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Abstract— Instrumented footwear represents a
promising technology for spatiotemporal gait analysis
in out-of-the-lab conditions. However, moderate accuracy
impacts this technology’s ability to capture subtle,
but clinically meaningful, changes in gait patterns that
may indicate adverse outcomes or underlying neurological
conditions. This limitation hampers the use of instrumented
footwear to aid functionalassessmentsand clinicaldecision
making. This paper introduces new transductive-learning
inference models that substantially reduce measurement
errors relative to conventional data processing techniques,
without requiring subject-specific labelled data. The
proposed models use subject-optimized input features
and hyperparameters to adjust the spatiotemporal gait
metrics (i.e., stride time, length, and velocity, swing time,
and double support time) obtained with conventional
techniques, resulting in computationally simpler models
compared to end-to-end machine learning approaches.
Model validity and reliability were evaluated against a
gold-standard electronic walkway during a clinical gait
performance test (6-minute walk test) administered to
N = 95 senior residents of assisted living facilities with
diverse levels of gait and balance impairments. Average
reductions in absolute errors relative to conventional
techniques were −42.0% and −33.5% for spatial and gait-
phase parameters, respectively, indicating the potential of
transductive learning models for improving the accuracy
of instrumented footwear for ambulatory gait analysis.

Index Terms— Ambulatory gait analysis, transductive
learning, support vector regression, wearable technology,
instrumented footwear.
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I. INTRODUCTION

SPATIOTEMPORAL gait analysis can aid the diagnosis
of neurological disorders in the elderly [1] and help

identify frail individuals [2] and those at increased risk of
falls [3], thereby informing more timely and effective treat-
ment plans [4]. However, expensive laboratory equipment and
the need for expert operation hamper the widespread use of
gait analysis in clinical settings. Instrumented footwear such
as smart shoes [5]–[8], insoles [9], [10], and on-shoe sensors
[11], [12], have the potential to provide a low-cost scalable
solution for gait analysis in unconstrained environments. How-
ever, these devices have so far demonstrated moderate validity
and reliability in capturing spatiotemporal gait parameters
in populations with gait impairments [13], [14]. Moderate
accuracy makes it difficult to detect subtle changes in gait
patterns that may be indicative of underlying neurological
conditions. Moreover, moderate levels of agreement with gold-
standard instrumentation preclude meaningful comparisons
with the vast body of published normative gait data [15].

The computation of temporal and gait-phase parameters
from raw time-series is typically achieved using force sensitive
resistors (FSR) [16] or foot-attached inertial measurement
units (IMUs) [13]. Estimating spatial gait parameters is more
challenging. In principle, these metrics can be obtained by
double integrating the accelerometric signals after compen-
sating for gravity. However, this method is hardly accurate
due to sensors noise and low-frequency drift. To mitigate
the effect of sensor drift, a widely used approach relies on
zero velocity update (ZUPT) and velocity drift compensation
(VDC). ZUPT re-initializes the integration process after each
gait cycle by setting the velocity of the foot to be zero
every time the foot is stationary on the ground (foot-flat
phase, FF [17]). VDC models the velocity drift between
two consecutive FF phases using linear [13], [18] or nonlin-
ear [11] models. The estimated drift is then subtracted from
the velocity signal. The possibility to apply ZUPT and VDC
represents a key advantage of foot-attached inertial sensors
over their trunk- and wrist-attached conterparts [19]. However,
ZUPT and VDC are not always effective with pathologi-
cal gait, wherein stationary FF phases might not be easily
detectable [13], [20].

To overcome the limitations of ZUPT and VDC, some
researchers have investigated the application of classical
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machine learning (ML) regression models, such as Gaussian
process regression (GPR) [21] and support vector regression
(SVR) [22]. In these studies, an inference model is trained,
which maps walking-related inertial features extracted from
fixed-duration epochs to a target spatiotemporal gait metric
(e.g., walking speed). Although these regression models are
not affected by integration error accumulation, they cannot
estimate walking speed with stride-by-stride granularity (i.e.,
the standard for spatiotemporal gait analysis) and their accu-
racy is heavily affected by the choice of hyperparameters
and input features. Therefore, in these approaches grid search
or random search with cross-validation are often required to
appropriately tune the hyperparameters and select the optimal
input features [23].

Other authors have proposed the use of learning-based
end-to-end inference models. Leveraging the vast expres-
sive power of deep-learning methods, these models directly
take the raw time-series from inertial sensors as inputs to
estimate a target gait parameter and therefore they are not
affected by the drawbacks of ZUPT and VDC. For example,
to measure stride length, Xing and co-workers used artifi-
cial neural networks (ANNs) [24], Hannink et al. applied
deep convolutional neural networks (DCNNs) [20], while
Wang and colleagues proposed the use of DCNNs and
deep recurrent neural networks (DRNNs) [25]. End-to-end
subject-specific models, in which training and testing data
originate from the same individual, are typically accurate.
However, due to inter-subject differences, the performances of
these methods is significantly degraded when subject-specific
labelled observations are not available during training [26].
Additionally, training deep-learning models typically requires
larger datasets compared to classical machine learning
models [26].

Collecting labelled data from each user is often unpractical
and expensive in behavioral and biomedical research, since it
requires tedious manual procedures or the use of specialized
laboratory instrumentation as ground truth. One solution is
offered by the transfer learning paradigm [27]. Transfer learn-
ing deals with the problem of domain adaptation, i.e., altering
an inference model previously learned in a source domain to fit
a new target domain for which limited or no labelled training
data are available. In the context of wearable sensing devices,
the target domain may represent a new user with different
anthropometric attributes or different body sensor placements.
Transfer learning approaches have been successfully applied to
activity classification problems [27] and, to a lesser extent, also
to predict continuous biomechanical variables [28]. However,
the performances of a transfer learning model are greatly
affected by the availability of labelled data from the target
domain [29]. An alternative approach that does not suffer
from this limitation is the transductive learning paradigm [30].
Unlike traditional (inductive) learning, transductive learning
exploits knowledge about the location of the unlabelled test
data with respect to the training data to provide direct infer-
ence on the test data, thereby trading model generalizability
for improved performances [31]. This approach has great
potential for use with connected wearables, given the growing
availability of affordable cloud storage and computing services

where previously collected labelled data can be used to train
transductive models on demand. While transductive learning
models have been proven to be effective in both classifica-
tion [32], [33] and regression [34]–[36] problems, none of
these past studies has investigated the application of transductive
learning methods to ambulatory gait analysis.

Building upon our previous works on SVR models for
ambulatory gait analysis [37]–[40], this paper introduces the
following new contributions: (i) a novel transductive learning
framework to improve validity and reliability of instrumented
footwear in estimating spatiotemporal gait parameters, without
the need for subject-specific labelled data; (ii) the validation
of the proposed method against gold-standard instrumentation,
in relation to conventional data processing techniques and to
our previous SVR models, with a cohort of elderly residents
of assisted living facilities; (iii) a study of the sensitivity of the
proposed transductive models to different levels of gait impair-
ment (as measured by a standardized clinical assessment) and
to the use of mobility aids; and (iv) a feature analysis for the
proposed models.

The rest of the paper is organized as follows. Section II
illustrates the experimental protocol. Section III introduces
the transductive learning framework for SVR models, and
Section IV describes the approach for data analysis. Results
are presented in Section V and discussed in Section VI.
Concluding remarks are reported in Section VII.

II. EXPERIMENTAL PROTOCOL

Ninety-five seniors age 65 and older were recruited from
five long-term care (LCT) facilities in the New York metropol-
itan area. Wearing instrumented footwear of appropriate size
(Fig. 1), each participant completed the 6-minute Walk Test
(6MWT) and the Timed Up And Go (TUG) test under the
supervision of a physical therapist. Both assessments took
place in the LCT facility where the participant lived. The
instrumented footwear is a research prototype developed in
the Columbia University Robotics and Rehabilitation Labora-
tory [41]. During the 6MWT, raw time-series acquired from an
IMU and four FSRs embedded in each footwear were logged
at 500 Hz. A 6-meter electronic walkway (Zeno Walkway,
Protokinetics LLC, Havertown, PA, US) located in the mid-
dle of a 25-meter long course served as the gold-standard
system for validating the inference models. The two sys-
tems were synchronized using a custom-engineered wireless
board. Descriptive characteristics of the study participants are
reported in Table I. The experimental protocol was approved
by the Columbia University Institutional Review Board and
all participants provided informed consent.

III. METHODS

The proposed inference framework is illustrated in Fig. 2.
In line with the transductive inference paradigm [31], the
locations of the test samples in the input feature space are
exploited to improve model predictions. To this end, for each
target user (i.e., for each iteration of the leave-one-out cross-
validation (LOOCV) loop), the algorithm produces an indi-
vidualized SVR model by leveraging the input feature vector
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Fig. 1. Instrumented footwear used in this study [41].

TABLE I
SUBJECT INFORMATION

Xte extracted from the target user. A detailed description
of the steps involved in the proposed method is reported in
Sections III-A to III-D.

A. Kernel Distance as Similarity Measure

Given a gait parameter of interest and a target user, the
procedure first identifies the subset of individuals that most
closely resemble the target user. These individuals will form
the hold-out validation subset for the feature selection step
described in Sec. III-B. To this end, the generalized distances
between the training dataset and the test dataset in the feature
space are computed as [36], [45]:

di, j = ||φ(Xtr
i (I )) − φ(Xte

j (I ))||
=

√
K tr

i,i (I ) − 2Ki, j + K te
j, j (1)

di, j is the generalized distance characterizing the degree of
similarity between the i -th training instance and the j -th test
instance. Vector I contains the indices of the selected input
features, which are measured by the instrumented footwear.
Xtr (I ) and Xte(I ) are the vectors of the selected input features
corresponding to the training dataset and the target user,
respectively. φ (·) represents the feature mapping function,
which maps the selected subset of input features X (I ) into
the high-dimensional feature space. K tr

i,i and K te
j, j are entries

of the kernel matrices corresponding to the training dataset
and the test dataset. K is the kernel matrix defined as

K =
⎡
⎢⎣

k(Xtr
1 (I ), Xte

1 (I )) · · · k(Xtr
1 (I ), Xte

M (I ))
...

. . .
...

k(Xtr
L (I ), Xte

1 (I )) · · · k(Xtr
L (I ), Xte

M (I ))

⎤
⎥⎦ , (2)

Fig. 2. Proposed transductive learning framework for a chosen gait
parameter. Xtr and Xte represent the training dataset and the test
dataset, respectively. Xte is obtained from the selected target user (i.e.,
a particular iteration of the leave-one-out cross-validation (LOOCV) loop),
for whom the individualized SVR model is being trained. Xtr is extracted
from the other N − 1 subjects. The best subset of input features Iopt
and the best hyperparameters Hopt for the individualized SVR model are
estimated by a genetic algorithm (GA), using a subgroup of individuals
whose input features are the most similar to the target user, according
to a normalized kernel distance D. Accuracy (mean absolute error,
MAE) and precision (standard deviation, SD) of the individualized SVR
model relative to the gait measurements obtained with gold-standard
instrumentation (Yte) are computed for model validation purposes. It is
worth noting that Yte is only used for model validation, therefore it is not
available at train time.

where k (·) is the kernel function, and L, M are the total
number of instances in the training and the test dataset,
respectively. The normalized distance Dl between the l-th
individual in the training dataset and the target user is given
by

Dl =
∑Ns,l

i=1

∑M
j=1 di, j

Ns,l
, (3)

where Ns,l is the total number of training instances in the l-th
subject’s dataset.

B. Feature Selection and Hyperparameters Tuning

As shown in Fig. 2, an efficient heuristic optimization
method (genetic algorithm, GA [46]) determines the best
subset of input features Iopt and the best SVR hyperparameters
Hopt for the target user. The GA operates through a nested
cross-validation loop, wherein the NG A individuals that are
the most similar to the target user in terms of normalized



ZHANG et al.: TRANSDUCTIVE LEARNING MODELS FOR ACCURATE AMBULATORY GAIT ANALYSIS IN ELDERLY RESIDENTS 127

distances (3) form the hold-out validation subset, and the
remaining (N − 1 − NG A) individuals form the training subset
for an auxiliary SVR model. The number of individuals in the
validation subset NG A , the input feature subset IG A, and the
SVR hyperparameters HG A are the optimization variables. For
each iteration of the GA, model performance (as quantified
by the mean absolute error, MAE) is evaluated for each of
the NG A individuals in the validation subset, and the average
MAE is used as the cost function for the GA. This procedure
is repeated until a stopping criterion is met.

In summary, because Iopt and Hopt maximize model accu-
racy on the group of individuals in the training dataset that
most closely resemble the target user, they are regarded as
the optimal parameters to train an individualized SVR model
based on the training dataset

(
Xtr (Iopt ), Y tr

)
consisting of

N − 1 individuals, by following the SVR procedure discussed
in Sec. III-D. It is worth noting that, since model training is
performed on the largest available dataset (as opposed to the
Nopt most similar individuals), the resulting SVR model is
less prone to overfitting.

C. Feature Extraction

The set of candidate input features include the following
variables:

1) Spatiotemporal Gait Parameters: The conventional proce-
dure to estimate spatiotemporal gait parameters using instru-
mented footwear starts from the determination of gait events.
The timing of the initial contacts (IC) events is computed
based on underfoot FSRs [16]. Toe-off (TO) events are
detected from IMU data using the method described in [47].
This was motivated by preliminary tests indicating that FSRs
could not accurately capture TO events in this population
of older adults. Stride time (ST) is defined as the time
interval between two consecutive ICs of the same foot. Swing
time (SW) is computed as the time interval between the
TO of the current stride and the IC of the same foot’s
next stride, and SW% is determined as the ratio between
SW and the corresponding ST. Double support time (DS)
is calculated as the time interval between the IC of the
contralateral foot and the TO of the ipsilateral foot. FSRs are
used to determine foot-flat (FF) periods. Foot displacement
over consecutive FF periods is computed by double integration
of the gravity-corrected accelerometric signals, using ZUPT
and VDC as detailed in [41]. The integration interval between
consecutive FF periods is delimited by the time instant with the
lowest acceleration magnitude within each FF period. Stride
length (SL) is calculated as the L2-norm of the displacement
vector and stride velocity (SV) is defined as the ratio between
SL and the corresponding ST.

2) Inertial Features: Inertial features are computed between
two consecutive FF periods of the same foot. They include
the L2-norm of the foot acceleration (|a|), as well as the
root mean square (rms), maximum (max), sum, energy,1 and
sample entropy2 of the vertical (az), anteroposterior (ax ) and
mediolateral (ay) projections of the foot acceleration.

1Energy of a time-series is defined as the sum over the squared values of
the time series data.

2Sample entropy quantifies the degree of randomness in the time series data.

3) Anthropometric Features: Anthropometric attributes
include height, weight, body mass index (BMI), shoe size,
age, gender, and type of walking assistance (i.e., walker/cane,
or no assistive device). Dummy coding was used to include
categorical features in the SVR models.

D. Support Vector Regression (SVR)

The goal of the SVR models is to reduce measurement
errors in the gait parameters obtained with the conventional
data processing techniques described in Sec. III-C.1. SVR
was selected over neural networks because the former has
superior generalization accuracy and global optimization prop-
erties [48]. SVR models estimate a gait parameter at the i-th
stride as

Ŷ tr
i = f (Xtr

i (I ), β) = βT φ
(
Xtr

i (I )
)

(4)

Y tr
i is the reference value of the gait parameter at the i-th

stride measured with the gold-standard equipment and Ŷ tr
i

is the corresponding SVR estimate. Xtr
i (I ) is the vector of

input features (restricted to the subset of features I ), measured
over the same stride. The weights vector β is determined
by numerically solving the constrained convex optimization
problem

min
||β||2

2
+ C

L∑
i=1

(ξi + ξ∗
i ) (5)

subject to Y tr
i − βT φ

(
Xtr

i (I )
) ≤ ε + ξ∗

i ,

i = 1, . . . , L

βT φ
(
Xtr

i (I )
) − Y tr

i ≤ ε + ξi , i = 1, . . . , L

ξi , ξ
∗
i ≥ 0, i = 1, . . . , L (6)

where ε and C are the SVR hyperparameters. The former
is a user-defined tolerance, the latter determines the trade-off
between the flatness of f (X (I ), β) and the extent to which
deviations larger than ε are penalized. ξ and ξ∗ are slack
variables, bounding regression errors that are tolerated. Based
on our previous work [37]–[39], Gaussian radial basis func-
tion (RBF) was selected as the type of kernel function,
and the sets of candidate values for the hyperparameters
were restricted to the following: C ∈ [1 2 5 10 100], ε ∈
[0.1 0.2 0.5 0.8 1 1.2 1.5 2 2.5 3].

E. Data Processing Methods

To highlight the advantages of the proposed transductive
models in estimating stride-by-stride spatiotemporal gait met-
rics, relative to the conventional data processing procedure and
relative to our previous work [39], we compared validity and
reliability of the following methods:

1) Conventional Method (CONV): This is the conventional
data processing procedure described in Sec. III-C.1. This
method, unlike the following ones, does not rely on inference
models and therefore it does not require training. The CONV
method was included in the analysis to verify whether the
complexity of SVR models is well-justified by improvements
in accuracy and precision.
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2) Subject-Specific SVR Models (SS): With the SS method,
SVR models are trained independently for each subject, using
that subject’s labelled data. For a given set of input features,
this method yields the best performance that can be obtained
using SVR. However, since subject-specific labelled data are
required for each individual, the method has limited practical
applicability. Each model is evaluated using 10-fold cross-
validation. Within each fold, feature selection and hyperpa-
rameters optimization is achieved using GA, via a nested 9-
fold cross-validation procedure wherein the cost function is
the average MAE across the 9 folds [39].

3) Generic SVR Models (GN): This method generates one-
size-fits-all models using LOOCV [39]. Within each training
dataset (i.e., data from (N-1) individuals), feature selection
and hyperparameters optimization is achieved using GA, via
a nested 10-fold cross-validation procedure similar to the one
used for SS, in which the cost function is the average MAE
across the 10 folds.

4) Transductive SVR Models (TR): This method represents
the main contribution of this paper. It generates individualized
models using an optimized subset of labelled data taken from
other individuals, as described in Sec. III-A and Sec. III-B.

IV. DATA ANALYSIS

A. Statistical Analysis

For each gait parameter, we assessed the interrater
reliability of each data processing method relative to
the ground-truth system using intraclass correlation coeffi-
cients (ICC), by employing a single-measurement, absolute-
agreement, two-way mixed-effects model. Point estimates of
the ICC were rated as poor (< 0.5), moderate (0.5 to 0.75),
good (0.75 to 0.9), and excellent (0.9 to 1) [49].

Validity of the data processing methods was evaluated
by calculating the MAE and the standard deviation of the
errors (SD) for each gait parameter relative to the ground-
truth values. MAE and SD were regarded as metrics of
accuracy and precision, respectively, since they are widely
used in the validation of wearable sensors [11], [13]–[15], [20],
[21], [26], [50]. We applied repeated-measures ANOVA with
processing method (CONV, SS, GN, TR) as within-subject
factor, walking condition (non-assisted vs. assisted walking)
as between-subject factor, and MAE and SD of the five gait
parameters as dependent variables. Study participants who
used a walker or a cane to perform the 6MWT were included
in the assisted walking group. Mauchly’s test was applied to
check sphericity, and the Huynh-Feldt correction was applied
if Mauchly’s test indicated that the assumption of sphericity
had been violated. When significant (α < 0.05) effects were
identified, post-hoc comparisons using the Bonferroni-Holm
correction were applied as appropriate.

The level of accuracy of inertial sensors for ambulatory gait
analysis typically degrades when those sensors are applied
to clinical populations with motor deficits. Thus, Spearman’s
correlation analysis was carried out separately for each gait
parameter to assess the effect of gait and balance impairment
on the accuracy of the four data processing methods. The TUG
score was selected as a surrogate metric for gait and balance

impairment [51], and percentage MAE values were regarded as
representative of model accuracy, to account for inter-subject
biometric differences. The strength of the correlation was
interpreted as negligible (|ρ| < 0.3), low (0.3 ≤ |ρ| < 0.5),
moderate (0.5 ≤ |ρ| < 0.7), high (0.7 ≤ |ρ| < 0.9), or very
high (0.9 ≤ |ρ| < 1.0) [52]. All statistical analysis was carried
out in SPSS v28 (IBM Corporation, Armonk, NY).

B. Feature Analysis

For each gait parameter, we determined the permutation
feature importance PFIl,i , which yields the importance of the
l-th input feature as related to the measurement errors of the
TR model tailored to the i -th target user [53], [54]:

PFIl,i = MAEperm
l,i

MAEorig
i

(7)

MAEorig
i is the original MAE of the i -th TR model for a

given gait parameter, while MAEperm
l,i is the MAE obtained

by randomly permuting the l-th input feature within Xte, and
feeding the altered input vector to the same TR model. The
PFIl,i values are averaged across all subjects for whom the l-th
input feature is included in Iopt , resulting in a single scalar
metric per each gait parameter. Because this procedure would
not be applicable to the anthropometric features (since they
remain the same for any given target user), the following mod-
ified equation was used in place of (7) for all anthropometric
features

˜PFIl,i = 1

Nl

∑Nl
n=1 MAEn

l,i

MAEorig
i

, (8)

where Nl is the number of possible values that the l-th feature
can take (e.g., if l indicates sex, then Nl = 2) and MAEn

l,i was
computed by setting the l-th feature in Xte to its n-th value.

V. RESULTS

A total of 9253 strides were collected simultaneously by
the instrumented footwear and by the reference system. The
number of strides per individual varied from 42 to 159
(97.4±24.6 mean and SD), depending on their velocity
during the 6MWT. SL varied from 11.13 to 164.20 cm
(83.83±25.93 cm), SV varied from 10.29 to 151.60 cm/s
(70.40±26.73 cm/s), ST varied from 0.74 to 2.41 s
(1.24±0.22 s), SW varied from 0.08 to 0.89 s (0.39±0.08 s),
and DS varied from 0.05 to 0.93 s (0.23±0.08 s).

Training and testing of the inference models were conducted
on a 4 GHz Intel® Core™ i7-6700K using MATLAB (The
Mathworks Inc., Natick, MA). In the TR models, NG A ranged
from 1 to 10 subjects. For each each gait parameter, it took
approximately 180 minutes, 40 minutes, and 8 minutes to train
GN, TR, and SS models, respectively.

A. Interrater Reliability

Intraclass correlation coefficients are reported in Table II.
In general, SVR models showed superior equivalence with
the gold-standard equipment compared to the CONV method.
However, differences in equivalence between CONV and SVR
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Fig. 3. Mean absolute errors (MAE) and standard deviation of the error (SD) for each gait parameter, averaged across all study participants who
completed the 6MWT with (yellow) and without (blue) a mobility aid. Clusters represent the four processing methods analyzed in this study. Error
bars indicate ±1SE.

Fig. 4. Bland-Altman plots for the spatiotemporal gait parameters analyzed in this study, comparing the CONV methods (black) with the proposed
TR models (red). In these plots, each dot represents a footfall, while dashed and solid horizontal lines indicate 95% limits of agreement (±1.96SD)
and average errors, respectively.

TABLE II
INTRACLASS CORRELATION COEFFICIENTS FOR THE FOUR

PROCESSING METHODS. VALUES BETWEEN

PARENTHESES INDICATE 95% CI

TABLE III
ACCURACY (MAE) AND PRECISION (SD) OF THE ESTIMATED GAIT

PARAMETERS (POOLED DATA, INCLUDING BOTH ASSISTED AND

NON-ASSISTED WALKING CONDITIONS)

methods were significant only in SW and DS, for the TR
and SS models (as indicated by the confidence intervals (CIs)
in Table II). The interrater reliability of SVR models slightly
degraded when subject-specific training data were not avail-
able, and this effect was more marked for GN models than
it was for TR models. Importantly, TR models demonstrated
better stability (i.e., smaller CIs) than GN models.

B. Validity

Fig. 3 shows the error metrics (MAE and SD) in the gait
parameters for the four data processing methods, grouped by
walking condition. Fig. 4 illustrates the Bland-Altman plots
of all gait parameters for the CONV and the TR methods.
The error metrics and the Bland-Altman plots were determined

TABLE IV
p-VALUES OF THE TWO-WAY REPEATED-MEASURES

ANOVA (PM = PROCESSING METHOD,
WC = WALKING CONDITION)

based on reference stride-by-stride data obtained with the gold-
standard system. The MAE averaged across all study partic-
ipants are reported in Table III, along with their SD. Results
of the repeated-measures ANOVA are shown in Table IV and
post-hoc analyses are reported in Table V.

The processing method significanlty affected the accuracy
of SL and SV. MAE values in these gait metrics were
significantly smaller when using all SVR models compared to
the CONV method (Table V). SS models outperformed both
GN and TR models in these two gait metrics, indicating the
advantages of exploiting subject-specific labelled data, when
they are available. On the other hand, it is worth noting that TR
models yielded significantly smaller MAE than GN models,
despite relying on the same set of available labelled observa-
tions (i.e., non subject-specific). The processing method also
affected the MAE of ST. Interestingly, the CONV method
yielded the most accurate results in ST (Tab. III), confirming
the validity of conventional approaches based on FSRs to
estimate this temporal parameter of gait [16]. Indeed, the
CONV method outperformed both SS and GN methods (but
not TR) in terms of accuracy. It is worth noting, however,
that the increase in MAE between CONV and GN and SS
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TABLE V
ADJUSTED p-VALUES OF THE POST-HOC ANALYSES FOLLOWING ONE-WAY REPEATED MEASURES ANOVA. THE BONFERRONI-HOLM METHOD

WAS USED TO ADJUST FOR MULTIPLE PAIRWISE COMPARISONS ACROSS THE PROCESSING METHODS

was very modest (on average, less than 2.1 ms, which in our
sample corresponded to only 0.09∼0.3% of the stride time),
thereby indicating that all methods yielded excellent validity
in estimating ST. Regardless of the processing method, errors
in ST were larger for individuals who walked with a mobility
aid. We reason that walking with a mobility aid augments an
individual’s forward lean, which in turn negatively impacts
the accuracy with which IC events are detected, by altering
the foot loading patterns upon which IC detection algorithms
are based. In terms of gait phase variables (SW and DS),
the accuracy of the processing methods depended on whether
individuals walked with or without a mobility aid, as indicated
by the significant interactions (Table IV). Separate one-way
repeated-measures ANOVA (Table V) indicated that the TR
and SS methods significantly outperformed the CONV method
in both SW and DS for individuals requiring a walking aid, but
the improvement was only marginal for the GN method. For
the non-assisted walking condition, instead, results replicated
those obtained for the MAE of SL and SV (i.e., all SVR
models outperformed the CONV method). Unlike ST, gait
phase metrics require the detection of both IC and TO events.
We explain the difference in the performance of the CONV
methods between ST and gait phase metrics by noting that
capturing TO events is far more challenging than detecting IC
when using foot-attached sensors, especially with elderly and
impaired gait.

The analysis of the error variability (SD) for SL and SV
revealed a significant effect of the processing method, with
all the SVR models significantly outperforming the CONV
method (Table V). The SVR models for SL and SV performed
similarly in terms of precision, except for the TR method,
which resulted in significantly worse precision compared to
the GN method. We explain this result with the type of cost
function chosen for the GA optimizer, which only accounted
for accuracy. Similarly to the MAE, the precision of ST
was negatively affected by the use of a walking aid, irre-
spective of the processing method. We found a significant
effect of the processing method on the precision of ST, but
the post-hoc analysis did not reveal significant differences
among CONV, GN, TR and SS, suggesting that this effect
was marginal. Additionally, the precision of the processing
methods in determining SW and DS depended on the walking
condition. For individuals walking without a mobility aid,
no significant differences in precision were found across the
processing methods in these two gait metrics. For those who
walked with a mobility aid, however, all SVR models produced
an improvement in precision relative to the CONV method

TABLE VI
SPEARMAN’S ρ AND CORRESPONDING p-VALUES BETWEEN TUG AND

THE PERCENT MAE OF GAIT PARAMETERS, FOR EACH DATA

PROCESSING METHOD

(with SS performing better than TR and GN), even though
the improvement was not significant for the GN method in
estimating SW.

In summary, for spatial gait parameters (SL, SV), all infer-
ence models consistently outperformed the CONV method,
both in terms of accuracy and precision, regardless of the
walking condition. This was also the case for the gait phase
variables (SW and DS), except that we did not find significant
improvements in precision when applying SVR models to
highly functioning individuals who did not use a mobility
aid. These results clearly indicate that when subject-specific
labelled data are not available for SL, SV, SW, and DS, the
TR method should be preferred to the CONV method and to
one-size-fits-all (GN) models. On the other hand, we found
no evidence that the application of SVR models may further
improve the validity of ST beyond the high levels of accuracy
afforded by the CONV method.

C. Effects of Gait Impairment on Validity

The results of the bivariate correlation analysis are sum-
marized in Table VI. Except for DS estimated using the
CONV method, the percentage MAE of all gait parameters,
regardless of the data processing method, were positively
associated with the TUG scores (i.e., the longer the time
required to complete the TUG, the larger the measurement
errors). This suggests that the more severe the gait impairment
is, the more challenging it is to extract accurate spatiotemporal
gait parameters using instrumented footwear. Nonetheless, all
correlation coefficients were low or moderate.

D. Feature Analysis

Table VII shows the number of input features selected by
the GA optimizer for the GN and TR models. Compared to
the GN method, the number of optimal input features for the
TR method was consistently smaller across all gait metrics,
indicating simpler and more efficient inference models. The
PFI values for the TR models are reported in Tab. VIII.
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TABLE VII
MEAN AND STANDARD DEVIATION (SD) OF THE NUMBER OF FEATURES

SELECTED BY THE GA OPTIMIZER FOR THE GN AND TR MODELS

As expected, the accuracy of the TR models was mainly
affected by the estimations obtained with the conventional
method (indicated as pC O N V ). The second most relevant
feature for SL and SV was sum(ax), which is an indirect
measure of the amount of velocity drift error accumulated
after each stride.3 Indeed, this value is exactly what the VDC
method exploits to cancel out the effects of velocity drift.
We conjecture that this input feature allows the inference
models to compensate for the residual effects of velocity drift
after applying VDC, thereby affecting the accuracy of both
SV and SL.

It is worth noting that, for ST, the PFI of pC O N V was
approximately six times larger than any other input features.
This provides strong evidence that inference models using
this candidate set of input features might not be as effective
in correcting the already modest measurement errors in ST
produced by the CONV method. For SW and DS, the second
most important feature was the wearer’s weight . Because the
magnitude of the propulsive forces at TO is associated with an
individual’s weight, this parameter may correct the accuracy
with which TO events (and therefore SW and DS) are detected.

VI. DISCUSSION

Unlike traditional inductive learning, transductive learning
exploits knowledge about the positions of the unlabelled test
data with respect to the training data in the input feature
space to provide direct inference on the test data, resulting
in improved performances [31]. To the best of the authors’
knowledge, this study is the first one applying transductive
learning models to ambulatory gait analysis. Taking full
advantage of the transductive learning paradigm, the proposed
approach generates personalized inference models without
requiring subject-specific reference data to train the models,
and therefore is applicable to out-of-the lab and in-clinic
gait assessments, for which laboratory equipment is often not
available. The TR models were validated against gold-standard
instrumentation in a cohort of elderly residents of assisted
living facilities and demonstrated significantly better accuracy
than CONV techniques in all spatiotemporal gait parameters
except for ST. Unlike the end-to-end ML methods proposed
by recent research [20], [24]–[26], the TR models introduced
in this paper do not replace conventional data processing
techniques. Instead, the outputs generated using conventional
techniques are embedded into the inference models as domain
knowledge and augmented with a subject-tailored subset of
input features that substantially reduce measurement errors.
This results in more efficient learning (i.e., less complex and
more accurate models) from the same training dataset and

3For the instrumented footwear shown in Fig. 1, the x axis is aligned
with the longitudinal axis of the sandal, pointing forward, and the z axis
is orthogonal to the footwear’s sole, pointing downward.

TABLE VIII
PERMUTATION FEATURE IMPORTANCE FOR TR MODELS. THE TWO

MOST IMPORTANT FEATURES FOR EACH GAIT PARAMETER ARE

MARKED IN BOLD FONT. pCONV INDICATES THE CORRESPONDING

GAIT PARAMETER (I.E., SL, SV, ST, SW OR DS)
OBTAINED WITH THE CONV METHOD

sensor hardware. Compared with our previous one-size-fits-
all models (here indicated as GN), the TR models required
approximately 20% of training time and 60% of the input
features, yet they further reduced measurement errors by up
to 18%.

We found good or excellent interrater reliability in all the
spatiotemporal metrics extracted with the CONV method,
indicating that conventional metrics and ground truth data are
well-correlated. This result, however, must be interpreted with
caution, since interrater reliability does not imply construct
validity. Indeed, in our sample the CONV method yielded
an average MAE of approximately 5 cm/s in SV (Tab. III),
which is the minimal clinically important difference (MCID)
for community dwelling older adults [55] and individuals
with Parkinson’s disease [56]. This indicates that about half
of the SV values obtained with the CONV method were
affected by measurement errors that exceeded the MCID. The
TR inference models can mitigate this problem by offering
excellent reliability and enhanced validity in all spatiotemporal
parameters, without the need for subject-specific labelled data.
When applying the TR models, the average MAE in SV
dropped to approximately 3.4 cm/s.

Among the spatiotemporal gait parameters investigated in
this work, ST represented an exception, since the measures
produced by the CONV method demonstrated excellent inter-
rater reliability (ICC = 1.00) and validity (MAE% = 1.3%),
which could not be further improved by any of the proposed
SVR models. We explain this result by noting that IC events
can be reliably detected by underfoot FSRs, even when the
IC does not occur under the hindfoot [57]. On the other
hand, a limited number of underfoot FSRs might not yield
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TABLE IX
ACCURACY OF IMU-BASED WEARABLE SYSTEMS REPORTED IN RECENT WORKS (TOP: TRADITIONAL METHODS; MIDDLE: SUBJECT-SPECIFIC

INFERENCE MODELS; BOTTOM: MODELS NOT REQUIRING SUBJECT-SPECIFIC LABELLED DATA). THE TRANSUCTIVE-LEARNING

MODELS (TR-SVR) REPRESENT THE MAIN CONTRIBUTION OF THE PAPER

accurate estimates of TO events in elderly and pathologi-
cal gait [58], which motivated the IMU-based TO detection
approach adopted in this work. Even so, the estimates of SW
and DS obtained with the CONV method using IMU-based
TO detection demonstrated only good reliability and moderate
validity (9% and 15% MAE, respectively), suggesting that the
effectiveness of this approach might be affected by the reduced
ankle plantarflexion angle at push-off, a common feature of
elderly gait [59] that may have lowered the signal-to-noise
ratio in the IMU time-series used to detect TO events.

When applying the CONV method, the results we obtained
were in line with previous research on ambulatory gait analysis
employing similar conventional data processing techniques
(Tab. IX, top panel). This confirms that the baseline level of
accuracy that the proposed inference models aimed to improve
upon was comparable with state-of-the-art results. We attribute
the differences in MAE to the different target populations (i.e.,
institutionalized elderly in this study, vs. community dwelling
elderly in [11] and [60]), differences in gait event detection
methods (i.e., IMU+FSR in this study vs. IMU in [13]),
and to the small numbers of analyzed strides [13] and study
participants [14], [60], [61] in most of the previous studies,
which might not yield a truthful representation of the intra- and
inter-subject variability of the population. It is also important
to note that about one half of our study participants completed
the 6MWT using a mobility aid (Tab. I). Among the related
literature shown in Tab. IX, only the study in [13] analyzed the
effects of walking aids on the accuracy of a wearable system.

When using SS models to estimate SL, we found better
results than what was reported in [20] and [25], and worse
results than [24], which all relied on neural networks (Tab. IX,
middle panel). However, for [24] and [25], the validation was
limited to a small sample of healthy young adults, thereby
making it difficult to compare performances with this study.
On the other hand, the percentage MAEs of SL and SV
obtained with the GN models were in line with those presented
in [26] for DCNN models (Tab. IX, bottom panel), which did
not rely on subject-specific training data. The accuracy in SV
for GN models was better than what was reported in [22]

using SVR models, but worse than [21] using GPR models.
However, these two studies estimated the average walking
speed during a 5-second window, which is related, but not
equivalent, to the definition of stride velocity commonly used
in spatiotemporal gait analysis. Additionally, such an average
metric cannot be used to estimate stride-to-stride variability,
which is important in elderly and pathological gait.

The most interesting results in our study came from the
TR models. In terms of accuracy, TR models outperformed
GN models in all the analyzed gait parameters, despite relying
on the same available set of labelled data, thereby providing
strong support for the use of personalized inference models
in ambulatory gait analysis. However, TR models did not
reduce error variability compared to GN. We explain this
result with the type of cost function used in the GA optimizer,
which was blind to SD. Notably, compared to past research
(Tab. IX), TR models yielded more accurate SL estimations
than the DCNNs in [20], even though the latter work relied
on subject-specific training data. Moreover, the MAE in SV
obtained with TR models was similar to the results pre-
sented in [21], which collected data from healthy individuals.
Despite these encouraging results, we found a significant gap
in validity between SS models and TR models, suggesting
that subject-specific training data should be used whenever
possible, if validity is a priority.

The results from the correlation analyses suggested that the
level of gait impairment affects the validity of the inference
models and the CONV methods in a similar fashion. Although
the strength of the correlation was low or moderate, this result
emphasizes the importance of validating new technologies
and computational methods for ambulatory gait analysis on
the clinical population of interest, since results obtained with
highly functional individuals might not transfer to those with
gait impairments. Further research is warranted to better
elucidate the sensitivity of wearable systems for ambulatory
gait analysis to the use of walking aids, given that our results
evidenced a general trend towards degraded accuracy and
precision in all temporal and gait-phase parameters in the
individuals who used a cane or a walker.
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This study has several limitations. First, the experimental
protocol did not allow us to quantify the test-retest reliability
of the TR models. While the GN models are not affected
by this problem and the SS models showed excellent test-
retest reliability [38], rigorously evaluating the extent to which
the accuracy of TR models decreases when a previously
trained TR model is applied to subsequent walking tests
will inform us about the need to train session-specific TR
models, which has important practical implications given
the computational time required to train each model. For
example, using previously-trained TR models would enable
real-time gait analysis (e.g., for use with wearable biofeedback
systems [62]). Conversely, should the TR models demon-
strate poor test-retest reliability, gait data could be gener-
ated in real-time using previously trained GN models, while
higher-accuracy data could be made available off-line, after
training session-specific TR models. Second, the benefits of
the TR approach rely on the availability of labelled observa-
tions from individuals who have similar gait patterns to the test
subject. Consequently, different labelled datasets will likely be
required when studying different populations (e.g., pediatric
vs. adult populations). Third, although most standardized clin-
ical gait performance tests include bouts of straight-line walk-
ing on even surfaces similar to those analyzed in this study,
the results we presented might not apply to real-life walking,
which often consists of short walking bouts on even and
uneven surfaces, turns, episodes of gait initiation/termination,
and other motor tasks such as stairs negotiation [63]. There-
fore, we plan to direct future studies toward validating the
TR models in motor tasks that more closely represent real-
life walking, to investigate the range of applicability of these
methods to extended-time gait monitoring in real-life environ-
ments. Furthermore, a future study will focus on extending the
use of transductive learning methods for weights optimization
in the SVR models, and on improving the GA-based feature
selection procedure to increase the precision of the models
(e.g., through a multi-objective optimization). We also plan
to develop similar ML inference models to extract kinetic gait
parameters (such as center-of-pressure trajectories [64]), which
were not addressed in this study. Lastly, it is worth noting that,
even though the proposed inference models were validated on
a labelled dataset collected using the instrumented footwear
shown in Fig. 1, these methods can be readily applied to any
IMU-based footwear system, such as instrumented insoles and
on-shoe sensors.

VII. CONCLUSION

This paper introduced novel transductive learning models
to improve validity and reliability of instrumented footwear
for spatiotemporal gait analysis. The performance of the pro-
posed models were compared with those of conventional data
processing techniques using overground walking data collected
from a cohort of older adults. Conventional methods demon-
strated high validity and reliability only in measuring stride
time, however they were outperformed by the transductive
models in terms of stride length, velocity, double support time,
and swing time. Additionally, the transductive models showed
better accuracy than previously developed one-size-fits-all

inference methods (despite relying on the same available set of
labelled data), while reducing model complexity and training
time. By shifting the focus from traditional inductive inference
to direct inference on a target dataset, transductive models
may represent a promising method to improve the validity and
range of applicability of instrumented footwear for ambulatory
gait analysis.
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