSE) of
fSampEn and RMS of EMGdi and EMGdip. MSE was utilized
to further evaluate the changes in fSampEn and RMS before
and after the ECG interference was filtered out. MSE decreases
with the increase of EMGdi amplitude, which means that the
influence of ECG on the quantitative evaluation of EMGdi
is inseparable from its amplitude. The normalised MSE of
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Fig. 5. The predicted airflow by multiple fitting coefficients (red dotted line) and a fitting coefficient (purple dotted line) and actual airflow (green
solid line) in 5 breathing state (Quiet breathing, Forced breathing I, Forced breathing II, Forced breathing III, and Forced breathing IV respectively) in
5 subjects of (a) S.1, (b) S.2, (c) S.3, (d) S.4 and (e) S.5. The actual airflow in each breathing state is taken from the inspiratory airflow in 5 subjects.
The predicted airflow is realized by time series fSampEn of EMGdi using polynomial curve fitting method. Coefficient of determination (R2) was
used to evaluate the goodness of fit of the model. R2

1 is with differ ent fitting coefficients at different breathing state for a subject. R2
2 is with a fitting

coefficient at different breathing state for a subject.

fSampEn before and after the ECG is filtered is higher than
the RMS.

Table I shows mean Spearman’s correlation coefficient (ρ)
between fSampEn of EMGdi (with and without ECG), and
EMGdie in all subjects for any breathing task. The correlation
between fSampEn of EMGdi (or EMGdip) and EMGdie in any
breathing task show a very strong correlation (ρ > 0.8). All
correlations are statistically significant (p < 0.001). It means
that fSampEn in the moving window is consistent with the
change of the EMGdi during breathing, and can effectively
interfere with the ECG.

Table II indicates mean Spearman’s correlation coefficient
(ρ) between RMS of EMGdi (with and without ECG) and
EMGdie in all subjects for any breathing task. In either respira-
tory status, the correlation coefficient (ρ) between the RMS of
EMGdi and EMGdie after filtering interference of ECG is sig-
nificantly greater than that before filtering. A weak correlation
was observed between RMS of EMGdi and EMGdie at quiet
breathing state, and mean deviation correlation coefficient
value in all subjects for only 0.2327. However, after filtering

out the ECG, mean and standard deviation of the correlation
coefficient for very strong correlation reached 0.8532. The
correlation coefficient value of the RMS of EMGdi and
EMGdie increase with the increase of the degree of breathing
effort. The change of the correlation coefficient between RMS
of EMGdip and EMGdie is not evident, but its mean value
greater than 0.80 of very strong correlation and corresponding
correlations are statistically significant (p < 0.001).

D. Evaluation of Predicting Inspiratory Airflow Using
fSampEn of EMGdi

Before using fSampEn of the EMGdi to estimate the airflow,
the correlation between EMGdie and the inspiratory airflow,
and correlation between fSampEn of the EMGdi and the
inspiratory airflow were evaluated. 15 consecutive inspiratory
airflows, fSampEn of EMGdi and EMGdie of any breathing
state of each subject were used for correlation calculation.

Table III shows the Spearman’s correlation coefficient val-
ues (ρ) in all subjects under gradually increasing forced
breathing. The EMGdie has a good correlation with the
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TABLE III
SPEARMAN’S CORRELATION COEFFICIENT (ρ) BETWEEN INSPIRATORY AIRFLOW AND FSAMPEN OF EMGDI (OR EMGDIe)

IN ALL SUBJECTS UNDER GRADUALLY INCREASING FORCED BREATHING

TABLE IV
DIFFERENT FITTING COEFFICIENTS AT DIFFERENT BREATHING STATE TO FIT AIRFLOW BASED ON FSAMPEN OF EMGDI FOR 5 SUBJECTS

inspiratory airflow. For all subjects, the mean correlation
coefficient value in any breathing state is above 0.8013, and
the average value is 0.8133 for a very strong correlation.
Like the EMGdie, the time series fSampEn of EMGdi has
a strong correlation with the inspiratory airflow, the smallest
mean value is 0.8003, and the largest value reaches 0.8614 for
a very strong correlation. Mean correlation between fSampEn
and inspiratory airflow for each subject in all breathing states
reached 0.8325 for a very strong correlation. The result shows
that we use time series fSampEn to verify the feasibility of the
inspiratory airflow. All correlations are statistically significant
(p < 0.001).

Fig. 5 illustrates the comparison between predicted airflow
by multiple fitting coefficients (red dotted line) and a fitting

coefficient (purple dotted line) and actual airflow (green solid
line) of 5 subjects in 5 breathing state (Quiet breathing,
Forced breathing I, Forced breathing II, Forced breathing III
and Forced breathing IV) based on polynomial curve fitting
method and nonlinear programming method using time series
fSampEn of EMGdi. It was found that the predicted airflow
curve (red dotted line) of inhalation in a breathing cycle by
different fitting coefficients at different breathing state fits the
actual airflow (green solid line) better, and all the values of
coefficient of determination (R2

1) are greater than 0.8913. The
R2

1 do not change with changes in the respiratory airflow
amplitude and inspiratory time caused by the increase in the
degree of inhalation effort. It was observed that the polynomial
regression analysis method used to establish the correlation
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TABLE V
A COEFFICIENT TO FIT AIRFLOW BASED ON FSAMPEN FOR EACH SUBJECT IN 5 SUBJECTS IN FIG.5

Fig. 6. Coefficients of determination (R2) between predicted inspiratory airflow and actual inspiratory airflow in 20 subjects using multiple fitting
coefficients and a coefficient for their 15 consecutive inspiratory airflows. M ± SD: mean ± standard deviation.

of fSampEn of EMGdi and the airflow is reliable and
feasible.

Nonlinear programming method was used to solve a fitting
coefficient for each subject at 5 different breathing state. The
different degrees of overall decline in R2

2 in 5 subjects was
found. Compared with the goodness of fit of the other four
subjects, S.4 has the best goodness of fit with average R2

2 for
0.8755. Using a fitting coefficient to fit airflow cannot make
the goodness of fit in all breathing states reach the best, but
it can make R2

2 reach the local optimum. It means that using
a fitting coefficient for each subject can simultaneously make
two or more of the five breathing states achieve a good fitting

effect (R2 > 0.7), such as S.2 for 0.9653 and 0.8722 in Forced
breathing II and Forced breathing III respectively. Although R2

2
of the Quiet breathing state in Fig.5 is smaller than the other
four breathing states, the predicted airflow waveform (purple
dotted line) change can maintain the same trend as the actual
airflow change.

Table IV shows multiple fitting coefficients for 5 subjects
in different breathing state to fit the actual inspiratory airflow
based on the polynomial regression analysis method using
fSampEn of the EMGdi as a characteristic parameter. These
coefficients seem to be different intuitively, but the fitting
coefficient values of each subject in the same breathing state
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have a certain degree of similarity, such as exponent of c5
for 8 of S.1 and S.2 in Quiet breathing state. The difference
in fitting coefficient values and airflow values between Quiet
breathing state and Forced breathing IV state are great.

Table V explains a coefficient based on the nonlinear pro-
gramming method to fit the airflow in all breathing states for
each subject in 5 subjects (Fig.5). The fitting coefficients of
5 subjects are different, which also have a certain degree of
similarity, such as exponent of c5 for 4 of S.1, S.2, S.3 and S.4.

Fig. 6 indicates the comparison of the R2 for all subjects
based on different coefficients and a single coefficient for
each subject in 5 breathing states. The R2 in Fig. 6 is
mean ± standard deviation (M ± SD) of R2 of each subject’s
15 consecutive inspiratory airflow under 5 different breathing
conditions. The minimum R2 value is 0.8282 ± 0.0772, and
the maximum achieves 0.9788 ± 0.0116 by different fitting
coefficients for each subject. The M ± SD of R2 of each sub-
ject in different breathing states reached more than 0.8862 ±
0.0476 by different fitting coefficients. The above results show
that fitting the respiratory airflow curve using polynomial
regression analysis method with the time series fSampEn has
good adaptability for all subjects. A coefficient for each subject
to fit the airflow in different breathing states decreases R2 for
all subjects. The minimum R2 value is 0.0023 ± 0.0017, and
the maximum achieves 0.9159 ± 0.0384 by different fitting
coefficients in all subjects. The change trend of R2 of all
subjects in Fig. 6 under different breathing states is the same
as Fig. 5. On the whole, the R2 in quiet breathing state is
smaller than the other four breathing states. The M ± SD of
R2 of each subject by a fitting coefficient in different breathing
states was between 0.4298 ± 0.2677 and 0.7622 ± 0.1619.

IV. DISCUSSION AND CONCLUSION

In respiratory health monitoring, clinical diagnosis and
rehabilitation training, the respiratory function is usually eval-
uated based on intuitive respiratory airflow, but this method
requires wearing a tight mask or clamp the nose during the
monitoring process. It is well known that the respiratory
function is correlated with EMGdi [7], [35]. The collection
of EMGdi is more comfortable and cheaper compared to
airflow. However, the EMGdi is affected by the ECG signal
and cannot be filtered directly by setting a simple filter,
affecting the evaluation of correlation between EMGdi and
airflow. A quantification method of EMGdi that is not sensitive
to ECG interference called fSampEn has been proposed in
some studies [18], [19], [24]. However, it was not found
in the literature that researchers compare and analyze the
EMGdi before and after filtering to verify the reliability of
the fSampEn method.

In this paper, a combination of QRS positioning and station-
ary wavelet transform was used to filter out ECG interference
in EMGdi. The fSampEn and RMS of EMGdi and EMGdip in
the 1-s moving window were calculated in a state of increasing
forceful breathing. Consistent with previous research, fSam-
pEn and RMS of EMGdi increase with the increase in the
degree of exertion [18], [24], [36], which is mainly reflected
in the increase in the degree of breathing effort making the
EMGdi action potential superimposed more densely. Then

influence of the ECG on EMGdi was analyzed by calculating
the correlation between the time series fSampEn and the
RMS of EMGdi before and after the filter. By comparing
and analyzing spearman’s correlation coefficient (ρ) and mean
squared error (MSE) for fSampEn and RMS of the EMGdi
before and after filtering in Fig.4, we found that the fSampEn
is more robust to ECG interference than the RMS. The
fSampEn after the ECG is filtered has a significant change
in amplitude compared with that before the filtering, but the
time series waveform does not change significantly. In order
to further illustrate the consistency between the time series
fSampEn and the amplitude change of EMGdi, we analyzed
the correlation between the fSampEn of EMGdi (or EMGdip)
and EMGdie in Table I. The correlation between fSampEn and
EMGdie do not change significantly with the filtering of the
ECG. Before predicting the airflow, we proposed to analyze the
correlation between fSampEn of the EMGdi and the EMGdie,
and found the correlation between the two with no significant
difference. The strong correlation between the airflow signal
and fSampEn of the EMGdi illustrated the feasibility of using
time series fSampEn to predict respiratory airflow.

In previous study [7], it was proposed to use the envelope
of EMGdi to estimate airflow, but the ECG interference in the
EMGdi must be filtered out. However, the process of filtering
out the ECG signal is cumbersome and complicated, increasing
the difficulty of predicting airflow. Regression analysis has
been used to describe the quantitative relationship between
surface EMG and muscle strength [37], [38]. In this paper,
under the premise of fully demonstrating that the time series
of fSampEn was not sensitive to the ECG, and had a strong
correlation with the amplitude (envelope) of EMGdi and the
airflow, a method for predicting respiratory airflow using time
series fSampEn of EMGdi based on polynomial regression
analysis was firstly proposed. The fitting effect R2 (Fig. 5)
show that in any breathing state, the polynomial regression
analysis method predicts inspiratory airflow is applicable to
all subjects. Using time series fSampEn of EMGdi as the
characteristic parameter to evaluate the respiratory airflow does
not need to filter out the ECG, which is simple, reliable and
convenient.

We adjusted the fitting coefficient between fSampEn of
EMGdi and airflow for each subject in each breathing state
(Table IV, Fig. 6). Intuitively, these coefficients were various.
However, there was a certain similarity in the order of mag-
nitude in same breathing state for each subject. It is ideal and
more meaningful for a subject to fit the airflow in different
breathing state with the same coefficient using fSampEn of
EMGdi. A fitting coefficient for a subject was solved based
on nonlinear programming method (Table V, Fig. 6). Fig. 5
illustrates the results of fitting the airflow with a coefficient
for each subject. It was found that the R2 dropped overall in
5 subjects. The effect of fitting the airflow using fSampEn
of EMGdi with a coefficient in any breathing state among
different subject was different. R2 of S.4 was higher than that
of other four subjects on the whole. However, a coefficient
for each subject that could make the fitting effect reach the
local optimum, such as S.2 in Forced Breathing II and Forced
Breathing III. A fitting coefficient that made R2 for each
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subject in any breathing state reach above 0.7 wasn’t obtained,
which was due to great difference in fitting coefficient values
and airflow values between Quiet breathing state and Forced
IV breathing state. Nevertheless, it is feasible to calculate
a fitting coefficient for a subject within a certain range of
airflow and achieve good R2 for local optimum in Fig. 5.
The airflow range value need to be mined in future research
work. It is meaningful to predict airflow based on fSampEn
of EMGdi within a certain range in a specific application
scenarios. In existing mechanical ventilation with ventilators,
the tidal volume integrated by airflow is usually set within
10-15ml/kg without causing damage to the patient’s lungs [39].
The triggering and control of the traditional ventilator is
based on artificially set airflow waveform and trigger time,
which does not meet physiological needs of human and easily
cause emergence of man-machine asynchronous [40]. Using
fSampEn EMGdi to predict the respiratory airflow that meets
the physiological needs of the human within a certain range
of airflow values is of great significance to the optimization
of traditional ventilators. It also optimizes the complicated
operation and expensive status of the esophageal electrode
detecting EMGdi to control ventilator [7], [40]. When the
algorithm for predicting airflow based on EMGdi is used
in an airflow detection instrument, it can be used to detect
the amplitude of fSampEn of EMGdi to distinguish different
inhalation modes and then calculate the airflow. It improves
the discomfort and inconvenience caused by the nasal prongs,
mask and thermistor to detect the airflow [40].

Although a quantitative relationship between EMGdi and
airflow has been established and the potential for using
fSampEn of EMGdi to predict airflow has been evaluated,
we acknowledge that there are some limitations in our research
that need to be investigated to further improve our work.
Firstly, fixed ventilation pattern based on visual feedback to
control the respiratory rate and airflow peak was used to
establish the relationship between EMGdi and airflow. These
results need to be confirmed in uncontrolled and variable ven-
tilatory patterns. Secondly, the participants in our experiment
were 20 young healthy adults without respiratory diseases.
Measurement of EMGdi and airflow of older subjects and
comparing them with the results of young subjects should
be the focus of future research. Future work should also
investigate the reproducibility of correlation results of EMGdi
and airflow in patients with impaired respiratory neurome-
chanical efficiency. Finally, data mining technology such as
neural networks, association rules and classification methods
should be applied to explore the implicit, regular and unknown
connection between fSampEn of EMGdi and airflow signals
among subjects in health and disease.
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