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The Reproducibility of Bio-Acoustic Features is
Associated With Sample Duration,

Speech Task,

Shaykhah A. Almaghrabi
Scott R. Clark

Abstract— Bio-acoustic properties of speech show evolv-
ing value in analyzing psychiatric ilinesses. Obtaining a
sufficient speech sample length to quantify these properties
is essential, but the impact of sample duration on the
stability of bio-acoustic features has not been systemati-
cally explored. We aimed to evaluate bio-acoustic features’
reproducibility against changes in speech durations and
tasks. We extracted source, spectral, formant, and prosodic
features in 185 English-speaking adults (98 w, 87 m) for
reading-a-story and counting tasks. We compared features
at 25% of the total sample duration of the reading task
to those obtained from non-overlapping randomly selected
sub-samples shortened to 75%, 50%, and 25% of total
duration using intraclass correlation coefficients. We also
compared the features extracted from entire recordings
to those measured at 25% of the duration and features
obtained from 50% of the duration. Further, we compared
features extracted from reading-a-story to counting tasks.
Our results show that the number of reproducible features
(out of 125) decreased stepwise with duration reduction.
Spectral shape, pitch, and formants reached excellent repro-
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ducibility. Mel-frequency cepstral coefficients (MFCCs),
loudness, and zero-crossing rate achieved excellent repro-
ducibility only at a longer duration. Reproducibility of
source, MFCC derivatives, and voicing probability (VP)
was poor. Significant gender differences existed in jitter,
MFCC first-derivative, spectral skewness, pitch, VP, and
formants. Around 97% of features in both genders were not
reproducible across speech tasks, in part due to the short
counting task duration. In conclusion, bio-acoustic features
are less reproducible in shorter samples and are affected by
gender.

Index Terms— Bio-acoustic features, features’ repro-
ducibility, speech signal processing, speech task.

|. INTRODUCTION

UMAN speech produces acoustic waves that carry

information about the speaker’s gender, physiological
condition, and pathophysiological state [1]. These waves are
generated when the mechanical vibration of vocal folds,
affected by aerodynamic factors, are converted into acoustic
energy (acoustic source signal). This signal is then fil-
tered and modulated based on the vocal tract configuration
shaped by speech articulators [2]-[4]. The ability to con-
trol articulatory and phonatory speech processes is affected
by neuro-physiological changes in the brain associated with
the speaker’s mental state. Such changes are encoded into
acoustic speech signals and quantified through bio-acoustic
qualities such as source, spectral, prosodic, and formants
properties [5]-[7].

The control of the vocal fold, which generates the source
signal, can be measured through source features such as jitter
and shimmer [8]. Spectral features can be obtained from
the speech waveform’s frequency distribution at a specific
time [9] and effectively represented by Mel-frequency cep-
stral coefficients (MFCCs), for example, to distinguish mood
states [10], [11]. Prosodic features, on the other hand, reflect
the differences in individuals’ speaking styles. They include
fundamental frequency (FO) and intensity, expressed through
pitch and loudness, respectively [9], [12], [13]. Formants
are spectral peaks representing the vocal tract’s resonance
frequencies and capture essential spectral characteristics for
speech analysis [14].

Bio-acoustic properties correlate with mental health dis-
orders [9] and are easily quantifiable using speech analysis
techniques [15]; they represent objective biomarkers of mental

For more information, see https://creativecommons.org/licenses/by/4.0/
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health [9]. The feasibility and validity of analyzing speech
features through machine learning algorithms to assess mental
health conditions such as major depressive disorder were
examined previously [16]-[18].

Experimental protocols and methodologies across studies
on the association of the speech with clinical outcomes vary
significantly [19]—[21], limiting the comparability of results.
Studies on speech signal processing use speech samples that
differ in speech task type and duration. Some of the studies on
depressed individuals, for example, were conducted on three
speaking tasks, including an interview, reading-a-story, and
picture description, with the overall recording lengths differing
14.5 h, 5.9 h, and 4.5 h, respectively, and average duration
of speech recording was 18.3 s [17], [18]. Other researchers
used only interview samples with a duration range between 7
to 30 minutes [22], [23]. Therefore, it is critical to determine
whether differences in speaking tasks and task duration impact
the stability of bio-acoustic feature measurements.

Kiss and Vicsi reported that the measurement of speech
features, mainly those calculated over sustained vowels or
voiced parts of reading-a-story, is affected by the type of
speech task [16]. It was also found that quantifying spectral
and cepstral acoustic features, whether from vowel or contin-
uous speech, is dependent on speech content [24]. A study of
healthy speakers revealed that different speech types, such as
counting, reading passages, and spontaneous speech, impacted
the vibration frequency of the vocal folds in connected speech
(speaking fundamental frequency) [25].

Vogel and Morgan documented that the Ilength of
obtained speech data impacted the measurement accu-
racy of bio-acoustic features [26]. Although several efforts
have been made to explore the accuracy of short-duration
speech samples for detecting a disease or estimating a
physical parameter [27]-[30], only a few studies have
explored the impact of voice sample length on speech
characteristics [31]-[33]. Scherer et al. have shown that,
in sustained vowel tasks, the stability of perturbation mea-
surements, jitter and shimmer, is affected by the task duration.
At least 3 s of speech is required to provide accurate measure-
ment [31]. Another study also found that reducing the speech
duration from 60 s to 30 s affects the pitch measurements [34].
Additionally, there is high variability in optimal sample dura-
tion across a type of predictive task, reflecting the complexity
of the outcome measure. For example, complex neurological
phenotypes, such as dementia, may take up to 12 minutes of
interview speech [28], and one-minute picture descriptions to
distinguish individuals with dementia from healthy controls
using only acoustic features [35].

Variation in sampling accuracy may also be influenced
by gender. Several differences between men’s and women’s
speech have been found related to the vocal folds’ mass
and vocal tract length, leading to significant differences in
phonetics and the quality of voice [36], [37]. Simpson reported
that both vocal fold vibration rate and the formants frequencies
are higher in women than in men [36].

The first aim of this paper was to examine the effect of
speech duration on the reproducibility of women and men
adults’ bio-acoustic features by determining whether there is a

TABLE |
CHARACTERISTICS OF THE PARTICIPANTS ENROLLED IN THE STUDY

Gender Men (n=87) Women (n=98) p-value
Age (years)  26.16 (£6.66)  27.77 (£7.11) 0.1192
Mood score 5 39 (19.04)  2.76 (+£2.28) 0.2006

(session 1)
Mood score ) 55 (1o 09)  2.69 (+2.25) 0.2470

(session 2)

difference between the features extracted from a full-duration
task and those measured over shorter durations of the same
task. The second aim was to investigate the difference in
these parameters between different speech tasks, reading a
predefined story versus counting, on the measurements of bio-
acoustics qualities.

Il. METHODS
A. Dataset

The database contained 796 audio recordings of 199 English
speakers aged between 18 and 45 years that were collected at
the University of Adelaide as part of a larger study. From
every participant, four voice recordings were collected over
two separate assessment sessions, with sessions spaced at least
three days and at most two weeks apart, at a sampling rate of
44.1 kHz and 16-bit sampling depth in uncompressed WAV
format. By using a headset type microphone, the distance
between the speaker’s mouth and the microphone was kept
constant. Each of the four recordings contained a different
speaking task: reading a pre-selected story, re-telling the story
in the participants’ own words, counting from 1 to 20, and
telling the capital cities of Australia loudly. Speech was
recorded in a 10 x 14m isolated room within a research facility.
Only the investigators and participants were present and the
door remained closed at all times. Participants also completed
the Mood and Feeling Questionnaire (containing 13 items)
before speech recording.

Fourteen subjects were removed to match mood score and
age between men and women; nine of them had a mood
score suggesting depression (> 10 points), while others were
relatively older (=45 years). Two types of structured, con-
trolled speech tasks were analyzed: reading-a-story, with a
mean duration of about 124.4 s (standard deviation = 25.0 s),
and counting, with a mean duration of about 26.0 s (standard
deviation = 7.7 s). Table I presents the basic characteristics
of the participants.

All procedures were approved by the University of
Adelaide’s Human Research Ethics Committee. All partici-
pants provided written informed consent in compliance with
the Declaration of the University of Helsinki.

B. Speech Signal Processing

Speech analysis included preprocessing, bio-acoustic feature
extraction and statistical analysis of the extracted features to
examine reproducibility (Fig. 1).

1) Pre-Processing: Several preprocessing steps were applied
to the speech signals to improve the performance of the
feature extraction algorithm [38]. Linear down-mixing was
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A block diagram illustrating the steps to examine bio-acoustic features’ reproducibility. These steps mainly including preprocessing steps,

features extraction, and statistical analysis. Preprocessing steps comprise down-mixing signal, removing silent pauses, resampling speech signal
(16 kHz), z-score normalization, and signal pre-emphasis. Moreover, the features extraction step focuses on quantifying acoustic features. Statistical
analysis using Intraclass Correlation Coefficient tests was applied to the quantified features.
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Fig. 2.  Segmentation of speech signals into non-overlapping frames

of 20 ms duration.

used to convert each recording from two channels (stereo)
into a single channel (mono). Silent pauses were eliminated
from the input signal to avoid extracting acoustic features
from the background acoustical noise [39], [40], by detecting
the speech boundaries using the MATLAB® detectSpeech
function (The MathWorks, USA). The signals were then down-
sampled to 16 kHz, commonly used for speech processing,
to reduce the computational load [38], [41]. Samples were
then normalized to eliminate differences from the recording
environment using the z-score method that centres data to have
a zero mean and unit variance [42]. Finally, a pre-emphasis
filter was implemented with a coefficient value equal to 0.97,
commonly used for speech applications, to enhance the signal-
to-noise ratio [41], [43]:

H(z)=1-097z" (1

Since the speech signal is non-stationary and considered
stable only in short time intervals [38], short-time analy-
sis (framing) is required for analysis, as shown in Fig. 2.
We segmented the speech signal into frames of 20 ms duration,

as recommended [38], [44]. The frames were overlapped by
50% to avoid introducing any spurious frequency components
while processing each frame [38], [43]. Afterwards, the Ham-
ming window, commonly used for speech processing, was
applied to all frames to reduce spectral leakage [38], [43].

2) Feature Extraction: Speech feature extraction is at the
core of the ability of speech processing systems to derive
descriptive attributes of the signal [43]. Speech features can
be categorized into two branches: acoustic and linguistic [45].
In this study, we considered only acoustic features, which
can be divided into source, spectral, prosodic, and formants
features [9]. A summary of the extracted features is provided
in Table II. The features were measured with the help of
MATLAB®2021a (The MathWorks, USA) [46].

The source features calculated over voiced regions included
jitter, which quantifies the cycle-to-cycle variation in the
glottal pulse timing period, and shimmer, which quantifies
the cycle-to-cycle variation in the amplitude of the glottal
pulse [8], [47]. They are defined by the following equations,

N-1
. 1
Jitter(us) = N_1 Z |T; — Ti-1| 2)
i=1

N-1
) 1
Shimmer(dB) = N1 Z [201og;q

i=1

Ait1

NG
l

where 7T; denotes the time period of the glottal pulse, N
denotes the number of periods, and A; represents the peak-
to-peak amplitude [47], [48].

Both jitter and shimmer were determined by utilizing
the glottal closure instants within each glottal cycle, which
were detected automatically, over 60 ms frame duration,
using the Dynamic Programming Projected Phase-Slope
Algorithm [49], [50].

MFCCs are one of the most common spectral features
employed in speech processing [18], and are analyzed using
a bank of band-pass filters. These filters are equally spaced
triangular filters in the logarithmic Mel-scale to map the
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TABLE Il
SUMMARY OF THE EXTRACTED BIO-ACOUSTIC FEATURES

Features Features Statistical measurements
Category ¢
Source Jitter Mean, SD, percentile range (90-10%).
Shimmer Mean, SD, percentile range (90-10%).
MFECC(1-13) Mean, SD, percentile range (90-10%),
skewness, kurtosis.
MECC delta Mean.
Spectral
MECC delta-delta Mean.
SR Mean, skewness, kurtosis.
SC Mean, percentile range (90-10%).
SE Mean, SD.
SF Mean.
SS Mean.
SK Mean.
Pitch Mean, SD, percentile range (90-10%),
Prosodic skewness, kurtosis.
Loudness Mean, SD.
VP Mean.
ZCR Mean, SD, skewness, kurtosis.
P 3 - Oy
Formants F1 Mean, SD, percentile range (90-10%).
F2 Mean, SD, percentile range (90-10%).

¢ MFCC: Mel-frequency cepstral coefficients; SR: Spectral roll-off; SC: Spectral
centroid; SE: Spectral entropy; SF: Spectral flatness; SS: Spectral skewness; SK:
Spectral kurtosis; VP: Voicing probability; ZCR: Zero-crossing rate; F1: First
formant; F2: Second formant; SD: Standard deviation.

frequency range of human hearing [38], [51]. We obtained the
first 13 MFCCs, MFCC delta, and MFCC delta-delta. Spec-
tral shape descriptors including spectral roll-off points (SR),
spectral centroid (SC), spectral entropy (SE), spectral flatness
(SF), spectral skewness (SS), and spectral kurtosis (SK) were
also computed by converting a time-domain signal into a
frequency-domain using Short-time Fourier transform. Most
of these descriptors are related to the timbre characteristics of
the speech signal.

Pitch is a subjective psychoacoustical attribute of sound and
is closely correlated to the physical quantity FO. We estimated
the pitch in the short-time domain via the normalized correla-
tion function method [52], with a range set to 75-300 Hz for
men and 100-500 Hz for women, as recommended [53]. Loud-
ness, referring to the human ear perception of a sound wave
strength [47], was estimated in dB(A) using an A-weighted
sound pressure level as a proxy for the measurement of
perceived loudness [54].

A voicing probability (VP) determines the speech-silence
pattern in the participants’ speech. It was obtained by
applying a voice activity detector algorithm, introduced by
Sohn et al. [55], over a segmented speech signal, in the
frequency domain to detect speech-present. The probability
threshold of transition from voiced to unvoiced frames was
set to 0.2, while the transition from unvoiced to voiced frames
was set to 0.1.

The zero-crossing rate (ZCR), the number of times the
speech signal passing the zero [38], was also extracted on
a frame level. Additionally, we tracked the first two formant
frequencies (F1 and F2) frame-by-frame throughout the speech
signal using the automated formant tracking tool, which
employs a recurrent neural network to consider temporal
information of signal’s frames [56].

Once these features are extracted across each speech sample
on a frame basis, several statistical functions were applied
over these frames to reduce the influence of tracking errors
(e.g., pitch-halving or pitch-doubling errors). These func-
tions include the mean, standard deviation (SD), third- and
fourth-order statistical moments (skewness and kurtosis), and
percentile range (90-10%) value. This lead to 125 bio-acoustic
features per speech sample.

3) Statistics: Statistical analysis was carried out to deter-
mine how speech task length and speech task type affected
bio-acoustic features’ reproducibility in men and women. Each
speech sample was segmented three times at different percent-
ages of speech recording length (25%, 50%, and 75%) with a
25% sliding window, resulting in nine speech sub-samples.
In seconds, these percentages are approximately equivalent
to 31 s (£6 ), 62 s (£12 s), and 93 s (£19 s), respectively.
Features calculated over 25% sub-samples were correlated
with those obtained from 25%, 50%, and 75% non-overlapping
randomly selected sub-samples. The correlation between fea-
tures calculated over 25% randomly selected sub-samples and
the full-length recording were also tested. Features extracted
from a similar duration of 50% from the beginning and end of
each recording were correlated. Therefore, correlation of five-
pair sub-samples were examined: 25% vs. 25%, 25% vs. 50%,
25% vs. 15%, 25% vs. 100%, and 50% vs. 50%. Additionally,
the speech characteristics calculated over the first ten seconds
of the counting task were correlated to those extracted from
the same duration of the reading-a-story task.

To assess the agreement level of the extracted features,
intraclass correlation coefficients (ICC) [57] were calculated
for individual features. ICC values of 0.00 —0.39, 0.40 —0.59,
0.60 — 0.74, and 0.75 — 1.00 were used to indicate poor,
fair, good, and excellent agreement, respectively. Features
with an excellent agreement level (ICC>0.75) were con-
sidered reproducible in this study. A two-way analysis of
variance (ANOVA) test was performed over the ICC values
to determine significant differences within the five correlation
measurements and gender.

I1l. RESULT

A. Effect of Speech Task Duration

Fig. 3 summarizes the number of reproducible features (ICC
> (.75) at different lengths of speech data for the reading-a-
story task. The number of reproducible features increased with
the duration of the speech task. Comparing features obtained at
25% with 100% speech duration, 82 and 81 acoustic features
were deemed reproducible in men and women, respectively.
The number of reproducible features decreased to 53 in men
and 57 in women when the same duration (25% sub-samples)
were correlated. There was no statistical difference between
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Fig. 3. Comparison of the number of reproducible bio-acoustic features as a function of correlated percentages speech data for men (left) and
women (right). Data were extracted for different durations of the reading-a-story task.

men and women (P = 0.52) in ICC values (out of 625) across
five paired measurements.

The ICC values for feature categories are shown in Fig. 4.
The duration had a considerable impact on source features’
reproducibility. Jitter parameters (out of 3) achieved poor
to fair reproducibility (ICC < 0.59) across different speech
durations (P = 0.30; Fig. 4a); gender difference is significant
(P = 0.05). Shimmer parameters’ agreement level (ICC <
0.71) was similar (P = 0.38) when considering different speech
lengths; there was no significant difference between men and
women (P = 0.33; Fig. 4b).

MFCC coefficients, MFCC delta, and MFCC delta-delta
contributed about 73% to the total of measured features (91
out of 125). MFCC parameters were affected by speech
duration (P < 0.05). Gender has no effect on ICC values of
these parameters (P = 0.73). MFCC features also had fair to
excellent reproducibility, with a mean ICC value around 0.75
in each measurement (Fig. 4c). Both MFCC delta and MFCC
delta-delta attributes were influenced by reducing speech task
length, resulting in a poor agreement level (ICC < 0.32;
Fig. 4d, Fig. 4e). Gender has a significant impact on ICCs
of MFCC delta (P = 0.02), but it has no effect on ICCs of
MFCC delta-delta (P = 0.60).

Spectral shape characteristics showed high stability across
reduction in speech task lengths. SR parameters (out of
3) achieved excellent reproducibility (ICC > 0.75) when
speech duration decreased from full recording to 25%, with no
significant gender difference was found (P = 0.23; Fig. 4f).
SC parameters (out of 2) had excellent and good-to-excellent
agreement level in men and women, respectively, when speech
duration is shortened (Fig. 4g). No significant difference was
observed in SC ICCs between men and women (P = 0.14).

SE and SF were reproducible across different speech durations;
no gender effect was found (P > 0.05; Fig. 4h, Fig. 4i).
SS and SK showed excellent reproducibility across dura-
tion reduction in men and women, as shown in Fig. 4j and
Fig. 4k; only a statistical difference was found in SS between
genders (P < 0.05).

In terms of prosodic features, gender and speech duration
reduction had a significant impact on ICCs of pitch parameters
(P<0.05); however, pitch achieved an excellent agreement
level ICC > 0.75) across all comparisons in both genders
(Fig. 41). A wide variation in loudness parameters was found,
ranged from fair to excellent agreement; no gender effect was
observed (P=0.75; Fig.4m). ICC values of ZCR parameters
showed fair to excellent agreement (> 0.40) in both men
and women, with no statistical difference was found between
genders (P = 0.20; Fig. 4n). VP attributes were varied and
considered non-reproducible in men, while women maintained
good to excellent ICC values (Fig. 40).

ICC values of formants features’ in men and women
were statistically different at P<0.05. Although F1 and F2
parameters were considered reproducible across all duration
comparisons (ICC > 0.75), duration reduction impacted ICC
values (P<0.05). At full sample duration, the ICCs of F1
parameters was around 0.95 for men and 0.93 for women.
These values decreased gradually to nearly 0.90 and 0.83 for
men and women, respectively, at the shortest speech length
(Fig. 4p). Higher stability was observed in men than in women
in ICCs of F2 parameters (Fig.4 q).

B. Effect of Speech Task Type

This experiment examined the reproducibility of
bio-acoustic qualities calculated over the first ten seconds of
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Fig. 4. The ICC values of bio-acoustic features for both men and women is shown in the scatter plot. The numbers on the x-axis can be interpreted
as follows; 1: ICC(25% vs. 25%), 2: ICC(25% vs. 50%), 3: ICC(25% vs. 75%), 4: ICC(25% vs. 100%), 5: ICC(50% vs. 50%).

two different tasks; reading-a-story and counting. Table III
summarizes the ICC values obtained by comparing these tasks
for men and women. Most features showed high variability.
Source features lost their reproducibility by changing speech
tasks. The mean ICC values of jitter parameters were —0.05
in men and 0.03 in women. Shimmer ICC values were ranged
between 0.002 and 0.07 and between —0.03 and —0.22 for
men and women, respectively. For both genders, a poor
agreement level was found in MFCC, MFCC delta, and
MFCC delta-delta parameters. SR showed good to excellent
stability in men (ICC > 0.60) and fair to excellent stability in

women (ICC > 0.47). For both genders, poor reproducibility
was found in SC and SE. Good and fair agreement levels were
observed in SS and SK for men and women, respectively.
The ICC of SF was around 0.5 for both genders. Speech task
type impacted pitch reproducibility in men (ICCs: 0.36-0.67)
and women (ICCs: 0.27-0.58). Variation in loudness and
ZCR attributes was observed when comparing counting and
reading tasks. VP was not a reproducible feature in both
genders when speech task type is changed. In men and
women, F1 parameters presented fair to good reproducibility,
and F2 parameters showed fair reproducibility.
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TABLE IlI
ICC VALUES OF MEASURED B10-ACOUSTIC FEATURES COMPARING
TwO SPEECH TASKS: COUNTING AND READING-A-STORY

Statistical ICC Value
Feature
measurements
Men Women
Mean —0.12 —0.06
Jitter SD ~0.13 ~0.03
Percentile range 0.09 0.18
Mean 0.07 —0.22
Shimmer SD 0.05 —0.07
Percentile range 0.002 —0.03
Mean, SD,
MFCCs Percentile range, 0.36 (£0.21) 0.35 (£0.20)
Skewness, Kurtosis
MFCC Delta Mean 0.13(£0.16) 0.09 (+£0.16)
MFCC Delta-delta Mean 0.03 (£0.08) —0.03 (+0.08)
Mean 0.79 0.78
SR .
Skewness 0.80 0.72
Kurtosis 0.60 0.47
SC Mean 0.68 0.54
Percentile range 0.48 0.37
SE Mean 0.57 0.53
SD 0.35 0.47
SF Mean 0.55 0.54
SS Mean 0.74 0.52
SK Mean 0.62 0.45
Mean 0.67 0.27
Pitch SD 0.68 0.58
Percentile range 0.60 0.41
Skewness 0.44 0.33
Kurtosis 0.36 0.33
Loudness Mean —0.18 —0.25
SD 0.31 0.40
VP Mean —0.32 —0.30
Mean 0.66 0.54
ZCR SD 0.40 0.45
Skewness 0.60 0.59
Kurtosis 0.23 0.27
Mean 0.46 0.56
F1 SD 0.67 0.65
Percentile range 0.47 0.55
Mean 0.51 0.47
F2
SD 0.44 0.50
Percentile range 0.43 0.56

V. DISCUSSION

We studied the effect of speech task duration, speech task
type, and gender on the reproducibility of bio-acoustic features
in normal adults. The main findings of our study are as
follows: (i) the reproducibility of acoustic features steadily

reduces proportional to speech duration down to about 30 s
across gender; (ii) acoustic speech properties are less repro-
ducible in less complex counting versus reading-a-story tasks;
and, (iii) Some spectral (spectral shape descriptors), prosodic
(pitch), and formants (F1, F2) features reached excellent repro-
ducibility in both genders at different speech duration. Some
spectral features (MFCC) and prosodic features (Loudness,
ZCR) achieved excellent reproducibility at a longer duration.
The reproducibility of source (Jitter, Shimmer), and other
spectral (MFCC delta, and MFCC delta-delta) features were
lost when speech duration was changed. There were significant
gender differences in jitter, MFCC delta, SS, pitch, VP, and
formants (F1, F2).

Interview based diagnostic and prognostic assessments for
common psychiatric illnesses, such as major depression, have
limited reliability and predictive accuracy [58]. Examining
reproducibility of acoustic features at different speech dura-
tions has become of clinical interest to improve the accuracy
of the assessment and provide valuable insights that can drive
the assessment. Few studies have explored the impact of voice
sample length on speech characteristics [31]-[33]. Previous
work has largely focused on evaluating only one type of
acoustic property against time. Scherer et al. suggested that
at least 3 s of recording are required for accurate reading
of speech perturbations [31]. To the best of our knowledge,
no study has systematically investigated the influence of
decreasing the length of a speech signal on the reproducibility
of bio-acoustic features in healthy individuals.

In our study, the source features’ measurements were
not reproducible when fewer voice samples were consid-
ered. Perturbation measurement stability is dependent on the
components of speech in the location of the selected seg-
ments, for instance, there is high variability between different
vowels [31]. Selecting a more stable speech segment, peri-
odic (repetitive) or nearly periodic (nearly-repetitive) waves,
leads to a more consistent result [59]. Based on the measure-
ments of logMel and MFCC features of cropped signals from
about 8 s to about 1 s, Neumann and Vu reported that a system
for emotion detection performed sufficiently, despite a slight
loss in accuracy compared to the use of full samples [32]. Our
study found that the reproducibility of MFCC features reduces
as duration shortens, which might cause a loss of prediction
accuracy in such a system [32].

We showed that the pitch parameters were reproducible
with reduced sample duration in both women and men.
A study on German speakers showed a substantial effect of
utterance length on the variability of FO measurements [33].
Zraick et al. also showed that the estimated pitch value of
White women varied for different speech durations [34]. Sev-
eral factors may have contributed to the differences between
our study and prior investigations, including speech task
type, differences of speakers’ language, and method used to
compute pitch. In this study, we limited our analysis to English
speakers who read a story, and the normalized correlation func-
tion method was used to extract pitch. Nishinuma et al. report
an effect of shorter sample duration on the loudness measure-
ment [60]. Similarly, we showed a wide variation in loudness
parameters across all duration comparisons. We demonstrated
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the considerable impact of duration on VP feature repro-
ducibility in men and women [61], [62].

A study of French and German speakers has shown that
decreasing the speech duration influences both F1 and F2 as
a function of vowel duration [63]. Although we observed a
similar pattern, where short speech data impacted formants’
qualities, the ICC values remained high (>0.75). For men
and women, formants measures were reproducible across
durations. We found higher stability in men’s formants than
women’s.

Several studies have investigated the impact of the speech
task on acoustic parameters [24], [64], [65]. Our study tested
the reproducibility of a wide range of voice parameters during
counting and reading-a-story tasks. Our results demonstrate
that changing speech tasks impacted at least 96% and 98%
of the measured acoustic qualities for men and women,
respectively, even if the duration was identical (10 s).

Several studies suggest that vowel type impacts shimmer
parameters [66], [67]. Similarly, we found that the shimmer
feature was not reproducible between tasks. Our results indi-
cate that although the task type had a significant effect on
the measurements of pitch features in women, it achieved
good reproducibility in men. This finding that is in line with
Sandage et al. [68] and Zraick et al. [25]. Hence, some spectral
shape descriptors (i.e., SR and SC) are relatively stable across
speaking tasks.

Gender differences in speech arising from difference in
vocal cord anatomy lead to dissimilarities in some acoustic
features such as FO and jitter [36], [48]. In our study, when
men and women were analyzed separately, we found that
significant differences in the correlation analysis of some
speech properties, including jitter, MFCC delta, SS, pitch, VP,
and formants, suggesting that the pattern of reliable markers
may be different across gender.

Our study has several limitations. First, we assessed the
reproducibility of bio-acoustic features derived from native
English speakers only and in a dataset with an identical record-
ing setup; we did not validate our findings on voice samples
across different datasets, languages or environments. Hence we
may have overestimated real-world generalized reproducibility.
Second, we only examined acoustic parameter reproducibility
in individuals with healthy voices. Furthermore, we conducted
our experiments in a restricted sample of participants aged 18
to 44 years (mean = 27 years), limiting generalizability to
older or younger individuals. Additionally, scripted speech
tasks, while allowing standardized comparisons, do not elicit
natural speech [69]. Our results need to be validated with
future studies on natural speech samples across more diverse
age groups, languages and environments, compared between
clinical and healthy control samples. Finally, given that the
content of the speech data impact the acoustic features, thus
when 25% of full speech duration was correlated with the full
recording duration, speech content of 25% is included within
the full recording, which may affect the correlation results.

V. CONCLUSION

This study has examined the effect of speech duration and
speech task on the reproducibility of bio-acoustic qualities.

Shortening the speech duration from full duration to 25%
of total speech duration reduces the speech features’ repro-
ducibility from 82 and 81 to 53 and 57 in men and women,
respectively. Thus, clinicians may have to collect a minimum
of speech data to achieve a high number of reproducible
bio-acoustic features (at least one minute and a half in the
case of the reading-a-story task). In addition, changing the
speech task has a significant effect on the measurements
of features; around 97% of features in both genders lost
reproducibility. Therefore, researchers may have to build and
train speech-task specific models (classifier/regressor). Gender
factor has a significant impact on the reproducibility of jitter,
MEFCC delta, SS, pitch, VP, and formants qualities.
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