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Abstract— Robot-assisted bimanual training is promis-
ing to improve motor function and cortical reorganization
for hemiparetic stroke patients. Closing the rehabilitation
training loop with neurofeedback can help refine train-
ing protocols in time for better engagements and out-
comes. However, due to the low signal-to-noise ratio (SNR)
and non-stationary properties of neural signals, reliable
characterization of bimanual training-induced neural activ-
ities from single-trial measurement is challenging. In this
study, ten human participants were recruited conduct-
ing robot-assisted bimanual cyclical tasks (in-phase, 90◦
out-of-phase, and anti-phase) when concurrent electroen-
cephalography (EEG) and functional near-infrared spec-
troscopy (fNIRS) were recorded. A unified EEG-fNIRS
bimodal signal processing framework was proposed to
characterize neural activities induced by three types of
bimanual cyclical tasks. In this framework, novel artifact
removal methods were used to improve the SNR and the
task-related component analysis (TRCA) was introduced
to increase the reproducibility of EEG-fNIRS bimodal fea-
tures. The optimized features were transformed into low-
dimensional indicators to reliably characterize bimanual
training-induced neural activation. The SVM classification
results of three bimanual cyclical tasks revealed a good dis-
crimination ability of EEG-fNIRS bimodal indicators (90.1%),
which was higher than that using EEG (74.8%) or fNIRS
(82.2%) alone, supporting the proposed method as a feasi-
ble technique to characterize neural activities during robot-
assisted bimanual training.
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I. INTRODUCTION

B IMANUAL tasks that involve upper limbs working in
a highly coordinated way are prevalent in daily activi-

ties. However, for hemiparetic stroke patients, the inefficient
control of the infacted upper limb may cause difficulty in
performing bimanual tasks, leading to loss of life indepen-
dence [1]. Recent meta-analysis reports proved that robot-
assisted bimanual training could improve kinematic and kinetic
performance of bilateral upper extremities [2] and facilitate
neural reorganization of peri-infarct cortexes [3].

Robot-assisted bimanual therapy enables repetitive and
intensive practice at a relatively low cost [4], [5]. By adding
sensing units (e.g., force, torque, pulse and respiration sen-
sors, and surface electromyography, etc.) into robotic sys-
tems, rehabilitation training outcomes can be quantitatively
evaluated. Xu et al. [6] incorporated a Leap Motion sensor
into robot-assisted bimanual training system and used the
measured kinematic behaviors (including movement duration,
peak velocity, and mean tangential velocity) to evaluate train-
ing performance. In Darzi et al.’s study [7], electromyo-
gram (EMG) and respiration rate were monitored and utilized
to assess human participants’ training status. These behavior
and bio-signal indicators have been proved to be strongly
correlated with clinical assessment scales (e.g., Fugl-Meyer
scales, FMA upper extremity scales), and can be considered
as supplements to clinical assessment [8], [9]. Moreover,
these sensory data can also be used as feedback to adapt
training protocols to users’ status, thereby establishing natural
human-machine interactions (HMIs) between human users and
rehabilitation robots. Such biofeedback rehabilitation could
improve patients’ engagements, allowing them to exercise
intensively without becoming tired, bored or frustrated. The
effects have been verified in clinical studies of hemiplegic
patients [10]–[12].

Hemiplegic stroke originates from cerebrovascular accident-
caused abnormal blood supply and its recovery is related
to neural reorganization of motor systems [13], [14]. There-
fore, it is potentially more intuitive to evaluate bimanual
rehabilitation outcomes in terms of cerebral blood flow
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and brain oscillation than the above-mentioned behavior or
bio-signal features. With cost and ease of use in mind,
electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) are the most suitable noninvasive neu-
roimaging methods to monitor neural activities during robot-
assisted bimanual training. EEG reflects neural activation via
measuring electrical potentials generated by cortical post-
synaptic currents [15], while fNIRS infers brain activities
through hemoglobin concentration changes based on the neu-
rovascular coupling theory [16].

Numerous studies have used EEG and fNIRS to
characterize robot-assisted bimanual training outcomes.
Gandolfi et al. [17] used the changes of EEG power to evalu-
ate upper-limb motor recovery during robot-assisted bimanual
training. They found that increased desynchronization of upper
alpha (10-12 Hz) and beta (13-30 Hz) rhythms on the motor
cortex can serve as good biomarkers to characterize biman-
ual training outcomes. Li et al. [18], [19] employed fNIRS
to validate the efficacy of robot-assisted bimanual training.
Their results proved that bimanual training could evoke high
cerebral activation, which may contribute to motor cortex
reorganization. Nevertheless, EEG and fNIRS have their own
limitations. EEG is typically limited by the high sensitivity to
motion and muscle artifacts [20], rendering it less appropriate
to investigate neural activity related to upper-limb movements.
While fNIRS is more resistant to motion artifacts and electrical
noise than EEG [21], the low temporal resolution impedes its
application in capturing rapid neural dynamic responses [22].

In the recent decade, EEG-fNIRS bimodal measurement
has been increasingly used in cognitive neural mechanism
research [23], neurological disease diagnosis [24], and brain-
computer interface (BCI) applications [21], [25]. Hybrid EEG
and fNIRS can overcome limitations of either modality (e.g.,
poor artifact resistance for EEG, and low temporal resolu-
tion for fNIRS) [26] and improve the precision of neural
status evaluation [21], [23]–[25]. To date, and to the best
of our knowledge, only two studies [27], [28] have used
EEG-fNIRS bimodal system in measuring neural oscillation
and hemodynamic activities during robot-assisted bimanual
training. Both studies focused on evaluating bimanual training-
induced neural activities at just the group level, in which
robust neural activation patterns were obtained by averaging
all trials. While admitting that the group-level results have
potential to evaluate bimanual training outcomes, there is a
pressing need to detect neural activities at the single-trial level
so that training protocols can be tuned in time for closed-loop
engagements.

Single-trial analysis of neural signals is a common challenge
due to the low SNR and high trial-to-trial variability [29].
The physiological artifacts (e.g., ocular, muscular, and car-
diac artifacts) and ongoing background neural activities are
accounted for the low SNR and high variability of single-trial
neural signal [30], [31]. Recently, novel denoising methods
and feature extraction techniques have been applied to improve
the SNR and extract task-related components from single-
trial neural signal. In Ge et al. ’s study [32], a sinusoidal
signal-assisted multivariate empirical mode decomposition
method was proposed to denoise single-trial motor imagery

data. Asgher et al. [33] used the fixed-value modified beer-
lambert law method to extract mental load-related neural
activities from single-trial fNIRS data. Nazeer et al. [34]
employed a vector-based phase analysis method to extract
finger tapping-related components from single-trial fNIRS
measurement. However, the effectiveness of these methods has
only been validated in simple cognition or motor tasks. For
robot-assisted bimanual training tasks, upper-limb movements
induced motion and muscle artifacts and human-machine inter-
actions induced background neural activities can seriously con-
taminate neural signals, making it more challenging to extract
task-related components from single-trial measurement. These
two challenges have led to a lack of published literature
on the characterization of bimanual training-induced neural
activation at the single-trial level. Filling this gap can help
construct closed-loop robot-assisted bimanual rehabilitation
systems with real-time neurofeedback.

This study proposed a unified framework to characterize
bimanual training-induced neural activities from single-trail
EEG-fNIRS bimodal measurements. In particular, we used
novel artifacts removal methods to reduce the interference
of motion and muscle artifacts and improve the SNR. Task-
related component analysis (TRCA) method [35] was used to
enhance reproducibility of within-class EEG-fNIRS bimodal
features so that bimanual training-related components can
be reliably extracted. The optimized features were finally
transformed into low-dimensional indicators to reliably char-
acterize different types of bimanual cyclical tasks. The effec-
tiveness and robustness of our framework were verified by
the within-class similarity of optimized features, the discrim-
ination degree of EEG-fNIRS bimodal indicators, and the
classification accuracy of bimanual cyclical tasks.

The rest of this paper is organized as follows. The meth-
ods, including experimental procedures, data acquisition and
EEG-fNIRS signal processing framework, are presented in
Section II. Then, the experimental results are reported in
Section III in terms of EEG-fNIRS response evaluation and
single-trial analysis. Finally, discussion and conclusions are
presented in Sections IV and V, respectively.

II. MATERIALS AND METHODS

A. Participants

Ten healthy adults (seven males and three females, mean
age = 20.6 ± 0.8 years, range 20 – 22 years) participated
in this study. None of the recruited participants reported
neurological or psychiatric disorders. All of them were con-
firmed to be right-handed by the Edinburgh Handedness Inven-
tory. Before the experiment, all participants provided written
informed consent. This study was approved by the Ethics
Committee of Southern University of Science and Technology
(20190004).

B. Experimental Prototype

This experiment was carried out in a non-shielded envi-
ronment. As illustrated in Fig. 1.a, the experimental setup
consisted of a custom-made bimanual rehabilitation robot,
a visual interface, and an EEG-fNIRS bimodal measurement
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Fig. 1. Experimental setup and procedures. (a) Overall experimental
setup, consisted of a visual interface, a custom-made bimanual rehabili-
tation robot, and an EEG-fNIRS bimodal measurement system. (b) Three
kinds of bimanual cyclical tasks: in-phase task, 90◦ out-of-phase task,
and anti-phase task. (c) This experiment included 30 sessions. Each
session consisted of 3 trials, during which each kind of bimanual cyclical
task was performed once randomly. A single trial had a cue stage for 2 s,
a cycling stage for 10 s, and a rest stage for 18 s, respectively.

system. The bimanual rehabilitation robot mainly consisted
of two motion modules and a pair of handles. Each motion
module was composed of three mutually perpendicular linear
actuators. The robotic handle connected to motion module was
back-drivable under an admittance control law, allowing three
degrees of freedom (DOFs) voluntary movements [36], [37].
Participants were asked to grasp two handles and perform
bimanual cyclical tasks (see Section II. C) following visual
instruction. We used the Psychophysics Toolbox Version 3
(PTB-3) [38] to control visual cue presentation and synchro-
nize EEG-fNIRS bimodal recording (see Section II. D) via
event triggers.

C. Experimental Tasks and Procedures

During the experiment, participants were asked to perform
three types of bimanual cyclical tasks (in-phase task, 90◦ out-
of-phase task, and anti-phase task) [39], [40] with the robot
in active-resisted mode. (1) In the in-phase task, participants
performed outward rotation with the direction symmetrical to
the midline of the body (the left hand rotated the handle in a
clockwise direction whereas the right hand rotated the handle
in a counterclockwise direction); (2) In the 90◦ out-of-phase
task, the initial point of the left hand was 90◦ ahead of the in-
phase mode, and both hands rotated in a clockwise direction;
(3) In the anti-phase task, both hands rotated in a clockwise
direction. The rotation frequency was set to 0.2 Hz.

As shown in Fig. 1.c, the experiment included 30 sessions.
Each session consisted of 3 trials, during which each kind

Fig. 2. Arrangement of EEG and fNIRS channels. The EEG electrodes
and fNIRS optodes were arranged above the PMC, M1 and S1. Thirty-
six EEG electrodes were placed according to the international 10–10
system. A pair of source and detector optodes formed one fNIRS
channel. Twelve sources and 12 detectors in the arrangement resulted
in a total of 37 channels.

of bimanual task was performed once randomly, resulting in
30 repetitions for each bimanual cyclical task. A single trial
included a cue stage for 2 s, a cycling stage for 10 s, and a
rest stage for 18 s (see Fig. 1.c).

D. Multimodal Data Acquisition

1) EEG: EEG signals were acquired at 1200 Hz using
g.Hlamp amplifier (g.tec, Medical Engineering GmbH,
Austria). Thirty-six selected EEG electrodes (F7, F5, F3, F1,
Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8) were placed over brain
areas associated with bimanual movements, such as premo-
tor cortex (PMC), primary motor cortex (M1) and primary
somatosensory cortex (S1), according to the international 10-
10 system (see Fig. 2) [41] EEG signals were referenced at
the FCz electrode.

2) EOG & EMG: EOG and EMG signals were recorded
with the same g.Hlamp amplifier. Two pairs of electrodes
were used to record bipolar horizontal and vertical EOG
(one pair attached to the external canthi and the other to
the infraorbital and supraorbital regions of the right eye),
and 4 neck sEMG electrodes (attached to the left and right
trapezius and sternocleidomastoid muscles, respectively) were
used to monitor electrical muscle activities [42]. EOG and
EEG signals were referenced at the FCz electrode and sampled
at 1200 Hz.

3) fNIRS: fNIRS signals were recorded simultaneously at
5.21 Hz using a continuous-wave fNIRS neuroimaging sys-
tem (NIRScout, NIRx Medizintechnik GmbH, Germany). The
wavelengths of near-infrared light were 785 nm and 830 nm.
fNIRS optodes were covered the participants’ PMC, M1 and
S1 (see Fig. 2) [43]. The distance between a pair of source
and detector was about 3 cm, and each pair formed a fNIRS
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Fig. 3. EEG-fNIRS multimodal signal processing pipeline. It consists of
signal preprocessing, feature extraction and optimization, and indicator
calculation.

channel. There were 12 sources and 12 detectors in this
arrangement, resulting in 37 fNIRS channels.

E. Multimodal Data Processing Pipeline

As shown in Fig. 3, the unified EEG-fNIRS bimodal sig-
nal processing framework contains the following three parts:
signal preprocessing, feature extraction and optimization, and
indicator calculation. The processing of EEG-fNIRS bimodal
data was carried out using MNE functions [44] and custom
Python scripts.

1) Data Preprocessing:
a) EEG: Thirty-six channel EEG signals, 4 channel EOG

signals, and 4 channel EMG signals were first high-passed
at 1 Hz to remove low-frequency noise and then separated
from each other. For EEG signals, the artifact subspace
reconstruction (ASR) algorithm [45] was applied to remove
occasional large amplitude artifacts based on statistical criteria
from clean EEG. Then, EEG signals were re-referenced using
the common averaged reference (CAR) method. For EOG
signals, bipolar reference was applied to each electrode pair
to extract the vertical and horizontal EOG, respectively. EMG
signals were band-pass filtered between 20 and 300 Hz and
re-referenced to their common average.

Next, we utilized the fast independent component analysis
(FastICA) [46] method to decompose multi-channel EEG
signals into several independent components (ICs). ICs with
strong correlation (after adaptive z-scoring and thresholding at
Z > 2.0) with EOG and neck EMG signals were considered
responsible for ocular and muscle artifacts and then set to zero
before reconstruction. The reconstructed EEG was band-pass
filtered between 2 and 36 Hz for further analysis.

b) fNIRS: Raw fNIRS intensity values were first converted
into optical density data, and bad channels were rejected
based on the scalp coupling index (SC I < 0.4) [47]. Next,

optical density signals were transformed into the concen-
tration changes of oxyhemoglobin (�HbO) and deoxyhe-
moglobin (�HbR) with the modified Beer-Lambert law [48].
We utilized the temporal derivative distribution repair (TDDR)
method [49] to correct the baseline shift and spike arti-
facts caused by head movements. A band-pass filter between
0.05 and 0.2 Hz was applied to obtain preprocessed fNIRS
signals.

2) Feature Extraction:
a) EEG: The event-related (de-) synchronization (ERDS)

of μ rhythm (8 – 13 Hz), indicating a band power decrease
during bimanual movements and an increase during resting
period, was used to characterize neuroelectric activities of
bimanual cyclical tasks from single-trial EEG recording [50].
Firstly, a 16-second (−2 to 14 s) epoch was extracted from
preprocessed single-trial EEG data. The time-frequency rep-
resentation (TFR) of this epoch was calculated with the
tfr_multitaper function of MNE-python. Next, we employed
the baseline-normalized event-related spectrum perturbation
(ERSP) [51] to represent the differences of frequency band
power as a function of time, which can be calculated by the
following formula:

E RS P (k, f, t) = 10 log
|T F R (k, f, t)|2

1
M

M∑
m=1

|T F R (k, f, m)|2
(1)

where T F R (k, f, t) denotes the spectral estimation of channel
k at frequency f and time t . M and m indicate the number
of discrete-time points and the time point index of baseline
period (−0.5 to 0 s). Finally, the task-related variations of
μ activities can be calculated by averaging E RS P values
of all frequencies in this band, resulting in spectral features
(xE EG ∈ R

K �×T �
) of the corresponding single-trial EEG data,

where K � and T � denote the number of EEG channels and
time points, respectively.

b) fNIRS: The task-related variations of oxygen consump-
tion were employed to characterize neural responses induced
by bimanual cyclical task from single-trial fNIRS measure-
ment. Similarly, a 16-second (−2 to 14 s) epoch was extracted
from preprocessed single-trial fNIRS data, and the mean value
of baseline period (−0.5 to 0 s) was subtracted from this epoch
for baseline alignment. fNIRS temporal features (x f N I RS ∈
R

K ��×T ��
) can be directly represented as �HbO of this epoch,

where K �� and T �� indicate the number of fNIRS channels and
time points, respectively.

3) Feature Optimization With Task-Related Component
Analysis: The particular problem of single-trial analysis is
that the SNR of single-trial data is too weak to extract
reliable task-related components for robust analysis. Thus,
spatial filtering approaches, such as beamformer, canonical
correlation analysis (CCA), and common spatial pattern (CSP),
have been used to calculate subject-specific spatial filters for
data enhancement [52].

Recently, TRCA [35] was introduced as a novel spatial
filtering approach for fNIRS [53] and EEG [54] data analysis.
The goal of TRCA is to optimize the coefficients by maximiz-
ing the covariance between each pair of within-class training
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trials to obtain the task-specific spatial filter. By applying
the trained TRCA filter, we can extract a temporal profile
of the task-related component that exhibits maximal temporal
similarity among within-class training trials. Unlike beam-
former and CCA, which assume that templates averaged from
training data as source signals, TRCA is entirely data-driven
and has no prior assumptions. The optimization process of
TRCA is also more interpretative and less aggressive than CSP.
In Duan et al.’s study [55], TRCA has been demonstrated to be
more effective than CCA and CSP in extracting premovement
components from EEG data.

In the current study, we introduced TRCA to increase
the reproducibility of within-class EEG-fNIRS features and
extract bimanual cyclical task-related components for reliable
characterization of neural activation during task period. As for
each bimanual cyclical task and measurement mode, the
corresponding spatial filter ω ∈ R

1×K was constructed by
maximizing the inter-trial covariance of task-related compo-
nents ω ∈ R

N×T , where K is the number of channels, N is
the number of training trials, and T is the number of time
points.

The inter-trial covariance of the n1-th and n2-th trial’s esti-
mated task-related components can be calculated as follows:

Cn1,n2 = Cov
(

Y (n1), Y (n2)
)

= Cov
(
wX (n1), wX (n2)

)

=
K∑

k1,k2=1

wk1wk2 Cov
(

X (n1)
k1

, X (n2)
k2

)
(2)

where X ∈ R
K×N×T is calculated features of training trials,

and X (n)
k denotes features of n-th trial and k-th channel.

All possible combinations from all the training trials are
summed as:

N∑
n1,n2=1
n1 �=n2

Cn1,n2 =
N∑

n1,n2=1
n1 �=n2

K∑
k1,k2=1

wk1 wk2 Cov
(

X (n1)
k1

, X (n2)
k2

)

= wT Sw (3)

Here, the symmetric matrix S is defined by:

Sk1,k2 =
N∑

n1,n2=1
n1 �=n2

Cov
(

X (n1)
k1

, X (n2)
k2

)
(4)

To obtain a finite solution, the covariance of Y is constrained
as:

V ar (Y ) = Cov (Y, Y )

=
K∑

k1,k2=1

wk1 wk2 Cov
(
Xk1 , Xk2

)

= wT Qw

= 1 (5)

The constrained optimization problem becomes a
Rayleigh-Ritz eigenvalue problem:

ŵ = arg max
w

wT Sw

wT Qw
(6)

The optimal coefficient vector is obtained as an eigenvector
of the matrix Q−1 S ∈ R

K×K . K eigenvalues and eigenvectors
can be obtained by solving the eigenvalue problem. The task-
related components are arranged in a descending order of
eigenvalues, and the eigenvector ωmax ∈ R

1×K corresponding
to the maximum eigenvalue λmax was chosen to be the optimal
spatial filter. By repeating this process, the optimal TRCA
filter ωi

j can be calculated for each bimanual cyclical task
i ∈ {in-phase, 90◦ out-of-phase, anti-phase} and measurement
mode j ∈ {EEG, fNIRS}.

Therefore, the optimized feature of the n-th training trial
can be calculated by multiplying training features Xi(n)

j with
corresponding TRCA filter ωi

j , and the robust feature template
Pi

j ∈ R
1×T can be obtained by averaging all combinations of

within-class optimized training features, as follows:

Pi
j = 1

N

N∑
n=1

ωi
j X i(n)

j (7)

where N and n denote the number of training trials and the
training trial index.

4) Indicator Calculation With Correlation Analysis: We further
utilized the correlation coefficient value ρi

j between optimized
features of test trial T and trained feature template Pi

j as
indicators to characterize bimanual training-induced neural
activity in low dimensional space, which can be calculated
as follows:

ρi
j = corr

(
ωi

j Tj , Pi
j

)
(8)

Thereby, the neural activities of each test trial can be repre-
sented by only six correlation coefficient indicators (three for
EEG, and three for fNIRS).

F. Performance Evaluation

We first evaluated the EEG and fNIRS responses during the
task period and compared the differences of bimodal features
for three types of bimanual cyclical task. The average method
(unweighted average features across channels) was chosen as
a comparison to verify the effectiveness of TRCA (weighted
average features across channels) in spatial filtering and task-
related component extraction. Because the optimization goal
of TRCA is extracting reproducible components from training
features, we used the within-class similarity Si

j to measure the
reliability of optimized training features, which is defined by
averaging correlation coefficients between optimized training
features and corresponding feature template:

Si
j = 1

N

N∑
n=1

corr
(
ω

j
i X j (n)

i , Pi
j

)
(9)

We also used the differentiation degree Di
j to measure the

discrimination ability of test indicators, which obtained by
summing the inter-cluster distances, as follows:

Di
j =

I∑
l=1,l �=i

di st
(

Cl
j , Ci

j

)
(10)
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where dist is the mean Euclidean distance between all pairs
of indicators in the target indicator cluster Ci

j and non-target
indicator cluster Cl

j .
Moreover, three kinds of widely-used classification method

including linear discriminant analysis (LDA), support vector
machine (SVM), and random forest (RF) were employed to
evaluate the robustness and stability of calculated indicators.
The dataset was divided into a training set and a test set.
EEG-fNIRS bimodal trials in the training set were used to
obtain TRCA filters and feature templates. Reference indi-
cators calculated by optimized training features and feature
templates were used as input for classifier training. This
study compared the classification accuracy of EEG, fNIRS,
and EEG-fNIRS bimodal indicators with different number
of training sizes (from 5 to 15 with a step of one). For
each size of the training set, fifty times cross-validation was
adopted to obtain a sensible estimate of the classification
accuracy.

Statistical analyses were conducted with the one-way analy-
sis of variance (ANOVA) using SPSS software (IBM SPSS
Statistics 26.0, IBM Corporation, USA). All post-hoc pairwise
comparisons were Bonferroni corrected.

III. RESULTS

A. EEG Response Evaluation

Fig. 4 shows the grand-averaged ERSP spectrograms of
in-phase, 90◦ out-of-phase, and anti-phase bimanual cyclical
tasks. The time-frequency maps present an apparent decrease
of μ rhythm (8 – 13 Hz) power during task period (0 to
10 s), as well as an increase during rest stage. This ERDS
phenomenon can be observed in all three bimanual tasks,
especially clear for the anti-phase task.

The ERDS pattern for different types of bimanual cyclical
task can be obtained by averaging ERSP values across all
frequencies in μ band (see Fig. 6. a). We used the ANOVA to
measure the differences of ERDS value across three bimanual
tasks, which showed statistically significant differences around
3 s (F(2,897) = 3.055, p = 0.048) and 9 s (F(2,897) = 5.545,
p = 0.004). The ERDS intensity of anti-phase task was lower
than that of in-phase task and 90◦ out-of-phase task during
the task period, while the difference between in-phase task
and 90◦ out-of-phase task can hardly be distinguished.

B. fNIRS Response Evaluation

Fig. 5 shows the group-level topographical distributions of
HbO responses for in-phase, 90◦ out-of-phase, and anti-phase
bimanual cyclical tasks. We can observe a typical increase of
HbO during bimanual cyclical tasks. The activation at the M1
was more prominent than at other areas.

Fig. 6. b is the grand-averaged HbO responses across all
trials. The ANOVA results showed a significant difference in
HbO amplitude across three bimanual cyclical tasks from 4 s to
10 s (the lowest F(2,897) = 12.790, p < 0.001). The averaged
peak amplitude of in-phase, 90◦ out-of-phase, and anti-phase
task was 6.2 μmol/L at 5.3 s, 6.3 μmol/L at 6.1 s, and 14.8
μmol/L at 5.5 s, respectively. They peaked around 5.5 s, and
the peak amplitude of anti-phase task was significantly higher

Fig. 4. Grand average of ERSP spectrograms across all channels and
all participants for (a) in-phase, (b) 90◦ out-of-phase, and (c) anti-phase
bimanual cyclical tasks. Two vertical dashed lines represent the onset
and offset of the tasks, respectively. Apparent ERD phenomenon of μ
rhythm (8–13 Hz) can be observed during the task period.

than that of in-phase task ( p < 0.001) and 90◦ out-of-phase
task ( p < 0.003). However, the post-hoc t-tests indicated no
significant difference between anti-phase and 90◦ out-of-phase
task ( p = 0.075), and between in-phase mode and 90◦ out-
of-phase task (p = 1.000).

C. Correlation Analysis of Optimized Training Features

Fig. 7 shows the calculated EEG-fNIRS bimodal features
and their correlation coefficient values of the first 10 training
trials from Subject 2 using the average method and TRCA,
respectively. The left column of each subgraph shows the
optimized features for three types of bimanual cyclical tasks,
and the bold black line is the corresponding training template.
The right column shows the cross-correlation coefficients of
all training features. Compared with the average method (see
Fig. 7. a & c), EEG and fNIRS optimized features calculated
by TRCA (see Fig. 7. b & d) were more consistent and the
within-class correlation coefficient (within the black box) were
larger, which demonstrated that TRCA could extract repro-
ducible task-related components from EEG-fNIRS bimodal
features. Moreover, the correlation coefficient values between
different bimanual cyclical tasks calculated by TRCA were
smaller than that of the average method, which proved that
these extracted components were not only reproducible but
also task-dependent.

Table I lists the averaged within-class similarity of opti-
mized training features for each bimanual cyclical task and
measurement mode. For the average method, the averaged
within-class similarity of EEG and fNIRS optimized features
were 0.507 and 0.386, respectively. For TRCA method, the
averaged within-class similarity of EEG and fNIRS optimized
features were 0.660 and 0.676, respectively. The increase of
within-class similarity demonstrated the efficacy of the TRCA
method in EEG-fNIRS bimodal feature optimized.
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Fig. 5. Grand-averaged topographical distributions of hemodynamic responses across all participants for (a) in-phase, (b) 90◦ out-of-phase, and
(c) anti-phase bimanual cyclical tasks. The red and blue colors indicate high and low hemodynamic activations, respectively. Significant increase of
HbO concentration can be observed during the task period (0–10 s).

Fig. 6. Group-level time-course of (a) ERDS and (b) HbO responses for three different bimanual cyclical tasks. Two vertical dashed lines indicate
the onset (t = 0 s) and offset (t = 10 s) of bimanual tasks. Asterisks denote statistically significant differences in the response amplitude of the
bimanual cyclical tasks (∗ p < 0.05, ∗∗ p < 0.01, and ∗ ∗ ∗ p < 0.001).

D. Discriminative Analysis of Indicators

Fig. 8 shows the indicator distribution of the last 20 test
trials from Subject 2 using the average method and TRCA,
respectively. The coordinate values of each dot are the cor-
relation coefficient between optimized test trial features and
template features (see Eq. 8). As shown in Fig. 8, indicators
of different bimanual cyclical tasks calculated by the average
method were confusing. While the distribution of within-class
indicators calculated by TRCA was more concentrated.

Table II lists the averaged discrimination degree of test indi-
cators for each bimanual cyclical task and measurement mode.
For the average method, the averaged discrimination degree of
EEG and fNIRS indicators were 1.017 and 1.921, respectively.
For TRCA method, the averaged within-class similarity of
EEG and fNIRS optimized features were 1.673 and 2.338,

respectively. The high discrimination degree proved that the
calculated indicators have good characterization ability.

E. Classification Accuracy

Fig. 9 illustrates the averaged classification accuracy across
all subjects with different number of training trials. In gen-
eral, the classification accuracy increased with the number of
training trials, and the highest accuracy was obtained when
the number of training trials was 15. For EEG indicators, the
highest accuracy of RF, LDA, and SVM were 72.1%, 74.1%,
and 74.8%, respectively. For fNIRS indicators, the highest
accuracy of RF, LDA, and SVM were 77.7%, 81.8%, and
82.2%, respectively. For EEG-fNIRS bimodal indicators, the
highest accuracy of RF, LDA, and SVM were 88.3%, 88.2%,
and 90.1%, respectively. One-way repeated ANOVA showed
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Fig. 7. Comparison of optimized training features and feature templates from Subject 2. (a) EEG features calculated by the average method. (b) EEG
features calculated by TRCA. (c) fNIRS features calculated by the average method. (d) fNIRS features calculated by TRCA. The left column of each
subgraph illustrates the features of first 10 training trials for three different bimanual cyclical tasks, and the black bold line is the training template
calculated using the averaging method or TRCA. The right column shows the cross-correlation coefficients of all training features in the left column,
and the correlation coefficients in the black box are the cross-correlation coefficients of single-class training features. The size and color depth of
each dot represent the magnitude of coefficient value. The autocorrelation coefficients on the main diagonal and the correlation coefficients less
than −0.6 were zeroed out for clear display.

Fig. 8. Indicator distribution of the last 20 test trials from Subject 2.
(a) EEG indicators calculated with the average method. (b) EEG indi-
cators calculated with TRCA. (c) fNIRS indicators calculated with the
average method. (d) fNIRS indicators calculated with TRCA. The coordi-
nate value of each dot is the correlation coefficient between the test trial
feature with the template feature of in-phase (ρx), 90◦ out-of-phase (ρy)
and anti-phase (ρz).

there was a significant difference of the highest accuracy
between different types of indicators (RF: F(2,29) = 8.366,
p = 0.001; LDA: F(2,29) = 6.534, p = 0.005;

Fig. 9. Averaged across subjects with different numbers of training trials
for EEG, fNIRS, and EEG-fNIRS bimodal indicators.

SVM: F(2,29) = 8.265, p = 0.002). There was no significant
difference of the highest accuracy between different classifiers
(EEG indicators: F(2,29) = 0.364, p = 0.698; fNIRS indica-
tors: F(2,29) = 0.585, p = 0.564; EEG-fNIRS indicators:
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TABLE I
WITHIN-CLASS SIMILARITY OF OPTIMIZED TRAINING FEATURES FOR EACH MEASUREMENT MODE AND BIMANUAL CYCLICAL TASK

TABLE II
DISCRIMINATION DEGREE OF TEST INDICATORS FOR EACH MEASUREMENT MODE AND BIMANUAL CYCLICAL TASK

F(2,29) = 0.231, p = 0.795). The obtained results demon-
strated that the proposed indicators could reliably distinguish
neural activities induced by different bimanual cyclical tasks,
and the classification accuracy can be improved by combining
EEG-fNIRS bimodal indicators.

IV. DISCUSSION

Real-time neurofeedback is crucial for constructing closed-
loop bimanual rehabilitation systems. Reliable and timely
characterization of neural activities can help refine bimanual
training protocols for better rehabilitation outcomes. The main
challenges in characterizing neural activation are the low SNR
and high trial-to-trial variability of neural signals. The current
study proposed a unified signal processing framework to
characterize bimanual training-induced neural activities from
single-trial EEG-fNIRS measurements. The effectiveness and
robustness of our framework were verified in the following
four aspects: 1) the differences between averaged EEG-fNIRS
responses, 2) the within-class similarity of optimized fea-
tures, 3) the discrimination degree of EEG-fNIRS bimodal
indicators, and 4) the classification accuracy of bimanual

cyclical tasks. These results are discussed in greater detail
below.

According to Tettamanti et al.’s study [56], asymmetric
bimanual movements require higher force output than symmet-
ric bimanual movements. The differences are also reflected in
upper-limb muscle activation and metabolic costs [57]. In this
study, in-phase, 90◦ out-of-phase, and anti-phase bimanual
cyclical tasks were employed, corresponding to symmet-
ric, semi-asymmetric, and asymmetric bimanual movements,
respectively. Participants were asked to perform these tasks
with the custom-made bimanual rehabilitation robot in active-
resisted mode. The EEG-fNIRS bimodal system was used
to measure the brain oscillation and cerebral blood flow
during robot-assisted bimanual training. The current study
incorporated state-of-the-art denoising methods to reduce the
interference of bimanual movement-induced motion and mus-
cle artifacts. As illustrated in Fig. 6, significant changes in
neural activation revealed by declines of μ band power and
increases in HbO can be observed during bimanual cyclical
tasks. In addition, the averaged neural responses of the anti-
phase task were more prominent than that of in-phase and
90◦ out-of-phase. The distinguishable neural responses proved
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the efficacy of our framework in signal denoising and feature
extraction.

In this study, we used the TRCA method to extract bimanual
task-related components from EEG-fNIRS bimodal features
so that the neural responses can be analyzed at the single-trial
level. As shown in Figs. 7. a & c, the similarity of within-class
bimodal features was enhanced by TRCA, resulting in more
reliable features and activation patterns. The improvement
of within-class similarity can be observed for all bimanual
cyclical tasks and measurement modes (see Table I). The opti-
mized features were mapped into low-dimensional indicators
to characterize bimanual movement-induced neural activities.
Compared with high-dimensional features, low-dimensional
indicators are more robust and easier to combine with other
modal indicators (e.g., speed, acceleration, and muscle syn-
ergy) to form multimodal feedback. The high discrimination
degree (see Table II) and classification accuracy (see Fig. 9)
demonstrated that the low-dimensional could reliably charac-
terize bimanual training-induced neural activities at the single-
trial level. In addition, the SVM classification results revealed
that fusion EEG and fNIRS bimodal indicators could achieve
the highest accuracy (90.1%), which is in agreement with
previous EEG-fNIRS bimodal studies [21], [23]–[25].

The overall results demonstrated that the proposed method
could reliably characterize bimanual cyclical tasks at the
single-trial level. Moreover, EEG-fNIRS bimodal measure-
ments can provide more accuracy and robust neurofeedback.
Several limitations need to be noted in this study. First is the
limited number of human participants with unbalanced gender.
Future study will consider recruiting a larger sample size
of hemiparetic stroke patients. Second, the proposed method
needs to be integrated into closed-loop rehabilitation systems
and validated online.

V. CONCLUSION

This work proposed a unified signal processing framework
to characterize bimanual cyclical tasks-induced neural activa-
tion from single-trail measurements. The extracted EEG and
fNIRS features have been proved to characterize neural acti-
vation during robot-assisted bimanual training. Furthermore,
the calculated indicators have good discrimination ability, and
fusion of EEG and fNIRS indicators can improve biman-
ual cyclical task classification accuracy. In summary, these
results confirmed that our method could characterize bimanual
training-induced neural activation changes at the single-trail
level and help construct robot-assisted bimanual rehabilitation
systems with neurofeedback.
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