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Abstract— Highly sophisticated control based on a brain-
computer interface (BCI) requires decoding kinematic infor-
mation from brain signals. The forearm is a region of the
upper limb that is often used in everyday life, but intuitive
movements within the same limb have rarely been inves-
tigated in previous BCI studies. In this study, we focused
on various forearm movement decoding from electroen-
cephalography (EEG) signals using a small number of sam-
ples. Ten healthy participants took part in an experiment and
performed motor execution (ME) and motor imagery (MI) of
the intuitive movement tasks (Dataset I). We propose a con-
volutional neural network using a channel-wise variational
autoencoder (CVNet) based on inter-task transfer learning.
We approached that training the reconstructed ME-EEG sig-
nals together will also achieve more sufficient classification
performance with only a small amount of MI-EEG signals.
The proposed CVNet was validated on our own Dataset I
and a public dataset, BNCI Horizon 2020 (Dataset II). The
classification accuracies of various movements are con-
firmed to be 0.83 (±0.04) and 0.69 (±0.04) for Dataset I and II,
respectively. The results show that the proposed method
exhibits performance increases of approximately 0.09∼0.27
and 0.08∼0.24 compared with the conventional models for
Dataset I and II, respectively. The outcomes suggest that
the training model for decoding imagined movements can
be performed using data from ME and a small number of
data samples from MI. Hence, it is presented the feasibility
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of BCI learning strategies that can sufficiently learn deep
learning with a few amount of calibration dataset and time
only, with stable performance.

Index Terms— Brain-computer interface, electroen-
cephalogram, motor imagery, motor execution, deep
learning.

I. INTRODUCTION

DECODING movement intention from brain signals is one
of the essential issues for controlling external devices.

There are two types of brain-computer interfaces (BCIs)
for approaching the issue: invasive methods and non-
invasive methods [1]. Invasive BCI has used signal electrodes
implanted in the brain which have high signal-to-noise ratios
(SNRs). However, invasive BCIs require surgery for implant-
ing electrodes, which exhibit long-term stability. Although
non-invasive BCIs have low SNRs and low cost, they entail
little risk of infection and are easy to set up for collecting
brain signals. Non-invasive BCI systems often rely on elec-
troencephalography (EEG) signals [2]. Therefore, non-invasive
BCI studies could address the control of a variety of external
devices, such as exoskeletons [3], wheelchairs [4], and robotic
arms [5], [6]. These devices can help recover the motor func-
tions of people with spinal cord injuries (SCI) or amyotrophic
lateral sclerosis (ALS); further, they can also support the
daily life of healthy people [7]. Recently, EEG-based BCIs
have been extracted user intentions from EEG signals, sev-
eral paradigms have been established, including steady-state
visually evoked potential (SSVEP) [8], error-related poten-
tial (ErrP) [9], movement-related cortical potential (MRCP)
[10], [11], as well as motor imagery (MI) and motor exe-
cution (ME) [12]–[14]. In particular, the MI paradigm has
endogenous characteristics without external stimulation when
performing tasks. Therefore, it can be adopted to perform
tasks more intuitively than using many other EEG-based BCI
paradigms.

The most common approach for decoding movement
intentions from EEG signals is the use of sensorimotor
rhythm (SMR) based methods, which use voluntary modu-
lation of SMRs during imagined or real movement. Some
studies [11], [15], [16] used a paradigm that decodes the user’s
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intentions as the task imagined, such as reaching in various
directions, hand grasping, and wrist twisting. To perform more
natural movements, decoding kinematic information from
EEG signals is required. It is already known from previous
studies that the EEG signals recorded during an MI session
and the EEG signals recorded during an ME session are
similar [17]. Since MI tasks entail the imagining of muscle
movements [18], the user’s feeling of fatigue is high, and
it is impossible to confirm whether the correct imagination
is performed according to the instructions given. Therefore,
this paradigm is intuitive but has the disadvantage of poor
signal quality. By contrast, ME tasks are easier to perform
because they entail consistent motions; further, the resultant
EEG signals are consistent.

In this study, we focus on deciphering various upper limb
movement tasks within the same limb. In order to decode
various upper limb movements, participants performed actual
and imagined movements corresponding to four different
tasks (forearm extension, hand grasp, wrist supination, and
rest). Further, we propose a deep neural network based on
a variational autoencoder (VAE) using each task transfer
learning for decoding various upper limb movements. Using
the ME task can reduce participant fatigue and result in more
consistent and robust signal characteristics than using the MI
task. Therefore, the ME-EEG signals can be applied as an
advantage to replace a part of the MI task. We adopted an
inter-task transfer learning method to calibrate the training
data using a small number of task samples. We demonstrate
that the channel-wise VAE method approach can be used to
compensate for the shortcomings of the ME samples and to
reconstruct them similarly to the MI samples, obtaining useful
spatial information. In addition, this study confirms that the
decoding performance is maintained even when the number of
training samples decreases because the ME samples are used.
Based on this, the proposed method shows the possibility of
being used for real-time control and practical BCI systems in
the future.

II. RELATED WORK

Several methods related to upper limb decoding are
summarized herein with regard to prior studies performed
using the MI task. Recently, there have been studies on
applying various machine learning and deep learning tech-
niques to BCI systems based on brain signals [19]–[24].
Wu et al. [25] decoded three different MI tasks (left: left
hand, right: right hand, down: both feet) using simplified
Infomax-based spatial filters to investigate the potential of
independent component analysis (ICA). Borra et al. [26] pro-
posed a shallow CNN (Sinc-shallowNet) that is lightweight
and interpretable by using a temporal sinc-convolutional
layer.

MI-based BCI studies have focused on classifying intuitive
movement tasks. Jeong et al. [6] classified six different reach-
ing directions for the same limb using an MDCBN-based deep
learning framework considering multiple directions in 3D.
Ofner et al. [15] analyzed the encoding of six different upper
limb movements in the time-domain of low-frequency EEG
signals (<4 Hz). They also decoded imagined horizontal and

vertical movements using low-frequency band EEG signals
in 2D space. Korik et al. [16] investigated a power spectral
density (PSD)-based band power time-series to improve the
trajectory decoding accuracy of kinesthetically imagined 3D
hand movement tasks. Edelman et al. [27] decoded four differ-
ent types of wrist movements (flexion, extension, supination,
and pronation) within the right hand using the EEG source
imaging (ESI) method.

Furthermore, in recent years, studies on reducing the num-
ber of training sessions in the BCI domain have been con-
ducted owing to participants’ fatigue and time consumption
issues [28]–[30] for applications. Several conventional studies
have focused on EEG classification with a low number of
training samples. Lu et al. [31] demonstrated EEG signal clas-
sification using the regularization and aggregation techniques
in conjunction with the common spatial pattern (CSP) method
using a small sample setting (SSS). Tu and Sun [32] proposed
a subject transfer learning framework that uses data from other
participants to account for long calibration times and new par-
ticipants. Recently, Liang and Ma [33] also proposed a transfer
learning algorithm to achieve improved results with small
datasets. The multi-source fusion transfer learning (MFTL)
algorithm for MI classification is executed by collecting a
small EEG dataset from a target participant and using infor-
mation from other participants. Jia et al. [34] proposed a self-
adaptively denoised event-related desynchronization (ERD)-
based motor intention recognition algorithm (DeERD) to train
systems with a small dataset.

Generative models have recently begun to be applied to
time series data. Hartmann et al. [35] developed a framework
for generating brain signals by applying generative adversarial
networks (GANs) to EEG signals. It has shown the potential
of various studies such as data augmentation, EEG super-
sampling, or restoration of corrupted data segments in the BCI
domain. Jiao et al. [36] used GAN to augment the insufficient
training data set. The proposed network was effective in
data augmentation and classifier performance. Luo et al. [37]
also proposed a method of augmenting EEG training dataset
to improve the performance of the model. They conducted
experiments with three methods, conditional Wasserstein GAN
(cWGAN), selective VAE (sVAE), and selective WGAN
(sWGAN). The resulting augmented training dataset signifi-
cantly improved the performance of the EEG-based emotion
recognition model.

In this study, we have also focused on using a small number
of training samples, including those corresponding to real
movements, to develop a practically applicable BCI system
based on brain signals. This method provides a new solution
for calibrating EEG features in MI classification, and it is
expected to contribute to practical BCI advances.

III. MATERIALS AND METHODS

A. Datasets

In this study, the datasets comprised ME and MI samples.
We used an EEG dataset that was collected ourselves and a
public dataset to validate the proposed method. These datasets
are described in the following sections.
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Fig. 1. Experimental environment and paradigm. (a) Environmental
configuration of data acquisition. (b) Experimental paradigm. The par-
ticipants perform various upper limb movements through execution and
imagery sessions.

1) Dataset I (Our Dataset): Ten participants (7 males
and 3 females, right-handed, age: 24-31 years) took part in
the experiment. None of the participants had a history of
psychiatric or motor impairment. This study was approved
by the institutional review board (IRB) of Korea University
[KUIRB-2020-0013-01] (January 2, 2020), and written con-
sent according to the Declaration of Helsinki was obtained
from all participants.

Fig. 1(a) and 1(b) show the experimental environment and
paradigm. Participants were seated in a comfortable chair
in front of a desk and asked to perform a task. The LCD
display was set to a distance of approximately 80 cm from the
participants [38]. The experimental paradigm was composed of
ME and MI sessions. Each session was conducted as described
below. First, a rest cue with a fixation cross was presented
for 4 seconds at the beginning of each trial. Next, 3 seconds
were provided as a time for reading instructions, which were
presented via a visual cue. Participants were asked to perform
the upper limb tasks, one of the three different movements
(forearm extension, hand grasp, or wrist supination), following
the visual cues for 4 seconds. The visual cue was randomly
presented in the 50 trials per task, 150 trials in total. In the
ME session, participants performed actual movements of the
upper limb movement tasks. On the other hand, for the MI
session, they imagined the muscle movement for the displayed
task without performing any movement only. The EEG signals
were measured using 60 EEG channels on the whole cortex
according to the international 10-20 system with the ActiCap
system and BrainAmp amplifiers (Brain Products GmbH,
Germany) and MATLAB 2019b software. The ground and
reference electrodes were placed at AFz and FCz, respectively.
The sampling rate was 1000 Hz, and the impedance of all
electrodes was maintained below 15 k�. The notch filter
frequency rate was set at 60 Hz to reduce the DC power supply
noise.

Fig. 2. Illustration of the channel-wise variational autoencoder (VAE)
based on CNN (CVNet) for MI-EEG classification. The architecture com-
prises channel-wise VAE, feature extraction block, and a classification
block.

2) Dataset II (BNCI Horizon 2020 Dataset): For upper limb
movement decoding from EEG, a dataset was acquired
from 15 healthy participants (age 27±5, 9 female, 1 left-
handed) by Ofner et al. [15] and made freely available, via
the BNCI Horizon 2020 database, at http://bnci-horizon-
2020.eu/database/data-sets. The experiment was performed
with ME in the first session and MI in the second session.
The dataset comprised EEG data from 61 channels covering
the frontal, central, parietal, and temporal areas using active
electrodes and four 16-channel amplifiers (g.tec medical engi-
neering GmbH, Austria). The ground and reference channels
were placed on the AFz and the right mastoid, respectively.
The sampling rate was 512 Hz and suppressed with a notch
filter at 50 Hz because of power line interference. Each
participant performed six movement types for 3 seconds:
elbow flexion/extension, forearm supination/pronation, and
hand open/close, all with the right upper limb. In this dataset,
the recorded data corresponded to 10 runs with 42 trials
per run. Overall of six movement classes and a rest class,
we selected four classes (elbow extension, wrist supination,
hand open, and hand close).

B. Proposed Method

The proposed method uses both ME and MI samples to
classify four different upper limb tasks. We adapted the
concept of transfer learning to classify the MI class using
the ME dataset as part of the training data [39]. We utilize
the VAE with a deep neural network in order to apply the
reconstruction method to the MI classification as depicted in
Fig. 2. We attempted to use the spatial features of the ME
samples. However, because the noise and amplitude levels of
the signals were different, we used the VAE to scale the ME
samples such that the aforenoted levels were similar to those of
the MI samples. In the following, the datasets are described
together with the pre-processing applied to obtain the trials
used to train and test the channel-wise VAE based on the
convolutional neural network (CVNet) depicted in Fig. 3.

1) Data Preprocessing: In Dataset I, the recorded signal
was downsampled from 1000 Hz to 250 Hz. Band-pass
filtering was then performed at 4-40 Hz based on a finite
impulse response (FIR) filter, and a (0∼4) s time interval
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Fig. 3. Flowchart of the channel-wise variational autoencoder (VAE) for reconstructing ME-EEG signals based on original MI-based EEG signals.
The channel-wise VAE framework comprises depth-wise convolution and fully-connected layers. The output of the channel-wise VAE is reconstructed
ME samples.

was selected for analysis [6]. Infomax independent compo-
nent analysis (ICA) was adopted to make clean EEG data.
The infomax ICA is useful to decompose brain signals into
statistically independent components (ICs). It could robustly
remove artifacts, such as eye and head movement artifacts
from the EEG signals [40], [41]. After the transforming ICA
mixing matrix, the remaining ICs were projected back into
the original EEG channel space to be reconstructed as the
clean data. Although the signals were recorded in all areas,
we selected 27 channels (F1-4, Fz, FC1-4, FCz, C1-6, Cz,
CP1-4, CPz, P1-4, Pz, and POz) nearby the primary motor
cortex and supplementary motor area (SMA) on the scalp.
The motor cortex is related to generating neural impulses that
pass down to the spinal cord and control the execution of
movement. In addition, SMA is related to functions including
the internally generated planning of movement and the coor-
dination of the two sides of the body such as in bi-manual
coordination. Therefore, movement-related EEG recording has
been acquired in the selected channels following the 10/20
international electrode placement [42]. On the other hand,
the data from other brain areas such as the prefrontal and
temporal were unused owing to artifacts arising from sound
and facial or eyeball movements [43]. In the case of Dataset I,
the combined EEG samples (original EEG + reconstructed
EEG) as shown in Fig. 2, we segmented filtered ME-EEG and
MI-EEG into the training sets (80% of the entire dataset, with
each individual training set corresponding to 40% of the entire
dataset) and a test set (20% of the entire MI-EEG dataset).
The data set consisting only of MI samples for comparison
was used as a training set of 80% and a test set of 20% of the
MI-EEG data. In the process of separating the entire data set,
the training data set and the test data set were separated and
configured not to overlap.

Regarding Dataset II, EEG samples were preprocessed using
the same steps as those applied for Dataset I. We used

all channels to analyze the dataset [15]. To evaluate the
proposed method on Dataset II, we randomly divided the
data of ME-EEG and MI-EEG samples into training sets.
The combined EEG samples were comprised 80% of ME-EEG
and 80% of MI-EEG, for training and 20% of the entire
MI-EEG data as a test set.

2) Network Architecture: We designed CVNet as the MI
classification model. The proposed method is composed of two
main steps: channel-wise VAE for ME sample reconstruction
and a deep neural network for MI classification.

VAE aims at learning probability distributions as a genera-
tive model and reconstructing data [44], [45]. An autoencoder
(AE) [46], which is the background of VAEs, typically per-
forms unsupervised learning and aims at dimension reduction.
However, the AE method does not entail the probability
distribution based on which the data is generated. In contrast
with the VAE method, the AE simply re-creates a vector via
dimension reduction of the data; however, the VAE determines
the underlying probability distribution of the original data to
produce similar data.

Selecting and classifying useful spatial information from
MI-based EEG samples still remains a difficult problem.
In particular, it is very difficult for a participant to imagine
consistently when performing high-level tasks within the same
limb. To address this problem, we propose a channel-wise
VAE-based deep learning model optimized to obtain spatial
features that are important for classification using EEG signals
obtained via ME samples. The channel-wise VAE is composed
of one input layer, five hidden layers, and one output layer
(Fig. 3).

We denote the format of the input data as:
X N = {(T, CN )}, (1)

where T is the time of one epoch; C is the channel; and N is
the number of channels. Encoder qφ (z | X N ) learns a sampled
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latent representation z from the input data X N , while decoder
pθ (X N | z) aims to reconstruct the data X N from the learned
representation z (Fig. 3).

The mean and variance of the distribution of latent vector z
values are output when an X N input is given to the encoder.
The distribution of features from here follows a Gaussian
normal distribution. Therefore, the latent variable values in the
latent space represent the standard deviation σN and mean μN ,
which approximates the true distribution of qφ (X N ).

Next, z is sampled with a reparameterization trick, namely

zN = μN + σN � ε (2)

where � ∼ N (0, 1) and � refers to the element-wise product.
The value for � is randomly extracted from the normal
distribution N (0, 1), multiplied by the standard deviation σN ,
and then added to the mean μN to form a value of z as
previously defined.

The z value is entered into the input of the decoder, and an
output x̂N with the original input size is produced. Because
the distribution of pθ (X N ) is set to Bernoulli, the output has
a value between 0 and 1. Therefore, the activation function
was set to a sigmoid function.

The loss function lN in the channel-wise VAE framework,
which is known as the evidence lower bound, is given by:

lN (X N ; φ, θ) = −Ez∼qφ

[
logpφ (xN | z)

]
(3)

+ DK L
(
qφ (z | xN ) || p (z)

)
(4)

where the first term (3) is the reconstruction loss of the
decoder. In the case of a generative model, it is necessary to
consider the relationship between the created output and the
MI because new data x has to be created. The decoder follows
the Bernoulli distribution, and thus, it finds the cross-entropy
between the two. The ME signal was designed to be similar
to the MI signal distribution using the reconstruction criterion
while passing through the loss function (Fig. 3). The second
term (4) is the regularization loss. This is the loss term for
the distribution of a function that applies the true distribution
to ensure that X N learns to exhibit the same distribution as
the original distribution. In this case, the loss determines the
probability distribution distance between the two. The channel-
wise VAE is trained through stochastic gradient descent (SGD)
and the backpropagation method. Owing to this approach, the
ME samples reconstructed based on the MI samples exhibit
low noise, and their signal amplitude is rescaled such that
it is similar to that of the MI-based EEG samples; more
importantly, useful spatial information is obtained through this
method. In addition, in the BCI domain, the spatial information
of each channel is crucial. Therefore, the architecture was
designed to reconstruct each channel at the input and output
of the VAE. In the case of evaluation using only MI samples,
the loss function was not modified because the conventional
methods were used.

A deep neural network consists of three primary types
of layers: convolution, pooling, and fully-connected layers.
Table I describes the CNN network used in our experiment.
In the input layer, the reconstructed ME and MI samples are

TABLE I
DETAILED SPECIFICATION OF THE CNN ARCHITECTURE COMPRISING

CONVOLUTIONAL LAYERS, POOLING LAYERS,
AND FULLY CONNECTED LAYERS

fed as the input data of the feature extraction step. At this
time, the sizes of the two datasets are the same (C, T ).

The spatio-temporal feature block was a 2D temporal con-
volutional layer that trained K = 30 band-pass temporal
filters with a low number of learnable parameters. A 2D
spatial depthwise convolutional (DW-Conv2D) layer was then
introduced to learn spatial filters of size (C, 1) for each
temporal feature map. Each convolutional layer in these blocks
is characterized by the kernel size (F), padding size (P),
pool size (Fp), and pool stride (Sp). Next, two 2D separable
convolutional (Sep-Conv2D) layers were applied to reduce
the number of fitting parameters and explicitly decouple the
relationship within and across feature maps by first learning a
kernel summarizing each feature map individually.

Batch normalization along the feature map dimension was
applied to the neurons of each convolutional layer, followed
by a non-linear activation function. In this study, exponential
linear units (ELUs) were adopted as the activation function,
as this non-linearity allows faster and more noise-robust
learning than other non-linearities. The formulas are shown
in (5) and (6) below.

f (x) = x (x > 0) (5)

f (x) = α · (ex p (x) − 1) (x ≤ 0) (6)

Furthermore, Schirrmeister et al. [47] reported better perfor-
mance for shallow and deep CNNs applied to EEG motor
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TABLE II
CLASSIFICATION PERFORMANCE OF PROPOSED AND CONVENTIONAL METHODS IN DATASET I ACROSS ALL PARTICIPANTS

decoding when using ELUs compared with other activation
functions. The α parameters are the ELU hyper-parameter that
controls the saturation value for negative inputs and α = 1 was
set for the proposed architecture. We adopted in our CNN
block a momentum term of m = 0.99 with ε = 1e − 3
for numerical stability. Then, an average pooling layer was
introduced to reduce the number of trainable parameters in
the transitions among DW-Conv2D, Sep-Conv2D, and the
subsequent fully-connected layer in the classification block,
the convolutional-to-dense connections. A pool size of Fp1 =
(1, 3) or Fp2 = (1, 4) and pool stride of Sp1 = (1, 3) or
Sp2 = (1, 4) were used.

In the classification block, two fully-connected layers flat-
tened the features that were extracted through multiple layers.
The softmax function and the cross-entropy function were
applied as the activation and loss functions, respectively.
An overall number of training epochs for learning was set
to 400 epochs as depicted in Fig. 7. The proposed CVNet was
trained according to each participant. This training approach is
one of various model generation strategies leading to improve-
ment in BCI performance due to differences in EEG signals
between individuals [6]. The data dimension of both datasets
was composed of three dimensions (channel×time×trial), and
the experiment was conducted at a sampling rate of 250 Hz.
Our models were implemented with an NVIDIA Titan×GPU
12 GB RAM and used PyTorch. The overall training procedure
of CVNet is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Comparison of the Classification Performances Using
the Proposed With Baseline Models

To evaluate the classification performance, we used the
representative baseline models in the MI-BCI studies as below;
CSP+LDA [48], DeepConvNet [47], ShallowConvNet [47],
and EEGNet [49]. Table II displays the classification per-
formance compared with that of conventional methods for
Dataset I. In the combined EEG, there were significant
differences between the comparison models and the proposed
model. CVNet had the highest total average classification
performance of 0.83 (±0.04), and the CSP+LDA method had
the lowest accuracy of 0.56 (±0.04). The proposed method,
for Dataset I, had a performance difference of 0.27 compared

Algorithm 1 Training Procedure of CVNet
Input: A set of training MI-EEG and ME-EEG samples
• X = {xi }D

i=1, {xi } ∈ R
C×T from ME training samples,

where D is total number of trials with C channels and T
sample points
• Xtr : a training set of ME-EEG data
• Y = {yi }D

i=1, {yi} ∈ R
C×T from MI training samples

• Ytr : a training set of MI-EEG data
• � = {Oi }D

i=1: class labels from MI dataset, where
Oi ∈ {0, 1, 2, 3}
• �tr : a test set of MI-EEG data

Output: Trained CVNet model
Stage 1: Train channel-wise VAE
• Input Xtr , X N = {(T, CN )}, where N is the number

of channels
• Find the latent vector z according to (2)
• Extract features X N and reconstruct to X̂ N using

YN = {(T, CN )}
• Generate loss value by calculating differences between

X̂ N and YN using (3) for generative model and
regularization loss for probability distance
Stage 2: Train deep neural network

• X̂ N and YN inputs for deep neural network
• Initialize the parameters of deep neural network to

random values
• Generate loss value by calculating differences between

deep neural network output and class label �tr

Stage 3: Fine-tune parameters
• Minimize loss values by tuning parameters of both

Stage 1 and Stage 2

to CSP+LDA, and 0.09 compared to ShallowConvNet. For
CVNet, the best classification performance, 0.97 (±0.07),
was obtained for participant P08. In addition, there was a
performance difference of approximately 0.25 compared with
the result obtained for participant P10. We also compared the
performances obtained using only the MI samples and the
combined EEG samples. When comparing the averaged per-
formance, differences of 0.11, 0.10, 0.12, and 0.11 were found
for CSP+LDA, DeepConvNet, shallowConvNet, and EEGNet,
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TABLE III
CLASSIFICATION PERFORMANCE OF PROPOSED AND CONVENTIONAL METHODS IN DATASET II ACROSS ALL PARTICIPANTS

TABLE IV
STATISTICAL ANALYSIS OF CLASSIFICATION ACCURACY DIFFERENCES BETWEEN THE COMPARED METHODS USING A DIFFERENT NUMBER OF

TRAINING SAMPLES FROM EACH PARTICIPANT FOR DATASET I AND DATASET II

respectively. For the MI samples, there was a performance
difference of approximately 0.17 between the CSP+LDA
and ShallowConvNet methods. In addition, the CSP+LDA
method showed a performance difference of 0.07 compared
with EEGNet.

Table III displays the performance comparison results for
Dataset II. The models adopted for comparison were identical
to those adopted in the case of Dataset I. The proposed
method shows the highest grand-averaged classification per-
formance, at 0.69 (±0.04), and the lowest result is obtained
for CSP+LDA, at 0.45 (±0.04). In this experiment, the
model proposed herein exhibits a performance difference of
at least 0.08 and at most 0.24 compared with DeepCon-
vNet and CSP+LDA, respectively. In the proposed model,
the best classification accuracy, 0.74 (±0.06), was achieved
for participant P08. In addition, there was a performance
difference of approximately 0.11 compared with the results
obtained for participants P02 and P08. Compared with the
existing methods, the maximum performance difference for
the proposed method was observed to be 0.30 (participant
P03) and 0.31 (participant P08). Further, we compared the
performances obtained for the MI and combined EEG sam-
ples. When comparing the averaged performance, differences
of 0.18, 0.27, 0.25, and 0.23 were found for CSP+LDA,
DeepConvNet, ShallowConvNet, and EEGNet, respectively.
For DeepConvNet, a performance difference of approximately
0.33 was obtained for participant P08. This result shows that
CVNet demonstrated the highest classification performance for
various upper extremity movements when compared to the
conventional models.

When the MI samples were employed, CVNet exhib-
ited a significant difference compared with other methods
(Table IV). Before the statistical analysis, the normality and
homoskedasticity tests were conducted owing to small pop-
ulation samples. We applied the Shapiro–Wilk test, which
is normally applied to both our dataset (Dataset I) and the
public dataset (Dataset II) as a normality validation, separately.
We confirmed that the null hypothesis (H0) satisfies the
normality. Thereafter, the assumption of homoskedasticity was
also satisfied using Levene’s test for each comparative group
(e.g., CVNet vs. CSP+LDA in Table IV). Hence, the paired
t-test was used to investigate the statistical significance of the
difference in accuracy between CVNet and other comparative
groups according to the number of training samples in both
datasets. The results showed that CVNet exhibited signifi-
cantly higher performance than the other methods with respect
to the number of training samples in all cases. In particular,
a remarkable statistical significance was observed for the case
of the smallest number of training samples (40 and 48).
Furthermore, CVNet performed significantly better than con-
ventional methods on both datasets.

B. Classification Performances According to the Number
of Training Samples

The overall classification accuracy with regard to the num-
ber of training samples in Dataset I is shown in Fig. 4. In the
case of combined EEG samples, we trained the model with
160, 120, 80, and 40 training samples (80% of the total
number of samples), and the number of test samples was
40, 30, 20, and 10 respectively (20% of the total number of
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Fig. 4. Classification performances according to the number of training samples for all participants for Dataset I. Representative participant P03 is
shown at the top. The black dashed line indicates the chance-level accuracy for Dataset I.

samples). The training sample and test sample were randomly
selected and constructed so that there was no overlap in the
entire data set. Even when the number of training samples
decreased, we found that the proposed method had the highest
accuracy compared to the other methods. When 10 samples
per class were used, the classification performance decreased
to a minimum of 0.25 (participant P01) and a maximum of
0.55 (participant P08). For participant P01, the performance
difference was 0.30 when comparing the cases of 160 and
40 training samples. In addition, there was a minimum differ-
ence of 0.11 for P05.

Fig. 5 shows the average MI classification performances
obtained by CSP+LDA, EEGNet, DeepConvNet, Shallow-
ConvNet, and CVNet, respectively, for Dataset II. We trained
the models with 192, 144, 96, and 48 training samples,
respectively (80% of the total number of samples). In addition,
the corresponding number of test samples was 48, 36, 24,
and 12 (20% of the total number of samples). The proposed
method is designed to operate and learn channel-wise VAE and
CNN at the same time. Similarly, when the number of training
samples decreased, both the channel-wise VAE and CNN were
trained with the reduced training set. The results show that
the proposed method outperformed the other methods even
if only 48∼144 samples from all participants were available
for training. For the CSP+LDA method, when the number
of training samples was 48, it was 0.24 below the chance
level (0.25). On the other hand, CVNet showed the highest
accuracy compared to the other methods, with a result of
0.45. There was a performance difference of approximately
0.24 when comparing the cases of 48 and 192 training samples
for the proposed model. In the case of 48 training samples,
the proposed model had a performance difference of at least

Fig. 5. Averaged MI classification accuracies obtained by CSP+LDA,
EEGNet, DeepConvNet, ShallowConvNet, and CVNet with varying num-
bers of training samples for Dataset II. The black dashed line indicates
the chance-level accuracy.

0.06 and at most 0.21 compared with ShallowConvNet and
CSP+LDA. This result confirms the potential of the CVNet
method for application MI classification even if the number
of training samples is reduced.

C. Performance Measurement Using Confusion Matrices

Fig. 6 shows the confusion matrix for each class with the
proposed model for Dataset I and Dataset II. Each confusion
matrix represents the true label in the column and the predicted
label in the rows. In Dataset I, the averaged accuracy has
a classification accuracy of 0.83. The true positive value is
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Fig. 6. Confusion matrices of each class across subject according to
Dataset I and Dataset II.

0.74 for the ‘Forearm extension’ class and 0.92 for the ‘Rest’
class. We also observed the main confusion between the ‘Hand
grasp’ and ‘Wrist supination’ classes. However, for the ‘Wrist
supination’ class, the true positive value was 0.89, which
was higher than that of the other classes. The results show
that there is a difference in performance for each class, but
it is confirmed that there is no significant difference from
the overall performance. Further, for Dataset II, the average
classification accuracy was 0.69. As shown in the confusion
matrix, the true positive of the ‘Hand open’ class had the
highest value among all tasks (0.86). However, the proposed
model confused the ‘Wrist supination’ class with the ‘Hand
open’ class. The true-positive value for ‘Wrist supination’ class
was 0.45. Thus, these results demonstrate that it is possible to
decode various upper limb movements corresponding to the
same limb, which were included in Dataset I and Dataset II.

D. Convergence Curve of Training Error

We experimented with reducing the number of training sam-
ples for practical and real-time BCI applications. This allows
CVNet to see the potential for decoding the user’s intent, even
when the number of training samples is small. To confirm
the convergence process of CVNet, the error change curve
and accuracy according to the epoch are shown in Fig. 7.

Fig. 7. Convergence curve of the training error and classification
accuracy. (a) Training loss. The errors were calculated to extract the opti-
mized parameters during network training. (b) Classification performance
according to the number of epochs.

The proposed model learned the information regarding the
participants’ upper limb movements from the brain signal data
when training the CVNet model with 160 samples in Dataset I.
Most of the participants in this study showed convergence
within 300–400 epochs.

V. DISCUSSION

Recent research in the field of BCI has suggested various
classification methods using advanced machine learning meth-
ods. However, only a few studies have classified the user’s
intention to perform upper limb movement tasks corresponding
to only a single limb. In this study, we proposed CVNet,
a deep learning framework based on the VAE method based on
inter-task transfer learning to decode intuitive user intentions.
In the channel-wise VAE method located in the front, it is
designed to analyze each channel by inserting each channel as
an input rather than inserting all channels at once. Therefore,
it is a useful structure for extracting spatial information about
each channel. The proposed method could contribute to the
novel BCI advances with the following strength. First, it can
compensate for the spatial features of the MI samples. Second,
the classification performance is maintained to some extent
even when the number of training samples decreases. As a
result, it provides the possibility of contributing to practical
BCI-based controlling external devices in real-time with less
calibration time. In addition, to the best of our knowledge, this
is the first attempt to reconstruct ME samples using the VAE
method for MI classification.

In addition, Fig. 8 shows the representation of spatial
distributions per task, and compares the neurophysiological
patterns between original EEG data and reconstructed EEG
data. Fig. 8(a) depicted the distribution in terms of the
anatomical model using brain signal analysis toolbox: Brain-
storm (https://neuroimage.usc.edu/brainstorm/) for Dataset I.
To demonstrate the neurophysiological rationale, the spatial
distributions for ME tasks and MI tasks are shown. This
supported the proper adaptation of the concept of inter-task
transfer learning in this study. The spatial distribution corre-
sponding to supination was projected onto a rendered brain
to visualize the spatial distribution in the cortex. The spatial
source-based feature maps of ‘Forearm extension’, ‘Hand
grasp’, and ‘Wrist supination’, which are the MI tasks for
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Fig. 8. Neurophysiological analysis using spatial distribution. (a) Representation of spatial distributions per each motor execution task and motor
imagery task. The overall brain activation changes are shown nearby the motor cortex in the brain. (b) Comparison of signal patterns before and
after VAE. Reconstructed EEG means the output of VAE and showed similar patterns with original EEG signals.

representative participant P03, are shown using 60 electrodes.
The difference between ME and MI from all participants
showed similar spatial patterns, we presented the represen-
tative patterns in participant P03 as Fig. 8(a). The bright color
of the spatial patterns indicates activated regions and the dark
color indicates inactivated regions. This means that cortical
activation was observed in both the ME and MI sessions.
The center of each ME and MI task distribution is located
at or near the motor cortex area. EEG electrodes in the MI
session showed smaller changes compared to EEG electrodes
in the ME session. Compared to each of the MI tasks, the
ME tasks showed significantly activated brain regions. In the
hand grasp task, the left hemisphere was activated in both
the ME and MI sessions. In Fig. 8(b), we compared the
brain signal patterns between original EEG and reconstructed
EEG through the VAE for representative participant P03 in
the ‘Hand grasp’ tasks, representatively. The output of VAE,
the reconstructed EEG, generated similar patterns between
both original EEG (ME and MI) signals. The training targets
(ME-EEG and MI-EEG) reconstructed the amplitude value
according to the channel within a time. Especially, when
observing the spatial patterns using a scalp topographic map
only with the reconstructed EEG value when there was a
movement of the right upper extremity, it was confirmed that
the left hemisphere was activated during the 1∼3 s. It has
been proved that is generated similar to the existing spatial
pattern so that the proposed CVNet was well trained with
effects of data augmentation. However, in order for the EEG
reconstruction of the proposed model to fully evaluate its
usefulness in a variety of various datasets, the advanced VAE
in the training stage seems to be needed through additional
quantitative comparisons between the reconstructed EEG and
the original EEG. We are currently planning to solve the

limitations of this part through combination with the advanced
GAN model.

Recently, generative model-based approaches have been
applied in the EEG-based BCI domain. Bi et al. [50] pro-
posed a semi-supervised algorithm. They used ICA and
a Kalman smoother to improve the SNR. Subsequently,
VAE was used to provide robust features of EEG signals.
Dai et al. [51] decoded MI using a CNN architecture with
a VAE for classification. In this network, the classification of
the extracted CNN features is performed via a deep network
VAE. In our method, the VAE is used to reconstruct ME-EEG
signals channel by channel. These signals are similar to
MI-based EEG signals of characteristics and they also reduce
noise arising from movements and the scale of the amplitude.
These deep learning methodologies in the BCI domain have
contributed to the EEG decoding of various paradigms. In this
study, we found that deep learning techniques can be used
to decode the MI of various intuitive tasks corresponding
to a single arm. Also, we reconstructed the ME samples to
MI samples using the channel-wise VAE method. Using this
method, spatial information can be obtained and brain signals
can be refined before EEG data enters the deep learning
architecture.

To confirm the importance of the training data samples,
we identified the difference in performance between the MI
samples and the combined EEG samples. These results show
that in the case of using only the MI paradigm, the classifica-
tion performance is still degraded because participants imagine
moving their muscles and quickly feel tired. Therefore, in this
study, the ME paradigm was also employed during training,
as shown in Fig. 1, to improve the MI decoding performance.

In signal processing, the technology in the field of speech
has substantially advanced, so even if a user’s speech/voice
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signals are calibrated once, they can be used in a real-
time application. Recently, BCI advances have been achieved,
but the performance of the developed techniques is still
degraded and technical limitations exist. To solve this problem,
we conducted a performance test by reducing the number of
training samples and proposed a model that can contribute
to overcoming existing limitations. However, the performance
still tends to be insufficient with regard to scaling many
classes. To solve this problem, we plan to modify the model
with a real-time closed-loop deep learning architecture with an
adaptive structure. In addition, in fact, we selected the EEG
channels differentially for each dataset in the pre-processing
step. In Dataset I, which was collected in our laboratory
environment, we chose the 27 channels that are the motor
region part was clearly activated. On the other hand, similarly,
Dataset II has tried to maintain the same analysis in this study
because the previous studies have been performed analysis
using the entire channels. Therefore, the proposed method
remains several limitation issues such as the generalizability
for a variety of datasets.

Currently, the MI-BCI places a high cognitive load on
the participant due to the long calibration time. In general,
collecting the EEG datasets and training the deep learning
model takes approximately 2∼3 hours. Long training times are
a significant part of the challenges facing the BCI domain [52].
Thus, several studies have attempted to use only a small
amount of data or used a dataset from another participant using
the transfer learning method. To solve these BCI problems,
we investigated a deep learning method that applies inter-
task transfer learning [53], [54] using only a small number
of training samples. Transfer learning methods are being
developed as one of the approaches for reducing the training
time for practical BCI systems [54]. A task-to-task BCI
system could reduce the number of required training samples,
thereby reducing participant fatigue. The ultimate goal of this
study is to develop a practical BCI system by increasing the
classification performance for intuitive MI tasks. Therefore,
we adopted an algorithm based on the method of transfer
learning between tasks [53]–[55] and plan to apply advanced
algorithms based on state-of-the-art methods.

VI. CONCLUSION AND FUTURE WORKS

In this work, we decoded various upper limb movements
based on brain signals via the proposed VAE deep learning
framework. The proposed method was able to classify intu-
itive MI tasks on both our dataset (forearm extension, hand
grasp, wrist supination, and rest) and a public dataset (elbow
extension, wrist supination, hand open, and hand close). The
CVNet method was designed to reconstruct the ME samples
in a channel by channel considering the MI samples. The
experimental performances showed that CVNet could recon-
struct the EEG signals for the ME samples. In addition, the
decoding performance was significantly improved compared
to that of other methods. Therefore, the CVNet model can
support the development of BCIs which may enable control
based on imagined movement. Furthermore, we demonstrated
the feasibility of using ME samples to improve the MI

classification performance. This possibility has the potential
to improve classification performance and reduce calibration
time in the intuitive BCI paradigm.

In future work, we will reduce the portion of MI session
samples so that the calibration time is reduced in a real-time
BCI system. We will also modify the CVNet framework to
enable real-time robotic arm control by improving the MI
classification performance. We believe that the proposed model
will contribute to the development of intuitive BCI system
technology and will support the daily lives of healthy people
and of people with movement disorders.

ACKNOWLEDGMENT

The authors thank Prof. C. Guan for the useful discussion
of the experiment, and J.-H. Cho and B.-H. Kwon for their
help with dataset construction.

REFERENCES

[1] J. R. Millan and J. Mourino, “Asynchronous BCI and local neural
classifiers: An overview of the adaptive brain interface project,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 2, pp. 159–161,
Jun. 2003.

[2] U. Chaudhary, N. Birbaumer, and A. Ramos-Murguialday,
“Brain–computer interfaces for communication and rehabilitation,”
Nature Rev. Neurol., vol. 12, p. 513, Aug. 2016.

[3] S. R. Soekadar et al., “Hybrid EEG/EOG-based brain/neural hand
exoskeleton restores fully independent daily living activities after
quadriplegia,” Sci. Robot., vol. 1, no. 1, pp. 1–9, Dec. 2016.

[4] K.-T. Kim, H.-I. Suk, and S.-W. Lee, “Commanding a brain-controlled
wheelchair using steady-state somatosensory evoked potentials,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 3, pp. 654–665,
Mar. 2018.

[5] C. I. Penaloza and S. Nishio, “BMI control of a third arm for multi-
tasking,” Sci. Robot., vol. 3, no. 20, pp. 1–7, Jul. 2018.

[6] J.-H. Jeong, K.-H. Shim, D.-J. Kim, and S.-W. Lee, “Brain-controlled
robotic arm system based on multi-directional CNN-BiLSTM network
using EEG signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28,
no. 5, pp. 1226–1238, May 2020.

[7] R. Mane, T. Chouhan, and C. Guan, “BCI for stroke rehabilitation:
Motor and beyond,” J. Neural Eng., vol. 17, no. 4, Aug. 2020,
Art. no. 041001.

[8] A. Ravi, N. H. Beni, J. Manuel, and N. Jiang, “Comparing user-
dependent and user-independent training of CNN for SSVEP BCI,”
J. Neural Eng., vol. 17, no. 2, Apr. 2020, Art. no. 026028.

[9] R. Chavarriaga and J. D. R. Millán, “Learning from EEG error-
related potentials in noninvasive brain–computer interfaces,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 4, pp. 381–388,
Aug. 2010.

[10] T. Liu, G. Huang, N. Jiang, L. Yao, and Z. Zhang, “Reduce brain
computer interface inefficiency by combining sensory motor rhythm and
movement-related cortical potential features,” J. Neural Eng., vol. 17,
no. 3, Jun. 2020, Art. no. 035003.

[11] J.-H. Jeong, N.-S. Kwak, C. Guan, and S.-W. Lee, “Decoding movement-
related cortical potentials based on subject-dependent and section-wise
spectral filtering,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 3,
pp. 687–698, Mar. 2020.

[12] S. Aliakbaryhosseinabadi, E. N. Kamavuako, N. Jiang, D. Farina, and
N. Mrachacz-Kersting, “Classification of EEG signals to identify vari-
ations in attention during motor task execution,” J. Neurosci. Methods,
vol. 284, pp. 27–34, Jun. 2017.

[13] K. K. Ang and C. Guan, “EEG-based strategies to detect motor imagery
for control and rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 25, no. 4, pp. 392–401, Apr. 2017.

[14] L. Yao, N. Mrachacz-Kersting, X. Sheng, X. Zhu, D. Farina, and
N. Jiang, “A multi-class BCI based on somatosensory imagery,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 8, pp. 1508–1515,
Aug. 2018.

[15] P. Ofner, A. Schwarz, J. Pereira, and G. R. Müller-Putz, “Upper limb
movements can be decoded from the time-domain of low-frequency
EEG,” PLoS ONE, vol. 12, no. 8, Aug. 2017, Art. no. e0182578.



LEE et al.: MOTOR IMAGERY CLASSIFICATION USING INTER-TASK TRANSFER LEARNING 237

[16] A. Korik, R. Sosnik, N. Siddique, and D. Coyle, “Decoding imagined
3D hand movement trajectories from EEG: Evidence to support the use
of mu, beta, and low gamma oscillations,” Front. Neurosci., vol. 12,
p. 130, Mar. 2018.

[17] K. J. Miller, G. Schalk, E. E. Fetz, M. den Nijs, J. G. Ojemann,
and R. P. N. Rao, “Cortical activity during motor execution, motor
imagery, and imagery-based online feedback,” Proc. Nat. Acad. Sci.
USA, vol. 107, pp. 4430–4435, Mar. 2010.

[18] M. Tariq, L. Uhlenberg, P. Trivailo, K. S. Munir, and M. Simic, “Mu-
beta rhythm ERD/ERS quantification for foot motor execution and
imagery tasks in BCI applications,” in Proc. 8th IEEE Int. Conf. Cognit.
Infocommun. (CogInfoCom), Sep. 2017, pp. 000091–000096.

[19] H.-I. Suk and S.-W. Lee, “A novel Bayesian framework for discrim-
inative feature extraction in brain–computer interfaces,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 286–299, Feb. 2013.

[20] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “Weighted
transfer learning for improving motor imagery-based brain–computer
interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 7,
pp. 1352–1359, Jul. 2019.

[21] J.-H. Jeong, B.-H. Lee, D.-H. Lee, Y.-D. Yun, and S.-W. Lee,
“EEG classification of forearm movement imagery using a hier-
archical flow convolutional neural network,” IEEE Access, vol. 8,
pp. 66941–66950, 2020.

[22] V. K. Benzy, A. P. Vinod, R. Subasree, S. Alladi, and K. Raghavendra,
“Motor imagery hand movement direction decoding using brain com-
puter interface to aid stroke recovery and rehabilitation,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 3051–3062, Dec. 2020.

[23] J.-S. Bang, M.-H. Lee, S. Fazli, C. Guan, and S.-W. Lee, “Spatio-
spectral feature representation for motor imagery classification using
convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Jan. 15, 2021, doi: 10.1109/TNNLS.2020.3048385.

[24] O.-Y. Kwon, M.-H. Lee, C. Guan, and S.-W. Lee, “Subject-independent
brain–computer interfaces based on deep convolutional neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 3839–3852,
Oct. 2020.

[25] X. Wu, B. Zhou, Z. Lv, and C. Zhang, “To explore the potentials of
independent component analysis in brain–computer interface of motor
imagery,” IEEE J. Biomed. Health Informat., vol. 24, no. 3, pp. 775–787,
Mar. 2020.

[26] D. Borra, S. Fantozzi, and E. Magosso, “Interpretable and lightweight
convolutional neural network for EEG decoding: Application to move-
ment execution and imagination,” Neural Netw., vol. 129, pp. 55–74,
Sep. 2020.

[27] B. J. Edelman, B. Baxter, and B. He, “EEG source imaging enhances
the decoding of complex right-hand motor imagery tasks,” IEEE Trans.
Biomed. Eng., vol. 63, no. 1, pp. 4–14, Jan. 2016.

[28] Y. Huang, D. Erdogmus, M. Pavel, S. Mathan, and K. E. Hild,
“A framework for rapid visual image search using single-trial brain
evoked responses,” Neurocomputing, vol. 74, no. 12, pp. 2041–2051,
Jun. 2011.

[29] J. Jin et al., “The study of generic model set for reducing calibration
time in P300-based brain–computer interface,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 28, no. 1, pp. 3–12, Jan. 2020.

[30] W. Wei, S. Qiu, X. Ma, D. Li, B. Wang, and H. He, “Reducing
calibration efforts in RSVP tasks with multi-source adversarial domain
adaptation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 11,
pp. 2344–2355, Nov. 2020.

[31] H. Lu, H.-W. Eng, C. Guan, K. N. Plataniotis, and
A. N. Venetsanopoulos, “Regularized common spatial pattern with
aggregation for EEG classification in small-sample setting,” IEEE
Trans. Biomed. Eng., vol. 57, no. 12, pp. 2936–2946, Dec. 2010.

[32] W. Tu and S. Sun, “A subject transfer framework for EEG classification,”
Neurocomputing, vol. 82, pp. 109–116, Apr. 2012.

[33] Y. Liang and Y. Ma, “Calibrating EEG features in motor imagery
classification tasks with a small amount of current data using multisource
fusion transfer learning,” Biomed. Signal Process. Control, vol. 62,
Sep. 2020, Art. no. 102101.

[34] T. Jia, K. Liu, C. Qian, C. Li, and L. Ji, “Denoising algorithm for event-
related desynchronization-based motor intention recognition in robot-
assisted stroke rehabilitation training with brain-machine interaction,”
J. Neurosci. Methods, vol. 346, Dec. 2020, Art. no. 108909.

[35] K. Gregor Hartmann, R. Tibor Schirrmeister, and T. Ball, “EEG-GAN:
Generative adversarial networks for electroencephalograhic (EEG) brain
signals,” 2018, arXiv:1806.01875.

[36] Y. Jiao, Y. Deng, Y. Luo, and B.-L. Lu, “Driver sleepiness detection
from EEG and EOG signals using GAN and LSTM networks,” Neuro-
computing, vol. 408, pp. 100–111, Sep. 2020.

[37] Y. Luo, L.-Z. Zhu, Z.-Y. Wan, and B.-L. Lu, “Data augmentation
for enhancing EEG-based emotion recognition with deep generative
models,” J. Neural Eng., vol. 17, no. 5, Oct. 2020, Art. no. 056021.

[38] B.-H. Lee, J.-H. Jeong, and S.-W. Lee, “SessionNet: Feature similarity-
based weighted ensemble learning for motor imagery classification,”
IEEE Access, vol. 8, pp. 134524–134535, 2020.

[39] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, “Adaptive transfer
learning for EEG motor imagery classification with deep convolutional
neural network,” Neural Netw., vol. 136, pp. 1–10, Apr. 2021.

[40] A. J. Bell and T. J. Sejnowski, “An information-maximization approach
to blind separation and blind deconvolution,” Neural Comput., vol. 7,
no. 6, pp. 1129–1159, Nov. 1995.

[41] A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: A potential
tool for BCI systems,” IEEE Signal Process. Mag., vol. 25, no. 1,
pp. 57–68, Jan. 2008.

[42] M. Z. Baig, N. Aslam, and H. P. H. Shum, “Filtering techniques for
channel selection in motor imagery EEG applications: A survey,” Artif.
Intell. Rev., vol. 53, no. 2, pp. 1207–1232, Feb. 2020.

[43] V. Romei, J. Gross, and G. Thut, “Sounds reset rhythms of visual cortex
and corresponding human visual perception,” Current Biol., vol. 22,
no. 9, pp. 807–813, May 2012.

[44] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[45] C. Doersch, “Tutorial on variational autoencoders,” 2016,
arXiv:1606.05908.

[46] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proc. ICML Conf. Unsupervised Transf. Learn., 2012, pp. 37–49.

[47] R. T. Schirrmeister et al., “Deep learning with convolutional neural
networks for EEG decoding and visualization,” Hum. Brain Mapping,
vol. 38, no. 11, pp. 5391–5420, 2017.

[48] S.-L. Wu, C.-W. Wu, N. R. Pal, C.-Y. Chen, S.-A. Chen, and C.-T. Lin,
“Common spatial pattern and linear discriminant analysis for motor
imagery classification,” in Proc. IEEE Symp. Comput. Intell., Cognit.
Algorithms, Mind, Brain (SSCI-CCMB), Apr. 2013, pp. 146–151.

[49] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

[50] L. Bi, J. Zhang, and J. Lian, “EEG-based adaptive driver-vehicle
interface using variational autoencoder and PI-TSVM,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 10, pp. 2025–2033, Oct. 2019.

[51] M. Dai, D. Zheng, R. Na, S. Wang, and S. Zhang, “EEG classification of
motor imagery using a novel deep learning framework,” Sensors, vol. 19,
no. 3, p. 551, 2019.

[52] J.-H. Jeong et al., “Multimodal signal dataset for 11 intuitive movement
tasks from single upper extremity during multiple recording sessions,”
GigaScience, vol. 9, no. 10, pp. 1–15, Oct. 2020.

[53] G. Xu et al., “A deep transfer convolutional neural network
framework for EEG signal classification,” IEEE Access, vol. 7,
pp. 112767–112776, 2019.

[54] F. Fahimi, Z. Zhang, W. B. Goh, T.-S. Lee, K. K. Ang, and C. Guan,
“Inter-subject transfer learning with an end-to-end deep convolutional
neural network for EEG-based BCI,” J. Neural Eng., vol. 16, no. 2,
Apr. 2019, Art. no. 026007.

[55] X. Zhao, J. Zhao, W. Cai, and S. Wu, “Transferring common spatial
filters with semi-supervised learning for zero-training motor imagery
brain–computer interface,” IEEE Access, vol. 7, pp. 58120–58130, 2019.

http://dx.doi.org/10.1109/TNNLS.2020.3048385


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


