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Epileptic Seizure Detection Based on
Bidirectional Gated Recurrent Unit Network
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Weidong Zhou , and Wei Shang

Abstract— Visual inspection of long-term electroen-
cephalography (EEG) is a tedious task for physicians in
neurology. Based on bidirectional gated recurrent unit
(Bi-GRU) neural network, an automatic seizure detection
method is proposed in this paper to facilitate the diagno-
sis and treatment of epilepsy. Firstly, wavelet transforms
are applied to EEG recordings for filtering pre-processing.
Then the relative energies of signals in several particular
frequency bands are calculated and inputted into Bi-GRU
network. Afterwards, the outputs of Bi-GRU network are
further processed by moving average filtering, threshold
comparison and seizure merging to generate the discrim-
inant results that the tested EEG belong to seizure or not.
Evaluated on CHB-MIT scalp EEG database, the proposed
seizure detection method obtained an average sensitivity
of 93.89% and an average specificity of 98.49%. 124 out
of 128 seizures were correctly detected and the achieved
average false detection rate was 0.31 per hour on 867.14 h
testing data. The results show the superiority of Bi-GRU
network in seizure detection and the proposed detection
method has a promising potential in the monitoring of
long-term EEG.

Index Terms— Epileptic seizure detection, scalp EEG,
bidirectional gated recurrent unit, wavelet transform.

I. INTRODUCTION

EPILEPSY is a chronic brain disease and epileptic
seizures caused by abnormal discharge of brain nerve

cells have complex and diverse clinical manifestations [1].
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In the diagnosis and treatment of patients with epilepsy,
electroencephalography (EEG) plays a central role since it
shows the electrophysiological activity of cerebral cortex in
a convenient and relatively inexpensive way [2], [3]. Long-
term EEG recordings are usually analyzed and inspected by
neurologists visually, which is a laborious and time-consuming
task. It is necessary to study automatic seizure detection
methods to provide timely treatment for people with epilepsy
and reduce the burden of neurologists.

One of the first seizure detection systems was introduced by
Gotman [4], in which three EEG measures including relative
amplitude, average duration of half-waves and coefficient
of variation were selected to recognize epileptic seizures.
Since then, many scholars have improved it and various
seizure detection methods have been proposed in the past
decades [5]–[8]. Feature extraction from EEG is one of
the important processes for most published seizure detec-
tion methods. To recognize the seizure EEG, many features
has been extracted from time, frequency and time-frequency
domain, such as spike rate, power spectral density ratio and
signal energy from wavelet transform or Hilbert–Huang trans-
form [9]–[12]. Meanwhile, a variety of nonlinear features, such
as largest Lyapunov exponent [13], fractal dimension [14], and
entropies [15], [16], also have been employed to study the EEG
difference between ictal and interictal phases. At present, some
detection systems have utilized the feature extraction ability
of deep neural networks [17], however, the extracted features
generally have no clear physical meanings.

Another important part of automatic seizure detection meth-
ods or systems is classifier. Support vector machine, random
forest and various artificial neural networks have exhibited
different performance in distinguishing seizure EEG [18]–[25].
However, the robustness and generalization ability of many
classifiers are unsatisfactory when the testing data has a
different probability distribution with that of the training data.
What’s more, the training of some classifiers, especially those
based on deep neural network, has high demand on the
amount of labeled samples and the configuration of hard-
ware [26], [27]. Thus the design of EEG classifier is still one
of research hotspots in the field of automatic seizure detection.

In this work, we propose a seizure detection method based
on relative energies of time-frequency EEG components and
bidirectional gated recurrent unit (Bi-GRU) neural network.
As a type of recurrent neural network (RNN), GRU network
has effectiveness at capturing long-term dependencies in long
sequence, and has superiority in structure and calculation cost
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compared with other RNN networks such as long short-term
memory (LSTM) network [28]–[34].Considering that epileptic
seizure has a dynamic evolutionary process and future EEG
information may be helpful for the pattern recognition of
current EEG, we designed a Bi-GRU network structure in our
seizure detection method. By adding a hidden layer with back
propagation GRU blocks, the Bi-GRU network analyzes the
EEG information in both forward and reverse time directions,
which thus can improve the detection performance. The results
on public and clinical EEG databases demonstrate that our
Bi-GRU-based seizure detection method has the advantages
of simple structure, low calculation cost and good ability in
mining dependency information in long-term EEG.

The remainder of this paper is organized as follows. The
EEG databases used in this work are introduced in Section II.
Section III focus on describing the proposed seizure detec-
tion method and the used performance evaluation method.
Evaluation results are exhibited in Section IV, and Section V
discusses on the proposed seizure detection method. Finally,
a conclusion of this paper is given in Section VI.

II. DATABASE

The EEG data used in this work partly come from
CHB-MIT scalp EEG database that was collected at the
Children’s Hospital Boston [35], [36]. In the process of EEG
data acquisition, International 10-20 system of EEG electrode
positions was used, with 256 Hz sampling rate and 16-bit reso-
lution. EEG recordings in CHB-MIT database were collected
from 23 epilepsy patients and were grouped into 24 cases,
among which case chb21 and chb01 were collected from a
same subject and 1.5 years apart. About 9 to 42 continuous
EEG files are available for each case, and most files contain
one hour of EEG recordings, excepting some files belonging to
cases chb04, chb06, chb07, chb09, chb10 and chb23, which
are two or four hours long. The EEG files in this database
include a total of 198 seizures, and the beginning and end of
each seizure has been annotated. The detailed information of
CHB-MIT EEG data used in this work is listed in Table I.
For each case, we constructed non-overlapping training and
testing datasets, which were respectively used to establish
and evaluate the seizure detection system. Except that the
EEG of one to five seizures were selected as training data,
non-seizure EEG were also included in training dataset. The
amount of non-seizure EEG in training dataset was equal to or
2-4 times to that of seizure EEG. In total, about 198.14 min
EEG recordings were served as training data for 24 cases.
In addition, the rest EEG recordings were applied as testing
data and the total duration was 867.14 h with 128 seizures
included.

The other part of EEG data used in this work were collected
from five epilepsy patients in Second Hospital of Shandong
University (SH-SDU), Jinan, China. In a total of 58.40 h scalp
EEG recordings, there are 41 seizures included, which have
been marked by clinical experts. For each patient, a training set
and a testing set were constructed following the same method
as CHB-MIT database. In total, the duration of training data
was 47.54 min and that of testing data was 57.56 h. The

TABLE I
INFORMATION OF CHB-MIT EEG DATA USED IN THIS WORK

TABLE II
INFORMATION OF SH-SDU EEG DATA USED IN THIS WORK

number of seizures in training and testing dataset respectively
were 12 and 29. Table II gives the details of SH-SDU dataset.

III. METHOD

The block diagram of the proposed seizure detection method
is presented in Fig. 1, which includes EEG pre-processing,
feature extraction, classification model based on Bi-GRU
neural network and post-processing. Each part of the detection
method is described in detail as follows.

A. Pre-Processing

In the pre-processing stage, continuous EEG recordings
are firstly segmented without overlapping by a sliding time
window with the length of 4 s. Then wavelet transform is
performed on the segmented EEG data. As a time-frequency
analysis method, discrete wavelet transform decomposes EEG
signals into detail and approximate coefficients to characterize
the signal components in different time-frequency regions [37].
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Fig. 1. Block diagram of the proposed seizure detection method.

Fig. 2. A segment of ictal EEG and its reconstructed signals.

In this work, Daubechies-4 wavelet is adopted as wavelet
function and EEG signals are decomposed in 5 scales. For the
EEG with a sampling rate of 256 Hz, the detail coefficients
in 5 scales respectively represent the signal components in the
frequency band of 64-128 Hz, 32-64 Hz, 16-32 Hz, 8-16 Hz
and 4-8 Hz. Obviously, the frequency bands in wavelet scale 3,
4 and 5 are approximately consistent with that of seizure
activity, whose is mainly in the range of 3-30 Hz [5]. The detail
coefficients in these three scales thus are selected to perform
single-scale signal reconstruction and feature extraction, and
all the reconstructed signals are equal in length with original
EEG.

Fig. 2 and Fig. 3 illustrate two segments of EEG and
their reconstructed signals. The signals shown in the top
panels of Fig. 2 and Fig. 3 respectively belong to ictal and
interictal EEG. After carrying out wavelet decomposition and
reconstruction on five scales, the reconstructed signals on
scale 1 to 5 are respectively presented as s1 to s5. As can
be seen in Fig. 2 and Fig. 3, the reconstructed signals on
scale 3 to 5 have obvious amplitude differences between two
classes of EEG.

B. Feature Extraction

Following the above pre-processing, feature extraction is
carried out on the reconstructed signals on scale 3, 4 and 5.
To facilitate the subsequent establishment of Bi-GRU neural
network, each EEG epoch of 4 s are subdivided into eight

Fig. 3. A segment of interictal EEG and its reconstructed signals.

time slices of 0.5 s. For each EEG channel in j -th time slice,
the relative energies of the reconstructed signal on the scale 3,
4 and 5 are respectively calculated as follows.

E R j (k) = E j (k) /
∑5

i=3
E j (i) (1)

Here, 1 ≤ j ≤ 8, and the value of k is 3, 4 or 5,
which indicates the wavelet scale. E j (k) is the energy of the
reconstructed signal s jk on k-th scale in j -th time slice, which
is given as:

E j (k) =
∑N

t=1

∣∣s jk (t)
∣∣2 (2)

where N is the number of sample points of the reconstructed
signal s jk , and the value of N is 128 in this work, because
the sampling rate is 256 Hz and the length of the signal s jk

is 0.5 s.
It can be seen from Eq. (1) that the relative energy values

represent the energy proportions of the signal components on
different wavelet scales. Relative energy values are in the range
0 to 1, and have different distributions in multi-resolution
scales for different EEG patterns and different seizure types.
For the part of an EEG recording where a seizure occurs, the
relative energy on a particular wavelet scale will rise.

For each segment of EEG with the length of 4 s, a
3 × 8 feature matrix can be obtained. To produce the feature
matrix for each 4-s EEG epoch, we stack the calculated relative
energy values according to the order of channels, for example,
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Fig. 4. Internal structure of GRU cell.

the feature matrix will have the dimension of 69 × 8 if there
are 23 EEG channels. The feature matrix of each epoch will
be inputted into the following classification model based on
bidirectional GRU network.

C. Bidirectional GRU Network

Like LSTM network, GRU was proposed to address the
gradient vanishing problem existing in recurrent neural net-
work [28], and it learns the long-term dependencies in long
sequence applications through internal gating mechanism.
A GRU cell has two gates, that is update gate zt and reset
gate rt . The activation of the gates in GRU only depends on
current input and previous output.

The internal structure of GRU cell is illustrated in Fig. 4,
where xt and ht respectively are the input vector and the
hidden state at time slice t, and h�

t is a candidate of hidden
state. At the time slice t , the reset gate rt determines how much
historical information is required to forget and the update gate
zt controls how to update the hidden state using the current
EEG information. The detailed formulas are given as follows.

rt = σ
(
Wr · [

ht−1, xt
])

(3)

zt = σ
(
Wz · [

ht−1, xt
])

(4)

h�
t = tanh

(
Wh� · [rt ∗ ht−1, xt

])
(5)

ht = (1 − zt ) ∗ ht−1 + zt ∗ h�
t (6)

In above formulas, σ(·) and tanh(·) respectively are the
sigmoid function and the hyperbolic tangent function. Symbol
· and ∗ represent matrix multiplication and Hadamard product
respectively, and [] is the concatenation of two vectors. Wr ,
Wz and Wh� are the weight matrixes to be learned by GRU
network training.

In GRU recurrent neural network, the information generally
propagates in order of time along the GRU cells of a hidden
layer. To utilize the dynamic evolutionary mechanism of
epileptic seizures and better capture the long-term dependen-
cies in EEG, a neural network model based on bidirectional
GRU is constructed in this work and its structure is presented
in Fig. 5.

As can be seen in Fig. 5, the proposed neural network
model has two hidden layers where the information propagates
in forward and backward direction respectively. Each hidden
layer has eight GRU cells respectively corresponding to 8 time

slices (T1-T8). The input xt of GRU cell is a vector consisting
of the relative energy values extracted from the multichannel
EEGs in t-th time slice, and the dimension of hidden state
output ht is about twice to thrice the length of the input. The
hidden states of the last GRUs of both directions of forward
and backward are then concatenated and transmitted into a
dense (fully-connected) layer with one neuron and a sigmoid
activation function. Thus, a single output variable is obtained
for each EEG epoch of 4 s.

Before the beginning of Bi-GRU network training, the fea-
ture samples of seizure EEG are up-sampled by interpolation
method to keep the amount of seizure samples equal to that of
non-seizure samples, if the duration of seizure EEG in training
dataset is less than that of non-seizure EEG. In this work,
the multiple of interpolation is determined by the duration
ratio of non-seizure EEG to seizure EEG in the training
dataset. In the training process of Bi-GRU network, Adam
optimization algorithm is selected and binary cross-entropy is
employed as loss function. The number of iterations is 300 and
batch size is set as 128. As a hyper-parameter, the hidden
state dimension of GRU cell is determined by k-fold cross-
validation and the value of k is selected as ten in this work.

D. Post-Processing

In the process of seizure detection from EEG recordings,
a series of post-processing are needed to carry out on the
outputs of the trained Bi-GRU network to obtain the category
labels of testing EEG. In detailed, a moving average filter is
firstly utilized to the output sequence to reduce the random
noises, which can be defined as:

y (i) = 1

2M + 1

∑M

k=−M
x (i + k) (7)

where x(i) is output of Bi-GRU network and y(i) denotes the
filtered signal. As can be seen in Eq.(7), y(i) is the average of
2M +1 points that include the current center point x(i) and its
neighborhood points on the left and right sides. 2M +1 is also
known as the order of the moving average filter. In this work,
the value of 2M + 1 is in the range of 5 to 11 and different
for each patient, which is determined by receiver operating
characteristic (ROC) curves.

Then the filtered outputs are compared with a threshold
determined in the training stage of Bi-GRU classification
model. The threshold is specific for each patient and deter-
mined based on the criterion of minimum misclassification for
training samples. After comparison with the selected threshold,
testing samples are labeled as seizure or non-seizure.

Finally, considered the frequency of epileptic seizures, those
seizures in a short time interval will be merged and regarded
as belonging to a same seizure event. The time interval used
in this work is 1 to 3 min.

Fig. 6 illustrates the post-processing procedures when multi-
channel EEG sequences in CHB-MIT database are tested
by the proposed seizure detection method. The EEG shown
in Fig. 6(a) comes from the F4-C4 channel of case chb02,
in which the part between two vertical lines is a seizure
event marked by clinical expert. Fig. 6 (b) presents the outputs
from the trained Bi-GRU network of chb02 and the sequence
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Fig. 5. Structure of the proposed Bi-GRU network.

given in Fig. 6 (c) is the result of moving average filtering.
In Fig. 6 (c), the parts with the amplitude greater than the
threshold indicated in red dotted line are considered as seizure
and are labeled as 1 in Fig. 6(d). As can be seen in Fig. 6 (d),
there are two parts labeled as 1 (seizure) and the interval
between them is less than 1 min. Then the two seizure parts
are merged in Fig. 6 (e) and we are of the opinion that one
seizure event is detected in the current EEG recording.

E. Performance Evaluation

To evaluate the performance of the proposed seizure
detection method, segment-based and event-based assessment
indexes are both applied in this work. In the segment-based
evaluation, detection sensitivity, specificity and accuracy rate
are used as evaluation criteria, which can be respectively
calculated by the following three formulas.

Sensi tivi ty = T P

T P + F N
× 100% (8)

Speci f ici ty = T N

T N + F P
× 100% (9)

Accuracy rate = T P + T N

T P + F N + F P + T N
× 100% (10)

In above formulas, TP (true positive) and TN (true negative)
respectively refer to the number of seizure and non-seizure
segments which are correctly recognized by our detection
system. FP (false positive) refers to the number of non-seizure
EEG segments incorrectly judged as seizure by the detection
system, and FN (false negative) is that of incorrectly labeled
seizure segments.

The method of event-based assessment uses sensitivity and
false detection rate (FDR) as evaluation criteria. Event-based
sensitivity is applied to describe the percentage of seizure
events correctly detected by the proposed system. For each

Fig. 6. A graphic illustration of post-processing procedures. (a) An
EEG sequence coming from one of channels of case chb02 in CHB-
MIT database, and the part between two vertical lines is a seizure
event marked by expert. (b) The output of the trained Bi-GRU network.
(c) The result after moving average filtering. (d) The binary decision after
threshold comparison. (e) The final detection result after merging the
seizures having the interval less than 1 min.

patient, FDR is defined as the average number of false detec-
tions per hour during the non-seizure period.
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TABLE III
RESULTS OF SEGMENT-BASED PERFORMANCE

ASSESSMENT ON CHB-MIT EEG DATA

IV. RESULTS

The proposed epileptic seizure detection method was imple-
mented on Matlab 2016a and TensorFlow 2.1.0 with Python
3.7.7, which were running on a notebook computer with a
2.9 GHz AMD Ryzen 7 4800H processor. The running time
in training stage of a Bi-GRU network is about 14 s and the
testing time taken for one-hour multi-channel EEG are about
41.8 s, among which the time for EEG pre-processing and
feature extraction is 41.2s.

The performance of the proposed seizure detection method
was evaluated on the testing data of all cases in CHB-MIT
database. The results of segmented-based and event-based
performance assessment are listed in Table III and Table IV
respectively. It can be noticed from Table III that a sensitivity
of 93.89% and a specificity of 98.49% were achieved averag-
ing on 24 cases in the segment-based performance evaluation.
Among all the cases, eight cases have the sensitivity of 100%,
and sixteen cases have the specificity and the accuracy rate
higher than 99%.

On the other hand, 124 out of 128 seizures in the testing
datasets were successfully detected and an average sensitivity
of 95.49 was achieved for 24 cases, which can be seen in
Table IV. In addition, there were 14 cases having the false
detection rate (FDR) less than 0.2 times per hour and high
FDR mainly occurred on the testing data of case 4, 8, 12,
14, 15, 21 and 23. In total, an average false detection rate of
0.31 times per hour was obtained.

Table V shows the results of the performance evaluation on
SH-SDU EEG data. The sensitivities of the first two patients
are less than 80%, and the specificity values of patient 1 and 4

TABLE IV
RESULTS OF EVENT-BASED PERFORMANCE

ASSESSMENT ON CHB-MIT EEG DATA

TABLE V
RESULTS OF SEGMENT-BASED PERFORMANCE

ASSESSMENT ON SH-SDU EEG DATA

failed to achieve 90%. Averaged on five patients, the sensi-
tivity, specificity and accuracy rate respectively are 87.08%,
88.65% and 88.55%. In addition, 2 out of total 29 seizures
are missed detection and the averaged false detection rate
is more than 1 per hour. The total results are not as good
as those of CHB-MIT database. One of the reasons is that
there are more noises and artifacts in SH-SDU EEG dataset
according to the clinical manifestations of some patients.
What’s more, high seizure frequency and short duration both
increase the detection difficulty, for example, the number of
seizures contained in about 20 h of testing data are up to 16 for
patient 1.

V. DISCUSSION

A. Characteristics of the Seizure Detection Method

In this paper, a seizure detection method based on bidi-
rectional GRU recurrent network is proposed, which was
tested on the scalp EEG datasets. In the proposed seizure
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detection method, wavelet transform is performed as a pre-
processing of multichannel EEG. In different decomposition
scales, wavelet transform has different time-frequency res-
olution, which overcomes the shortcoming of Short-Time
Fourier Transform (STFT) having fixed-size time window and
makes it suitable for the analysis of singular signals and non-
stationary signals. After carrying out a wavelet decomposition
on original EEG, the wavelet coefficients on scale 3, 4 and 5
are applied to signal reconstruction, which can function as a
filtering and is helpful for the classification between seizure
and non-seizure EEG, because seizure activity commonly
focuses on the frequency band of the three scales and the
reconstructed signals of seizure EEG in these scales have
obvious amplitude and energy difference with those of non-
seizure EEG. However, in the propagation and termination
phases of epileptic seizures, there are still existing some high-
amplitude/low frequency activities that are not in the frequency
range of scale 3 to 5. Neglecting these low frequency activities
in the seizure detection will produce some false negative
results.

In the subsequent feature extraction section, relative ener-
gies of the reconstructed signals on wavelet scale 3, 4 and 5 are
calculated respectively. Generally, the EEG shows a rhythmic
behavior when a seizure occurs, most of its energy thus exhibit
in limited scales of the multi-resolution framework, which is
different with interictal EEG that often spread across most
of the wavelet scales [37]. There are higher relative energy
values existing in a particular wavelet scale, which indicates
the presence of rhythmic activity and can be used for seizure
detection. The values of relative energy calculated from the
reconstructed signals on scale 3, 4 and 5 were combined into
feature matrixes and inputted into a Bi-GRU neural network.

In the proposed seizure detection method, Bi-GRU network
is adopted as classification model, which includes two hidden
layers and a dense output layer. Excepting the merits that small
calculation cost, fast training speed and needing small amount
of training samples, Bi-GRU network is designed in this work
because it propagates the information in positive and negative
time directions by two hidden layers and can thoroughly
capture the long-term dependencies in EEG sequences. The
seizure detection based on Bi-GRU network can achieve a
better detection results than that based on GRU when they
were tested on a same testing dataset. Table VI gives a compar-
ison on the detection results between GRU and Bi-GRU based
seizure detection methods. As can be seen in Table VI, the
segment-based sensitivity of 93.89 and event-based sensitivity
of 95.49 obtained by Bi-GRU based seizure detection method
are both higher than those of GRU-based method, which
means that Bi-GRU has a better detection performance for
seizure activity. Meanwhile, the higher specificity and the
lower FDR also indicate that Bi-GRU based detection method
has a more accurate classification ability for EEG patterns.

On the other hand, the performance of Bi-GRU based
detection method is more stable when system parameters are
changed. The dimension of hidden state in GRU cells is
a parameter influencing the performance of recurrent neural
network and generally without definite selection method.
To demonstrate the performance stability of Bi-GRU based

TABLE VI
COMPARISON OF GRU AND BI-GRU BASED DETECTION METHODS

Fig. 7. Comparison of classification accuracy rates between Bi-GRU
and GRU based detection systems. (Blue dots present the accuracies of
Bi-GRU based detection system corresponding to different hidden state
dimensions, and red diamond points are those of GRU based detection
system.)

detection system when the hidden state dimension is changed,
we tested on an interictal EEG file from case chb13 in CHB-
MIT database. The dimension is changed in the range of
69-207, with step length of 2. Here, the lower limit equal to the
input vector dimension of each GRU cell in the network of
case chb13, and the upper limit is set as three times to the
lower limit. Fig. 7 shows the accuracy rates corresponding
to different hidden state dimensions for GRU network and
Bi-GRU network. In Fig. 7, blue dots present the accuracy
rate values of Bi-GRU based detection system and the red
diamond points are those of GRU based system. Obviously,
the distribution of accuracy rate for the case with Bi-GRU is
more concentrated and stable when the hidden state dimension
is changed.

On the whole, the time-frequency energy analysis and
Bi-GRU network based classification model make the pro-
posed method perform well in seizure detection from scalp
EEG. Moreover, a series of post-processing strategies haven
been applied to the outputs of Bi-GRU networks, which
can further improve the detection performance. In the post-
processing procedures, moving average filtering is employed
to reduce the false detections caused by random noises and
sporadic fluctuations. However, the moving average filter is a
finite impulse response (FIR) filter and will produce a time-
delay influencing the segment-based evaluation results. It is
even possible that those seizures having short duration will
be missed detection because of the delay of moving average
filtering. It is obvious that a reasonable filter order is required
in order to balance its influence on the detection results. In this
work, the filter order was determined by plotting ROC curve.

Because the dynamics progress of epileptic seizures vary
greatly among different patients and EEG recordings have
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high heterogeneity in different patients and seizures, majority
of the current seizure detection methods are patient-specific
and generally fail to produce satisfactory detection results for
some patients in different datasets [38]. The seizure detection
method proposed in this work also is patient-specific, that
is, the established detection systems have patient-dependent
training dataset and parameters such as GRU output dimension
and threshold etc. In order to further analyze the performance
of the proposed seizure detection method, a case-independent
verification was also performed in this work. From the point of
clinic application, the training and testing data for a detection
system were selected from different cases. Using the EEG
of the first five cases in CHB-MIT database, we built a
training dataset with the total duration of 20.8 min. The trained
detection system was tested on the EEG data coming from
case chb06 to chb24, more specifically, we selected four EEG
files (at least two files containing seizures) from each case to
be used as testing data. On the testing dataset that has the
total duration of 75.8 h and contains 42 seizures, the case-
independent detection system obtained a sensitivity of 58.25%,
a specificity of 79.97% and an accuracy rate of 79.79%.
Obviously, the results of case-independent verification needed
to be further improved from the point of clinic application.

B. Analysis of Missed Detections and False Detections

When the seizure detection method proposed in this work
were evaluated on CHB-MIT dataset, there were 4 seizures not
be detected. The missed seizures respectively came from case
chb16, chb18 and chb21, and the missed detections may be
caused by low amplitude and unobvious seizure activity, for
example the seizures of case chb18 and chb21. In addition,
short duration of seizures and the moving average filtering
in post-processing also were the reasons leading to missed
detection. The EEG shown in Fig. 8 come from three of
channels of case chb16 and contain a missed seizure that is
the part in shade of grey. This seizure event only lasts 6 s.
Similarly, another missed seizure of case chb16 is illustrated
in Fig. 9, where the EEG in the beginning and ending parts
of the seizure event present low amplitudes and have little
difference with non-seizure EEG, although there is obvious
seizure activity in a short time that is about second 14 to 21.

On the other hand, some interictal EEG were incorrectly
labeled as seizures by the detection system, especially the
EEG files from case chb08 which has the average FDR up
to 1.37 per hour. The false detections in interictal EEG were
mainly caused by large amplitude epileptiform discharges and
artifacts contained in EEG recordings. As an example, Fig. 10
illustrates one of false detections of chb08, that is, the part
in shade of grey. It can be seen that there are obvious large
amplitude rhythmic activities existing in the channel of T7-P7
and P7-O1.

C. Comparison With Other Seizure Detection Methods

Table VII lists several exiting seizure detection methods for
comparison, all of which were evaluated on CHB-MIT EEG
database. In the work of Kiranyaz et al, a patient-specific clas-
sification system was proposed based on the collective network

Fig. 8. A missed seizure from case chb16.

Fig. 9. Another missed seizure from case chb16.

Fig. 10. Example of a false detection.

of binary classifiers, which obtained an average sensitivity
of 89.01% along with an average specificity of 94.71 over
a testing dataset of 146 h from 21 cases [39]. Zabihi et al.
investigated the dynamics of EEG signals and proposed
a seizure detection approach based on linear discriminate
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TABLE VII
PERFORMANCE COMPARISON OF SEVERAL SEIZURE DETECTION METHODS

analysis and naive Bayesian classifiers, which achieved the
average sensitivity of 89.10% and specificity of 94.80% when
the training rate was set as 50% [40]. To address the prob-
lem of off-line detection of epileptic seizures, Samiee et al.
proposed an EEG feature extraction method based on sparse
rational decomposition and local Gabor binary patterns, which
was assessed on 163 h of EEG recordings and obtained the
overall sensitivity of 70.4%, specificity of 99.1%, and false
alarms rate of 0.35 per hour [41]. Obviously, the detection
method proposed in this work outperformed the above methods
and yielded better results on a greater testing dataset.

In Table VII, the detection methods of Liang,
Hu and Tsiouris all adopted LSTM recurrent network
[42]–[44]. Liang et al. constructed a long-term recurrent
convolutional network as epilepsy detector by combining
CNN and LSTM, and a sensitivity of 84% with a specificity
of 99% were achieved when the detector was tested on CHB-
MIT database [42]. Hu et al. applied bidirectional LSTM
network to seizure detection after a local mean decomposition
of EEG. Tested on the EEG recordings of 24 cases, the
detection method of Hu et al. achieved an average sensitivity
of 93.61% with the specificity of 91.85% [43]. With the time
domain, frequency domain and graph theoretic EEG features
as inputs, a two-layer LSTM network structure was designed
by Tsiouris et al. to address the binary classification problem
between preictal and interictal EEG [44]. Compared with
these LSTM-based methods, the detection method proposed in
this work shows a comparable performance, as can be seen in
Table VII. Bi-GRU network has similar properties in capturing
the long-term dependencies in EEG as LSTM networks, but
with a simpler internal structure and fast training speed.

Yang et al. proposed a dual self-attention residual network
(RDANet) to recognize the preictal state from long-term EEG
recordings, and the RDANet obtained an averaged accuracy
of 92.07% on the EEG datasets of 13 selected patients [38].
In the work of Wang et al., a stacked one-dimensional

convolutional neural network (1D-CNN) model was proposed
for seizure detection, which achieved 88.14% sensitivity and
99.62% specificity on about 518.6 h of EEG dataset [45].
Sahani et al. combined a reduced deep convolutional stack
autoencoder with an improved kernel random vector functional
link network to recognize the epileptic seizure from EEG
recordings [46]. Compared with these deep neural networks
based detection methods, our Bi-GRU network based detection
method has comparable detection performance, but with a
simpler architecture and less computational cost.

Using the Stein kernel-based sparse representation,
Peng et al. proposed a seizure detection method that achieved
the sensitivity and specificity of 97.85% and 98.57%
respectively [47]. The automated seizure diagnosis system
of Shoka et al. presented a 100% sensitivity based on an
ensemble classifier, but the specificity was only 77.5% [48].
In addition, both the detection methods of Peng and Shoka
needed channel selection by computing the variance of
training samples. Unlike them, the seizure detection method
proposed in this work is insensitive to the number of EEG
electrodes, which can be different for different epilepsy
patients.

D. Limitations and Future Work

Although the proposed seizure detection method achieved
remarkable results on CHB-MIT EEG database, there are
limitations in the current work, which need to be further
studied. In one aspect, the number of GRU cells of each hidden
layer in Bi-GRU neural network is set as 8 in the current
method and the time slice corresponding to each GRU cell
is 0.5 s. The number of GRU cells and the length of time
slices are the parameters influencing how much information
participates in the recognition of EEG patterns, thus further
comparative experiments should be carried out on the selection
of these parameters to better mine the long-term dependencies
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in EEG sequences. In another aspect, the performance of our
seizure detection method are not good enough in the patient-
independent verification experiment and in the evaluation to
the clinical SH-SDU EEG dataset. As part of our future work,
great efforts will be made to research adaptive adjustment
method for system parameters to fit the EEG characteristics
of different epilepsy patients.

VI. CONCLUSION

With the purpose of decreasing the workload of EEG
monitoring units in the analysis of large EEG recordings and
therapeutic evaluation, an automatic seizure detection method
is proposed in this paper by combining the relative energy
of particular wavelet frequency bands with Bi-GRU neural
network. Benefitting from the considerable ability of Bi-GRU
network in mining the long-term dependencies containing in
EEG recordings in positive and negative time directions, the
proposed detection method achieved an average sensitivity
of 93.89% and an average specificity of 98.49% on CHB-
MIT scalp EEG database. Our detection method have obvious
advantages in the requirement for hardware equipment and the
amount of calculation, because it needs to extract fewer EEG
features and applies a simple structure for Bi-GRU network.
What’s more, the proposed detection method is insensitive
to the number of EEG electrodes and can be applied to
establish an effective detection system for specific epilepsy
patient. However, improving the detection performance in
patient-independent application and on those practical clinical
EEG data with more noises and artifacts is an issue worth
researching in our future work.
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