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Continuous Scoring of Depression From EEG
Signals via a Hybrid of Convolutional
Neural Networks

S. Hashempour™, R. Boostani*, M. Mohammadi

Abstract— Depression score is traditionally determined
by taking the Beck depression inventory (BDI) test, which is
a qualitative questionnaire. Quantitative scoring of depres-
sion has also been achieved by analyzing and classifying
pre-recorded electroencephalography (EEG) signals. Here,
we go one step further and apply raw EEG signals to a
proposed hybrid convolutional and temporal-convolutional
neural network (CNN-TCN) to continuously estimate the
BDI score. In this research, the EEG signals of 119 indi-
viduals are captured by 64 scalp electrodes through suc-
cessive eyes-closed and eyes-open intervals. Moreover, all
the subjects take the BDI test and their scores are deter-
mined. The proposed CNN-TCN provides mean squared
error (MSE) of 5.64+1.6 and mean absolute error (MAE) of
1.73+0.27 for eyes-open state and also provides MSE of
9.53+2.94 and MAE of 2.32+0.35 for the eyes-closed state,
which significantly surpasses state-of-the-art deep network
methods. In another approach, conventional EEG features
are elicited from the EEG signals in successive frames and
apply them to the proposed CNN-TCN in conjunction with
known statistical regression methods. Our method provides
MSE of 10.81+5.14 and MAE of 2.41+0.59 that statistically
outperform the statistical regression methods. Moreover,
the results with raw EEG are significantly better than those
with EEG features.

Index Terms— Beck depression test, CNN, EEG, TCN,
deep learning.

|. INTRODUCTION

EPRESSION, with more than 264 million individuals
involved globally, is a significant public health issue that
extensively exerts influence on people’s quality of life [1].
This mental disorder encompasses various physical and mental
manifestations, including sleep disruption, low self-esteem,
discouragement, appetite changes, poor concentration, and
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in chronic cases, suicide ideations [2]. Early diagnosis of
depression is crucial for more effective treatment [3], [4].
The revised Beck Depression Inventory (BDI-II) is frequently
used for depression screening by specialists [5]. This test
contains 21 questions, which aim to evaluate the feedback
and symptoms of depressed patients. The score of this test
can be discretely varied from 0 to 63 [6]. It should be
pointed out that the BDI-II test is qualitative and does not
stem from strong physiological basis. Since depression affects
the secretion of neurotransmitters in the human brain, it is
logical to expect that it influences the neurons’ electrical
activity, recorded using electroencephalography (EEG). This
signal, records the detailed physiological functions of the brain
and contains rich temporal information that can be decoded
and interpreted with various conventional feature extraction
techniques. EEG analysis is used for the diagnosis of different
brain diseases like bipolar manic depression (BMD) [7], [8],
seizure [9], sleep disorder [10], schizophrenia [11], anxi-
ety [12], Alzheimer’s [13].

To differentiate between the patients with depression and
normal subjects, Puthankattil and Joseph [14] estimated sev-
eral EEG features like relative wavelet energy (RWE), sample
entropy and applied them to a two-layer feedforward artifi-
cial neural network (ANN). They reported 98.11% classifica-
tion accuracy. Ahmadlou ef al. [15] presented a wavelet-chaos
methodology for characterizing the EEG signals captured by
the scalp electrodes located on the frontal brain lobe of
patients diagnosed with major deep depression (MDD). They
applied Higuchi and Katz fractal dimension to an enhanced
probabilistic neural network classifier. They achieved 91.3%
accuracy to distinguish MDDs from the healthy subjects.
In another attempt, Ahmadlou et al. [16] extracted nonlinear
EEG features, selected the most discriminative ones and
applied this subset of features to logistic regression to cate-
gorize healthy subjects from depressed ones. Faust et al. [17]
extracted both wavelet packet coefficients and entropy features
from the EEG of depressed patients and control subjects.
The selected features were classified using the probabilistic
neural network classifier, which yielded 98.20% and 99.50%
accuracy for the scalp electrodes located on the left and right
hemispheres, respectively. Acharya et al. [18] extracted sev-
eral nonlinear features such as detrended fluctuation analysis
(DFA), fractal dimension, higher-order spectra (HOS), Hurst’s
exponent (HE), largest Lyapunov exponent (LLE), recurrence
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quantification analysis (RQA), and sample entropy (SampEn)
from the EEGs of controls and depressed subjects. The esti-
mated features were ranked according to their significance and
fed into five different classifiers. They reported an average
accuracy of 98% using a support vector machines (SVM)
classifier. Liao et al. [19] utilized eigen-filter-bank common
spatial patterns (CSP) to extract Spatio-temporal EEG fea-
tures and then applied principal component analysis (PCA)
to achieve discriminative features. The features were applied
to an SVM, which led to the depression diagnosis accuracy
of 81.23%. Bairy et al. [20] used an EEG-based computer-
aided diagnosis (CAD) system for the diagnosis of depression
based on a linear predictive coding (LPC) scheme by using
HOS parameters to extract significant features for classify-
ing depressed from non-depressed subjects. They obtained
sensitivity, specificity, and accuracy of 91.46%, 97.45%, and
94.30%, respectively.

In a different approach, Acharya et al. [21] tried to dif-
ferentiate depressed patients from controls by applying their
raw EEG signals to a 13-layer convolutional neural network
(CNN). They attained 93.5% and 96% classification accuracy
using the scalp electrodes located over the left and right
hemispheres. Li er al. [22] focused on designing a CAD
system using CNN to detect mild depression. They reported
an accuracy of 85.62% for the mild depression diagnosis.
Saeedi et al. [23] developed a deep learning framework com-
prised of sixteen connectivity methods in eight EEG frequency
bands to detect MDD patients automatically. They introduced
the extracted images of connectivity from EEG signals and
applied them to a convolutional neural network, long short-
term memory (LSTM) network, and a combined CNN-LSTM
model. They achieved the highest accuracy of 99.24, the
sensitivity of 100, and the specificity of 99.25 using the
CNN-LSTM network.

To the best of the authors’ knowledge, no study has been
conducted to estimate the Beck score of subjects by analyzing
their EEG signals. In this regard, we have used a rich dataset
containing the EEG signals of 119 patients, all of whom
have executed the Beck test. To estimate the depression score,
we have deployed two approaches. In one approach, raw EEG
signals are applied to the proposed combinatorial convolu-
tional and temporal convolutional neural network (CNN-TCN)
to assess the Beck score. In another approach, we have
elicited informative features from their scalp EEGs and feed
them to the proposed CNN-TCN for estimating their Beck
score.

The remainder of this paper is organized as follows.
Section II introduces the characteristics of the deployed
dataset and then proposes the suggested candidate features and
the deep hybrid network. Section III illustrates the empirical
results and their merits and demerits with the results of the
compared methods. Finally, Section IV concludes the paper.

I[I. MATERIALS AND METHODS
A. Dataset and Preprocessing

We have used a publicly available dataset on PRED+CT
website [24], originally containing EEG signals of 121 subjects

(72 females and 49 males, 18.8641.19), among whom two
subjects’ practical information were missed and removed
accordingly [25]. The subjects have different depressive lev-
els. Among these enrolled participants, the Beck score of
76 subjects was in the range of 0-13, categorized as the
control group (without depression). The score of 14 subjects
was in the interval of 14-19 (mild depression), the score of
24 subjects was in the range of 20-28 (moderate depression),
and the score of 5 subjects ranged from 29-63, which is
considered as severe depression [26]. The data comprised
500 seconds of recorded signals via 64 channels with electrode
settings according to 10-20 standard EEG recording system
and sampling frequency of 500 Hz during the resting state.
The paradigm recording for subjects included eyes-opened and
eyes-closed events with varied sizes. All participants provided
written consent approved by the University of Arizona. Sub-
jects’ age is in the range of 18-25 years old, and are not having
any history of head trauma or seizures. They are not taking
any psychoactive medications. Participants are enrolled from
introductory psychology categories based on their BDI scores
in a mass survey.

To preprocess the EEG signals in this work, first, the
baselines of the signals are removed. Then they are passed
through a notch filter of 50 Hz [27], [28] for eliminating
the power grid effect. Subsequently, the signals are passed
through a bandpass filter with the cut-off frequencies of 0.2HZ
and 50HZ and following this, a Butterworth filter (order=35,
high cut=50HZ, low cut= 1HZ) is carried out [2]. In the
last step, the independent component analysis (ICA) is applied
to the filtered EEGs for eliminating the remaining undesired
components. This research utilizes the MNE-python package,
which uses a semi-automated ICA approach for parsing the
contaminations. Here, fastICA has been employed, which is
considerabely faster than conventional ICA approaches and
maximizes the non-Gaussianity. In this method, the mix-
tures are whitened by PCA and then decomposed by ICA.
Afterwards, the artifacts are detected via MNE. Then the
remaining ICA components are back-projected to the channel
space [29].

To process the raw data, EEG data is transformed into
two separate datasets: eyes-open and eyes-closed resting-state
datasets. The difference between the number of samples for
each subject and the memory size limitations enforced the
following steps. Firstly, we down-sampled the EEGs by a
factor of two to avoid approaching the Nyquist rate as well
as reducing the volume of input data. Secondly, two minutes
(3000 samples) of each subject’s EEG signals in eyes-open and
eyes-closed states are selected. The signals are segmented in
the interval of five seconds (1250 samples), where successive
windows have 90% overlap. Afterwards, for achieving more
consistent estimations, we balance the data, based on the
number of subjects, over the entire range of Beck scores. This
imbalanced problem stems from the fact that the sampling
probabilities vary across depression levels, which means that
the data is not uniformly distributed. Therefore, in each
window, the number of data points in depression classes is
equalized to the class with the lowest size (number of data
points).
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B. Feature Extraction

In the feature-based approach, for each subject, the EEG
data is segmented event-wise. Afterwards, the following
features are estimated for each individual’s signal [30].
We compute the features in four domains: (I) time-domain
features [28], including min, max, standard deviation, mean,
median, activity, mobility, complexity, kurtosis, 2nd difference
mean, 1% difference max, coefficient of variation, skewness;
(II) wavelet domain features [31], [32] including mean, stan-
dard deviation, and energy of wavelet approximation and
wavelet details; (III) complexity-based features [33] (mean of
the vertex to vertex slope, the variance of the vertex to vertex
slope); (IV) frequency domain features (max power spectrum
in the Delta, Theta, Alpha, and Beta bands, and the ratio of
Delta/Alpha [33], [34] and Delta/Theta band powers).

C. The Proposed Hybrid Deep CNN-TCN Network

The EEG signal can be viewed as a temporal series of brain
activity signals. EEG data collected over a period of time are
used to identify a variety of disorders. The suggested deep
network for both raw EEG data and elicited EEG features is a
cascade combination of CNN being capable of extracting local
characteristics and TCN which can efficiently be employed
for sequence modeling tasks by storing exceptionally lengthy
historical data to estimate the depression (Beck) score. CNN’s
are potent tools for feature learning, classification, and regres-
sion. In general, CNNs are comprised of three main layers:
(D convolutional layer, which performs the feature extraction
procedure via different linear and nonlinear functions (II)
pooling layer for reducing the spatial size of the feature map
by down-sampling process (III) fully connected layer in which
the regression task is performed by flattening the outputs of
previous layers into a single vector. In addition, some more
parameters such as the number of filters, kernel size, stride,
and padding need to be appropriately tuned for customizing
this network. CNN, despite its excellent feature extraction
strength, struggles to preserve time coherence. Although net-
works such as RNN and LSTM have been proposed to address
the matter of high-dimensional time-series data, they have
drawbacks such as the disappearance of gradient and higher
running time.

TCN is an extension of CNN, which is used in the tem-
poral sequence modeling tasks and has shown better per-
formance than canonical recurrent networks such as long
short-time memory (LSTMs) across a broad range of datasets
and tasks. [35], [36]. TCN utilizes causal 1D convolutions,
dilated convolutions, and residual layers. Combining dilated
convolutions and residual blocks results in high receptive field
size and addresses the computational complexity problem.
Moreover, using Causal convolutions in the architecture is
to prevent data from being transported from the future to
the past and to ensure that the output sequence is the same
length as the input sequence; Zero-padding is used [37].
Unlike the standard convolution layer, which can only look
back at history with size being linear with the depth of the
network, TCN using dilated convolution layers results in an
exponential enlargement of the receptive field size. In this
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Fig. 1. Temporal convolutional network (TCN) residual block.

layer, a filter is applied over a region more significant than
its size by skipping input data with a specified step similar to
pooling or stride convolutions since it increases the size of the
receptive field, but the output is equal to the input. 1D dilated
convolution operation for an input sequence x € R”, and a
filter h = {0, ...,k — 1} is defined as:

k—1
H(s) = (xxah) (s) = D h (D) Xs—axi (1)
i=0

where *; represents the convolution operation with dilation
factor d = 2°, v is the network level, & is the filter size, and the
term s —d x i demonstrates the direction of the past. Increasing
the dilated factor d exponentially with the network depth when
using dilated convolutions, ensures the full history coverage
by the receptive field. Figs. 1 and 2 show the architectural
components of the TCN model. As demonstrated in Fig. 1,
in the main path of the residual block [38] there are two dilated
casual convolution layers followed by a nonlinear rectified
linear unit (ReLU) layer [39], spatial dropout [40], and weight
regularization layers for generalization. Augmenting a residual
block to a TCN capacitates the receptive field twice Because
it has two basic causal convolutional layers. The residual
block’ output, computed by adding the input x to the series of
transformations F on this input, is presented in the following
equation.

O = activation (x + F(x)) 2)

Dilated convolution demonstrated in Fig. 2. is used to solve
the small receptive field size problem. The TCN block com-
prises several dilated convolutions with an input which is a
coefficient equal to the powers of two (incrementally).

In the obtained dataset, each subject has about 500 seconds
of recorded EEG signals captured by 62 proper scalp chan-
nels in addition to two more channels HEOG and VEOG.
The last two channels are removed in the preprocessing
phase.

In feature-based methodology, the input of the proposed
CNN-based network would be in the form of a matrix. In the
first step, each individual’s EEG signal is segmented at event
points. The signal comprises 12 unique events, and since
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Fig. 2. Dilated causal convolution with dilation factors, d = 1, 2, 4, and
filter size = 3.

each subject’s EEG data contains a variable number of events
from each distinct event, the number of segments formed for
each specific event differs. To achieve a more balanced data,
we equalize the number of sections regarding each unique
event to the minimum number of segments, which is 120.
As a result, the data structure for each subject becomes
(12, 120, k, 62), where 12 represents the number of unique
events, 120 represents the number of segments, k represents
the length of the signal data in each segment, and 62 is the
number of channels in each recorded signal. Subsequently,
31 linear and nonlinear features are extracted in each channel
of the segmented EEG signals. In this step, an array of (12,
120, 62, 31) is created for each individual, and since the last
two dimensions’ types are features, they are concatenated. The
network’s input matrix is generated by stacking the created
data for all 119 subjects in the dataset, leading to the final
multi-modal structure of ((119 x 12), 120, (62 x 31)).

To feed the features into the first convolutional network
(Conv2D, stride= (1,7)), we have to add another dimension at
the end of the input data with the value of 1 because the input
for the Conv2D should be a four-dimensional matrix. We con-
catenate the second and third dimensions for dimension reduc-
tion as they are both features; consequently, the final structure
of input data would be (1428, 120, 1992, 1). This layer is
connected to another Conv2D (stride= (1,3)) layer connected
to the TCN block, inspired by Bai ef al. [41]. Subsequently,
we use a dropout layer to avoid over-fitting and improve the
generalization of the model. This layer is connected to the final
fully-connected layer in which the regression is performed.
We use a ReLU function after each convolution layer and the
first dense layer. This function takes the value O for the neg-
ative inputs and the x value for the positive inputs x. Table |
presents the detailed information and parameter settings of
the proposed methodology, and conventional machine learning
methods parameters are shown in Table II. Parameters are set
by trying various network structures to avoid over-fitting and
reduce regression errors as much as possible. The high-level
information and parameters of the proposed design are men-
tioned in Fig. 3. For weight initialization of the proposed
network, Glorot uniform initialization is utilized, which is a
common initialization scheme for deep neural networks. The
overall algorithm of the proposed network id presented in
Algorithm 1. The same network has been obtained for the raw
EEG data analysis (eyes-open and eyes-closed data separately)
aiming for the BDI prediction. The source code is avail-
able at: https://github.com/HashempourSara/depression-score-
estimation
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Fig. 3. The proposed network structure in the high-level presentation.

Algorithm 1 Algorithm of the Proposed Model

Input: D: EEG signal of patients, L: BDIs of patients

Output: Trained Neural Network
Step 1: Data Preparation

LX=[LY=[]

2: for each patient signal in D and patient BDI in L do
3:  Split eyes open and eyes close sequence data
4. for each open/close sequence data do
5: Remove baseline
6: Notch filter
7
8
9

Band-pass filter
Butterworth filter

: ICA
10: EEG sequence windowing
11: Add created windowed signals to X
12: Add patient BDI with the number of created windows
to Y
13:  end for
14: end for

Step 2: BDI prediction
15: while not convergence do
16: Divide X, Y into b mini batches of size i =1 to b
17 Choose the i™ mini batch of X
18:  Compute the output of network
19:  Compute the errors (with Table I1I)
20:  Update the network weights
21: end for

D. Compared Methods

When the proposed network works with raw EEGs,
we compare it with the three successful deep learning-based
models, including the combination of convolutional neural
network and long short-term memory (CNN-LSTM) pro-
posed by Ay et al. [42], a 13 layer deep CNN offered by
Achariya et al. [21] and CNN based model introduced by
Li et al. [22].
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TABLE |
THE PROPOSED MODEL PARAMETERS AND SETTINGS
Parameters Setting values
Batch size 64
Optimizer Adam
Metric MSE, RMSE, MAE, R?
Learning Rate 0.0001
Epochs 50

TABLE Il
THE SETTINGS FOR CLASSICAL MACHINE LEARNING METHODS

Classical methods Parameters

KNN Number of neighbors=5
SVR C=100, kernel= rbf, max iter=-1
RF N_estimators= 100, max_depth=3, n_jobs=-1

TABLE IlI
THE REGRESSION METRICS FORMULAS

Formula Regression Metrics

1/n Zii? (i — )2 MSE (Mean squared error)

\/1/n Zi’f (yi — 9:)> RMSE (Root mean square error)

1/n =T lyi — il

=1 (vi/97)

MAE (Mean absolute error )

Rsquared

Another comprehensive comparison of the proposed
CNN-TCN method with the popular statistical machine
learning-based methods like support vector regression
(SVR) [43], K-nearest neighbor [44], and random forest [45]
is performed by applying the EEG features to them for
predicting the depression severity score. The feature selection
methodology used for the classical machine learning methods
is minimum redundancy maximum relevance, in which the fea-
tures are selected based on being the most relevant regarding
the target and the least redundant for the previously chosen
features.

In the K-fold cross-validation process, a model is trained
using (k — 1) folds as training data and tests it over the left
fold. This procedure is repeated k times until all folds have
a chance to be selected as the test set. The final result is
the average of the k evaluations. A 10-fold cross-validation
procedure is utilized for model evaluation using 10% of the
subjects as a testing set [46]. The overall performance is
computed by averaging the results from all ten assessments.

Standard statistical criteria for evaluating the methods used
in estimating the severity of depression by regression methods
have been used, including mean squared error, root mean
square error, mean absolute error, and R squared. The descrip-
tion and the formula of these measurements are presented in
Table III, in which y and § represent the actual and predicted
values.

I1l. RESULTS AND DISCUSSION

In this section, the depression score is determined in two
different manners: using raw EEGs and estimated EEG fea-
tures. As we mentioned before, just deep learning methods
are compared in the former manner, while in the latter mode,
the proposed deep learning is compared to SVR, KNN, and

random forest methodologies. Finally, the overall performance
in both states is computed by averaging the results over ten
folds. Normalization operations and window-wise balancing
for the raw data are performed to circumvent imbalanced data
distribution.

In the presented CNN-TCN structure, for the raw data man-
ner, discriminant features are extracted by the convolutional
layers and then feed these feature vectors to the TCN block to
perform the regression task. In the feature-based approach, the
secondary feature extraction is performed by the CNN blocks
and, following this, would be transformed into the TCN layers
for BDI estimation. As a sequence modeling manner, one of
the main limitations of TCN is that it may not be suitable
for processing temporally large datasets. Consequently, in the
proposed network, using 2D convolutions in the first two
layers, the network time steps and the number of features
are reduced before feeding them into the TCN block. This
reduction of features also accelerates the processing procedure.
As a result, the network might be less time-consuming and
contains fewer data samples leading to less complexity.

The moving average trends of MSE results per 10 folds
adopting deep learning-based networks can be compared
in Fig. 4, and as depicted in these graphs, the CNN-TCN
results surpass other methods. The overall results gained by
the feature-based CNN-TCN methodology and state-of-the-art
approaches are reported in terms of MSE, RMSE, R squared,
and MAE in Table IV. Furthermore, the results are enhanced
using the frame-wise raw-EEG-based regression prediction,
which is presented in Table V. Although the achieved results
by the proposed model and CNN-LSTM model are fairly close
to each other, the relative superiority of the introduced model
is that TCN structures perform better in modeling long-term
dependencies. It has a more extended adequate memory size in
comparison with LSTMs. Furthermore, to examine the effect
of the number of channels, the results of the deep learning
models are also compared using 14 and 32 EEG channels,
which is presented in Table VI. Additionally, regression results
for sampling frequencies of 250 and 1000 are depicted in
Fig. 5 to survey the impact of the varied sample rates. It can
be understood from this figure that number of samples affects
the network’s learning process, and the more the sampling
frequency is, the better results are achieved. The intra-subject
coefficient of variation (CoV) is computed in this study, which
is an average of the CoV in the error of predicted BDI
values calculated from windows of each individual’s EEG
data. The inter-subject CoV is an average value calculated
from the 10-times-10-folds error of predictions for all subjects.
The intra-individual and the inter-individual coefficient of error
variability for predicted BDI scores is 0.45, and 0.82 respec-
tively, indicating room for further improvement of the results.
It should also be noted that the proposed method is offline
in the training phase, and after the training procedure the
estimation of BDI values can be performed online.

A. Computational Complexity

The computational complexity of the proposed model with
the other three deep learning-based methods is also com-
pared, presented in Table VII, in terms of the number of
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Fig. 4. The comparison between the MSE results and moving average trends of deep models per fold using the raw a) eyes-open state EEG data,

and b) eyes-closed state EEG data.

TABLE IV
PRESENTATION OF THE REGRESSION RESULTS USING THE FEATURE-BASED APPROACHES

Approaches MSE+ SD RMSE+ SD MAE4+ SD R Squared+ SD

KNN 121.96£104  11.03£0.47 7.51£0.44 23.12+0.074

SVR 87+£3.77 9.3240.2 7.4£0.17 19.1840.03

Random Forest 79.5242.66 8.5140.15 7.31+0.16 32.254+0.023
Achariya et al., 2018 58.11+£18.1 7.54£1.08 5.27£0.46 46.1£0.16

Li et al., 2019 29.81+14.89 5.3+1.28 3.81£1.01 72.254+0.14

Ay et al., 2019 25.09+£5.1 4.98+0.49 10.88+5.14 76.68+0.047
Proposed feature-based model 10.81+5.14 3.214+0.73 2.411+0.59 90.261+0.046

Regression results vs. Sample
rates

10

RMSE

MAE

N & O W

m 250 1000

Fig. 5. Model results with twice and half times the default data sampling
rate.

flops (floating-point operations per second), inference speed
(number of examples per second), and the average training
time in 10 folds [47]. The CNN-TCN network superseded the
models by Li et al. [22] and Ay er al. [42] regarding the
complexity measurements by having less run time, fewer flops,
and more speed. This is because the LSTM network’s training
pace is significantly slowed by non-parallelizability, which
consumes excessive computational resources. TCN, on the
other hand, solves this difficulty by utilizing a backpropagation
path independent of the sequence’s temporal direction and
provides a unified approach that hierarchically captures low
and high-level temporal information with fewer complexities
and a larger receptive field size. Although the deep network
presented by Acharya et al. [21] were less complex than
our represented model, the superiority of the results obtained
by CNN-TCN is considerable compared to those of the
model proposed by Achariya et al. Moreover, the results
achieved by Li ef al.[22] network were moderately close to the
presented model results, while having higher computational
complexity.

B. Robustness

Diverse network configuration modes using TCN structure
are regulated. Ultimately, the best model parameters achieving
the highest performance are used for this study through trial-
and-error. Training and test curves are examined to avoid
over-fitting, and the most appropriate parameters are selected.
Furthermore, white noises with different intensities (SNRs of
10, 20, 30, and 40 dB) are added to the signal to show the relia-
bility of the network structure, and then the network results for
the eyes-open state are reported accordingly. As represented
in Table VIII, the differences in the regression results can be
considered minor, manifesting the robustness of the model
versus the increasing noise level.

C. Contribution

The model structure introduced in this research is the main
contribution of this article. This is because the number of
layers and the combination of CNN and TCN networks is a
new structure. The structure of TCN solely was also tested for
this study, which yielded poorer results than the combinatorial
model. We have utilized Conv2D layers in the primitive layers
of the model due to their outstanding ability in extracting
discriminant features. After rigorous examinations, we proved
that a combined CNN-TCN approach outperforms TCN.

In this study, for the first time, the BDI index, being a valid
criterion for detecting the severity of depression, is estimated
with a very small error. To the best of our knowledge, most
studies in the field of EEG-based depression diagnosis mainly
focus on the classification of normal vs. depressed subjects
or MDD diagnoses. We have used a rich dataset containing
individuals with mild, moderate, and severe depression. The
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TABLE V
COMPARISON OF THE REGRESSION RESULTS USING THE RAW DATA

Approaches Data acquisition state  ~ MSE+ SD  RMSE+ SD MAE+ SD R Squared+ SD
Proposed model Eyes-open 5.64+1.6 2.344+0.36 1.73+0.27 94.954+0.015
Eyes-closed 9.53+ 2.94 3.05+£ 046  2.32+ 0.35 91.47+ 0.02
Achariya et al., 2018 Eyes-open 39.56+7.15 6.26+0.54 4.974+0.5 64.62+ 0.064
N Eyes-closed 41.22+ 6.26 6.41 0.48 4.92+ 0.36 63.1410.056
Li et al.. 2019 Eyes-open 596 £ 1.14 243 +023 1.8 +0.16 94.67 + 0.01
” Eyes-closed 10.88+ 5.14 321+ 073 241+ 0.59 90.26 + 0.046
Ay et al., 2019 Eyes-open 20.02+ 3.53  4.45+£ 038 344+ 034 82.09+ 0.031
" Eyes-closed 23.69+4.19 4.8440.42 3.76+0.39 78.82+ 0.037
TABLE VI
COMPARISON OF THE RESULTS USING DIFFERENT NUMBER OF EEG CHANNELS
Network-Number of channels MSE RMSE MAE R Squared
Proposed model-32 channels 11.434+4.52  3.3140.65 2.4+0.048 89.7740.04
Proposed model-14 channels 23.67+8.77 4.78+0.89  3.57£75.52  78.8440.078
Li et al., 2019-32 channels 14.6+4.74  3.76+0.64  2.89+0.45 86.93+0.04
Li et al., 2019-14 channels 26.224+6.24  5.094+0.59  3.92+0.43 76.4940.05
Achariya et al., 2018-32 channels  49.51+8.78  7.00£0.62 5474044  55.74+0.078
Achariya et al., 2018-14 channels ~ 53.83+5.50  7.32+0.37  5.914+0.34  51.87+0.049
Ay et al., 2019-32 channels 2631+4.16 5.11£0.42  3.93+0.39  76.48+0.036
Ay et al., 2019-14 channels 53.83+£5.50  7.3240.37 5.91+0.34 51.87+0.049

TABLE VI
COMPUTATIONAL COMPLEXITY OF THE DEEP
LEARNING-BASED NETWORKS

can be utilized for EEG-based detection of other neurological
diseases too. However, one of the significant challenges in
this work is due to the inequality of the data size in different

Model Flops Training time _ Inference speed depressive states leading to an imbalanced data problem. The
Achariya et al., 2018 129746 313.84 1654.34 proposed model has its limitations. To begin with, TCN may
Ay et al., 2019 41208008 2915.29 129.42 r i mple dat tor durin luation mpared t

Li et al, 2019 3054482 432243 91.46 equire ample data storage during evaluation compared 1o
proposed model 10838963 339.03 87471 CNN networks since it needs to involve a reasonable size data
history. Also, for the hyper parameter tuning, methods such
TABLE VI

COMPARISON OF THE PROPOSED MODEL PERFORMANCE FOR BDI
PREDICTION BY ADDING GAUSSIAN NOISES AT DIFFERENT
LEVELS TO PROVE THE RELIABILITY OF THE NETWORK

as grid search, random search, and Bayesian optimization are
more convenient than the many time-consuming trial-and-
error approaches we have used. The deep learning models are
black boxes. Therefore, interpreting the network’s function

SNR__MSE+ SDMAE+ SD RMSE+ SD R Squared+ SD is important. For a more explanatory model, a regression
10 584282 1715043  2.27%037 94.1£0.025 mp : P y model, gress
20 628522 178503 3 475041 94.3850.019 activation map can be generated to explain the regression
30 671£244 1861034  2.54£045 94+0.021 results. As part of our future work, we aim to progress the
40 882+£3.54 2.13+0.44 2.9+0.62 92.11:£0.031 proposed methodology in the following ways to achieve
0 5.64+1.6 1.73£0.27 2.344+0.36 94.95+0.015

best network parameters have been derived by optimizing the
model’s error.

IV. CONCLUSION

more effective results in depression prevention, treatment,
and therapeutics area: (a) establishing future studies on larger
and more balanced datasets, (b) recording task-related EEG
signals to investigate the effect of different tasks (c) extracting
informative features, such as auditory evoked potential and
visual evoked potential.
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