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Abstract— Hand gesture recognition with surface elec-
tromyography (sEMG) is indispensable for Muscle-Gesture-
Computer Interface. The usual focus of it is upon
performance evaluation involving the accuracy and robust-
ness of hand gesture recognition. However, addressing the
reliability of such classifiers has been absent, to our best
knowledge. This may be due to the lack of consensus on the
definition of model reliability in this field. An uncertainty-
aware model has the potential to self-evaluate the quality
of its inference, thereby making it more reliable. Moreover,
uncertainty-based rejection has been shown to improve
the performance of sEMG-based hand gesture recognition.
Therefore, we first define model reliability here as the qual-
ity of its uncertainty estimation and propose an offline
framework to quantify it. To promote reliability analysis,
we propose a novel end-to-end uncertainty-aware finger
movement classifier, i.e., evidential convolutional neural
network (ECNN), and illustrate the advantages of its multi-
dimensional uncertainties such as vacuity and dissonance.
Extensive comparisons of accuracy and reliability are con-
ducted on NinaPro Database 5, exercise A, across CNN
and three variants of ECNN based on different training
strategies. The results of classifying 12 finger movements
over 10 subjects show that the best mean accuracy achieved
by ECNN is 76.34%, which is slightly higher than the state-of-
the-art performance. Furthermore, ECNN variants are more
reliable than CNN in general, where the highest improve-
ment of reliability of 19.33% is observed. This work demon-
strates the potential of ECNN and recommends using the
proposed reliability analysis as a supplementary measure
for studying sEMG-based hand gesture recognition.

Index Terms— Convolutional neural network, evidential
deep learning, hand gesture recognition, model reliability,
surface electromyography (sEMG), uncertainty-awareness.

I. INTRODUCTION

SURFACE electromyography (sEMG) refers to the collec-
tive electrical signals from muscles that are collected by
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noninvasive electrodes. The sEMG-based hand gesture recog-
nition is a practical application of sEMG that has found wide
usage in advanced prostheses control [1], [2] and other reha-
bilitation applications [3]. It is crucial that the development
of such a classification-based control scheme highly relies
on the accurate and robust hand gesture predictions of users.
As a result, the current research on sEMG-based hand gesture
recognition has focused on improving its accuracy [4]–[6]
and robustness [5], [7]–[9] with recent deep learning tech-
niques. Note that model robustness can be summarised as
the ability to remain accurate in practical scenarios under
many factors that may affect the prediction performance,
such as electrode shifts, sweating, limb posture and force
changes, and day-to-day variation [7], [10]–[15]. A spe-
cial case of robustness is to tackle subject variability when
considering the user-independent sEMG-based hand gesture
recognition [5], [9].

Recently, the rejection of hand movements based on uncer-
tainty measures has shown good potential as a general practical
solution for improving the usability of sEMG-based myo-
electric control by boosting both the accuracy and robust-
ness of hand gesture recognition [16]–[18]. Ideally, most of
the inaccurate ambiguous predictions could be rejected by
introducing additional information, such as entropy or the
normalized maximum probability of the predictive distrib-
ution, for the indication of confidence level. The intuition
behind this is to address the concern where the gesture
recognition process is being considered as a ‘black box’ for
myoelectric control [16]. In this paper, we first defined the
reliability R of an sEMG-based hand gesture classifier as
the quality of its uncertainty measures that produce confi-
dence scores on the predictions of test samples. Its relia-
bility analysis then refers to the evaluation of R. This is
supported by the commonly held opinion that accurate and
robust hand gesture recognition is considered reliable [7], [8],
and the statement that accurate uncertainty estimation is one
of the essential factors for the reliable application of deep
learning [19].

Although deep learning models, particularly those based on
convolutional neural networks (CNNs), have achieved state-of-
the-art (SoA) performance regarding both accuracy and robust-
ness to sEMG-based hand gesture recognition, the reliability
analysis of CNNs in this field has remained unexplored, which
has become an increased necessity due to the vulnerability of
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deep learning models reported recently [20]–[22]. The reliabil-
ity analysis has direct benefits to current studies, which include
latent concerns about model reliability in rejection-based hand
gesture recognition. For example, Wu et al. [18] recently
proposed a metric-learning guided CNN to enhance the robust-
ness of myoelectric control systems by effectively rejecting
novel patterns, i.e., new classes were not included in the
training. It is evident that there is a positive correlation
between the defined reliability R and the performance of
rejection-capable sEMG-based hand gesture recognition. This
implies that quantifying R could provide a useful indication
of model performance without suffering from the limitations
of evaluating its rejection-capable recognition performance,
such as introducing extra evaluation measures (e.g., accuracy-
rejection curve [23], false activation error [24]) and highly
relying on determining the optimal rejection threshold [17].

Additionally, current uncertainty measures used in
sEMG-based hand gesture recognition fail to provide
meaningful insight into predictions. Recent studies in the
field of predictive uncertainty estimation have shown that
evidential neural networks [25], [26] modeled with Dirichlet-
based uncertainty [19] are more efficient in explicitly
measuring uncertainties such as vacuity and dissonance [27]
with almost no extra computational cost, unlike other
approaches such as Bayesian neural networks [28] or
ensemble models [29]. The potential of applying evidential
deep learning to the sEMG-based hand gesture recognition
will be further explored in this paper.

This study aims to propose a framework to directly quan-
tify R, with a specific focus on the reliability analysis of
individuated finger movement recognition with raw sEMG.
Such movements are highly complex and versatile [30],
which naturally raises the real necessity of reliability analy-
sis. We first employ an existing end-to-end CNN model [5]
and propose an uncertainty-aware model, i.e., the eviden-
tial CNN (ECNN) by integrating it with evidential deep
learning. As a pilot study towards the reliability analysis
of sEMG-based finger movement classifiers, the discussion
starts with an illustration of how the generated multidi-
mensional uncertainties such as vacuity and dissonance of
ECNN could be precisely quantified and leveraged for a ’dif-
ficult to classify’ finger movement recognition compared with
CNN. Furthermore, a brief comparison of the performance of
rejection-capable finger movement recognition between them
is provided as empirical evidence to support the intuition
behind this research. Finally, and most importantly, we first
recommend using a threshold-free evaluation metric called
normalised Area Under Precision-Recall (nAUPRC) [31] to
evaluate the misclassification detection, which is introduced to
quantify R, to avoid the pitfall that current related evaluation
metrics such as the Area Under Receiver Operating Charac-
teristic (AUROC) [32] and Precision-Recall (AUPRC) [33]
can only be used to assess the misclassification detection
performance of a single model rather than directly com-
pare across different models [34]. To further reduce the
bias of results and ensure fair comparison, extensive empir-
ical evaluations are provided by employing the stratified
nested cross-validation with the Tree-Structured Parzen Esti-

mator, which is one of the SoA hyperparameter optimisation
algorithms.

II. PROBLEM STATEMENT

Reliability analysis for finger movement recognition relies
on a framework that can explicitly measure the model reli-
ability R, i.e., the quality of its uncertainty estimates. The
challenges are manifold: it must be quantifiable and ideally
located in a fixed interval [0, 1]; it must be consistent for
any classifier and uncertainty measure; the results must be
comparable in a fair way regardless of the model accuracy.
Inspired by studies on evaluating uncertainty quantification,
the reliability of the sEMG-based finger movement recognition
could be evaluated by measuring the performance of the
misclassification detection, which aims to detect wrong predic-
tions with quantified uncertainty estimates as scores. An ideal
reliable classifier enables the assignment of higher uncertainty
measures when incorrect predictions are being made compared
to correct predictions. In other words, the reliability assesses
the discrimination level of uncertainty quantification assigned
to wrong and correct predictions.

The misclassification detection can be considered as a
binary classification problem where wrong predictions are
positive samples and correct predictions refer to negative
samples. The quantified uncertainty is taken as the score
and any samples with scores higher than a threshold will
be assigned to positive samples, and negative ones otherwise.
To avoid providing arbitrary results with a user-defined score
threshold, the AUROC and AUPRC are commonly used as
threshold-free evaluation summary metrics, which can over-
come most challenges addressed above. However, these are
incomparable since each model has its own accuracy on
each test set, which yields different positive and negative
samples regarding misclassification detection. More details
of our proposed framework with a solution to address this
challenge are presented in Sec. V.

III. EVIDENTIAL CONVOLUTIONAL NEURAL NETWORK

In Dempster-Shafer Theory of Evidence [35] (DST), a frame
of discernment � is defined as a finite set of mutually exclu-
sive elements in a domain, where a subset of � is referred to as
a hypothesis or proposition and a singleton is used to represent
it if the cardinality of this subset equals to 1. The belief of a
proposition could be quantified by belief functions based on
the available evidence, which allows us to not follow the addi-
tivity principle of probability theory strictly, thus providing
an additional “dimension of uncertainty” to make ignorance
explicit [36]. Based upon the DST’s notion of belief assign-
ment over �, Subjective Logic (SL) [37] provides a structured
approach to connect beliefs to Dirichlet distributions so that
we can approximate second-order Bayesian reasoning in a
computationally efficient way. The second-order uncertainty of
a multiclass classifier is represented by a Dirichlet probability
density function (PDF) over a multinomial distribution, which
refers to the first-order uncertainty representing the predicted
class probabilities. It enriches the uncertainty representation
with extra information from beliefs. Let Y = (Y1, Y2, . . . , YK )
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be a discrete variable in a domain Y, and represents the class
label. For a multiclass classification problem, the number of
class K = |Y| > 2. A multinomial opinion over Y in SL is
then defined as an ordered triplet wY = (bY , uY , aY ) where

• bY refers to a belief mass distribution over Y;
• uY is the uncertainty mass expressing the vacuity of

evidence, which decreases as more observations in terms
of statistical events are found;

• aY represents a base rate distribution over Y, which is
known as prior probability in classic Bayesian theory.

The projected probability distribution of a multinomial opinion
in SL is defined as follows [37]:

PY = bY + aY uY . (1)

SL demonstrates clearly that there is a specific bijective
mapping between a multinomial opinion and a Dirichlet PDF
over the same domain Y. Before proceeding further, let us
recall the definition of a Dirichlet PDF over the same discrete
variable Y on domain Y [38]:

Dir( pY ) =
�

( ∑K
j=1 α j

)
∏K

j=1 �(α j )

K∏
j=1

p
(α j−1)
Y j

, (2)

where pY represents the probability distribution for discrete
variable Y , such that each pY j ∈ (0, 1) and

∑K
j=1 pY j = 1;

α = (α1, . . . , αK ) is a strength vector of positive-valued
Dirichlet parameters; �(·) is the standard Gamma function.
Since the Dirichlet distribution belongs to the exponential
family, its conjugation property allows us to consider the
Dirichlet parameter α as the prior and observation evidence.
From the perspective of SL, each singleton can have an
arbitrary additive base rate distribution aY over the domain Y

rather than default value 1/K and α can be redefined as [37]:

α = r + aY W, (3)

where r(≥ 0) is a vector of evidence over variable Y and
W is a constant expressing the non-informative prior weight.
The evidence representation of the Dirichlet PDF can then be
obtained by substituting the above equation into (2) and the
expected probability distribution over Y is [37]:

EY = α∑
α

= r
W + ∑

r
+ aY

W

W + ∑
r
. (4)

Intuitively, to build such a bijective mapping, the projected
probability distribution defined in (1) is supposed to equal
the expected probability distribution defined in (4). More
specifically, the observed evidence in the Dirichlet PDF
could be simply mapped to the belief mass distribution bY

(i.e. = r
W+∑

r ) and uncertainty mass uY (i.e. = W
W+∑

r ). Note
that the total belief mass

∑
bY approaches to 1 (or 0) while

the uY reaches 0 (or 1), as the total evidence goes to infinity
(or 0). These properties match the additivity requirement of a
multinomial opinion over Y , i.e.,

∑
bY + uY = 1.

Based on the framework of SL, evidential deep learn-
ing (EDL) was proposed to help explicitly train an uncertain-
aware model [25]. In EDL, the term evidence e has been
defined as a measure of the amount of support collected from

extracted features in favour of an input sample to be classified
into a certain class. Recall that a discrete variable Y =
(Y1, . . . , YK ) represents the class label for a K -classification
problem. The non-informative prior weight W equals to K
since a uniform prior PDF is required when there is no
observation. Naturally, each element of the base rate vector
aY equals to 1/K without any extra information. Therefore,
one can compute the belief mass vector b by e/(K + ∑

e).
It is noted that the denominator is referred to as the total
evidence S, which could be re-written as

∑
(e + 1) because

the number of elements in e is K . Furthermore, the Dirichlet
distribution with parameter vector α could be mapped to the
evidence vector e by α = e + 1.

In this paper, we propose an Evidential Convolutional
Neural Network (ECNN) which is designed by integrating
an existing end-to-end convolutional neural network [5] with
EDL (the details are presented in Sec. V-B). Unlike using the
softmax to obtain class probabilities directly, ECNN replaces it
with an activation layer such as ReLU to output a nonnegative
evidence vector for the predicted Dirichlet distribution of
finger movement. With the aid of the loss function presented
in (5), this allows ECNN to learn to collect the evidence lead-
ing to a subjective opinion used for predicting finger move-
ment with the support of explicit uncertainty estimates. Note
that other possible activation functions will be investigated
later in this paper as part of the process of hyperparameter
optimisation.

Given a sample i and let yi be a one-hot encoding of
the ground-truth class of it with yi j = 1 and yim = 0 for
all j �= m where j and m are class labels. The predicted
probability of sample i for j th finger movement p j in ECNN
is computed as αi j /Si based on (4). Moreover, the sum-of-
squares loss function can be used to train ECNN with the
joint goal of minimising the prediction error and the variance
of the Dirichlet distribution [25], presented as:

L1( f (xi |�), yi ) =
K∑

j=1

(y2
i j − 2yi j E[pi j ] + E[p2

i j ]), (5)

where f (·) is the evidence vector predicted given the observed
feature xi from sample i by the classifier with parameters �.

The vacuity (uvac) and dissonance (udiss), which are
referred to as the evidential uncertainty of ECNN. Vacuity
denotes uncertainty due to lacking evidence or knowledge,
i.e., uY , which can be either calculated as K/S or 1 − ∑

b.
Dissonance represents the uncertainty due to conflicting evi-
dence, derived from a sufficient number of conflicting evidence
by comparing each two singleton belief masses [26]:

udiss =
K∑

j=1

(
b j

∑K
m=1,m �= j Bal(b j , bm)∑K

m=1,m �= j bm

)
, (6)

where Bal(b j , bm) represents the relative mass balance
between a pair of belief masses b j and bm for the sample
i , equals to 0 when b j + bm = 0, and 1 − |b j −bm |

b j +bm
otherwise.

We also introduce two uncertainty measures [16] which can
be used for all models: entropy and negative maximum proba-
bility. The entropy is simply defined as H = − ∑

p( j) ln p( j)
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and p( j) is the predicted probability for class j . Since the
maximum probability across classes can be interpreted as the
confidence level, it could then be used as an uncertainty score
by taking its negative value. However, the range of entropy
and negative maximum probability is [0, ln(1/K )], and [−1, 0]
respectively. For consistency, they will be normalised to a
range from 0 to 1 and noted as unEntropy and unnmp .

IV. ILLUSTRATION

This section aims to briefly illustrate the power of ECNN
with its meaningful evidential uncertainty in classifying finger
movements with raw sEMG. This was done by comparing
apples to apples, i.e., ECNN and its conventional version
(CNN). All details of the models and data used here can
be found in Sec. V. Briefly, models were trained and tested
only for the first subject from NinaPro Database 5 to classify
12 finger movements with 16-channels raw sEMG signals,
which was segmented using a 250 ms window with a 90%
overlap. Therein, models were trained by the 1st, 3rd, 4th

and 6th cycles, whereas the 2nd cycle was used as validation
set for early stopping and the 5th cycle was used to test the
performance. For ease of comparison, we set the batch size,
learning rate, and optimization method to 256, 0.002, and
ADAM [39] during the training. Moreover, the cross-entropy
loss was used for training the CNN, whereas the sum-of-
squared loss as shown in (5) was used for training the ECNN.

We first illustrate the power of the evidential uncertainty
of ECNN by taking an example of classifying ‘thumb adduc-
tion’, which is easily confused during classification as ‘thumb
flexion’ due to the similarity of movements. The top and
bottom panels of Fig. 1 show that CNN starts making wrong
predictions during transient movements. This is consistent
with the finding that the offline transient-state sEMG-based
hand gesture recognition accuracy is usually less than the
steady-state one as the transient-state sEMG has more variance
than the steady-state one over time [40], [41]. The evidential
uncertainty of ECNN reveals this clearly by presenting either
high uvac or udiss during the transient phase, seen in the
middle panel of Fig. 1. More importantly, it shows a clear
understanding of the uncertainty sources in this example.
What CNN attempts to show is that the uncertainty at the
beginning comes from conflicting evidence since its predicted
probabilities for the 12th finger movement ‘thumb flexion’ are
high at this stage. This is exactly what ECNN has revealed by
giving high values of udiss . Similarly, CNN shows ignorance
at the end since it assigns high predicted probabilities for
‘middle flexion’, which seems unrelated to the ground truth
‘thumb adduction’. Again, this has been disclosed by ECNN
via presenting high values of uvac. Fig. 1 also shows that
ECNN does not make overconfident predictions compared to
CNN, especially when predictions may go wrong. Note that for
ease of viewing, the focus is only on those classes with likely
incorrect predictions, the sequential predictions of a wrong
class are presented in Fig. 1 only if one of them has been
assigned over 0.5.

In summary, Fig. 1 illustrates that ECNN has the potential to
precisely quantify predictive uncertainties with an understand-
ing of the uncertainty sources. A natural question that arises is:

Fig. 1. Sequential predictions of the ‘thumb adduction’ (class 10) on
offline testing. Note that the sequential predictions of a wrong class are
presented only if one of them has been assigned over 0.5. Top: The
predicted probabilities of the CNN; Class 3 and 12 refer to ‘middle flexion’
and ‘thumb flexion’. Middle: The predicted probabilities of the ECNN
with its evidential uncertainty. Bottom: The sum of moving averages of
16-channel raw rectified sEMG signals with absolute values regarding the
dynamic finger movement of ‘thumb adduction’. The u.a. means ‘unitless’
activation since sEMG recorded by Thalmic Myo armbands is claimed to
be ‘unitless’ with an unknown conversion from mV.

how could we better leverage this for improving sEMG-based
hand gesture recognition performance? One straightforward
solution is to allow a classifier to reject making a prediction
when whichever dimension of uncertainty is considered as
high. Assuming that the high uncertainties are only generated
when wrong predictions are being made, making rejections
under such conditions is then definitely a benefit to boost
the hand gesture recognition accuracy and make the accepted
predictions more reliable. This is the intuition behind the
rejection-capable sEMG-based finger movement recognition.
To briefly compare the classification performance of CNN and
ECNN when allowing a model to reject making predictions
by leveraging the uncertainty estimate, we first calculated
unEntropy for CNN and max(uvac, udiss) for ECNN regarding
uncertainty estimates. By setting a confidence threshold δ,
where its range is set to be [0, 0.5], for discrimination between
certain and uncertain predictions, the model is allowed to not
make a prediction whenever its quantified uncertainty is larger
than (1 − δ). When δ = 0, it simply refers to the standard
recognition where no rejections will be made. The upper limit
of δ was set to be 0.5 since a value of more than 0.5 is per-
ceived as too strict, which might lead to a situation where no
predictions are made. Inspired by studies of rejection-capable
sEMG-based hand gesture recognition, the three evaluation
metrics used here are defined as follows: Rejection Rate (RR)
is the percentage of predictions that are rejected [16], [23];
True Acceptance/Rejection Rate (TAR/TRR) refers to the rate
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Fig. 2. Three comparison results of classifying 12 finger movements
between CNN and ECNN with a condition that rejects making predictions
when the quantified uncertainties are over a predefined threshold.

at which a classifier correctly makes active/inactive predic-
tions. Note that the false acceptance/rejection rate (FAR/FRR)
was defined in [16] and TAR/TRR = 1− FAR/FRR.

Fig. 2 shows how ECNN outperforms CNN on rejection-
capable sEMG-based finger movement recognition in this
example. Firstly, even though more predictions will be rejected
as the confidence threshold δ increases, the lines in blue show
that the gradient of RR for ECNN is much smaller than CNN.
When the threshold reaches 0.5, CNN almost stops making
any predictions, but the RR of ECNN remains at about 10%
only. This gives additional backing to the proposed statement
that CNN is being overconfident. Secondly, the TAR of ECNN
remains high constantly, whereas it drops for CNN as the δ
goes up. Recall that the TAR can be considered as finger
movement recognition accuracy but under the condition of
allowing the model to not make an unsure prediction. The
standard recognition accuracy of ECNN is also higher than
CNN, as shown in pink points when δ = 0. Finally, it shows
that ECNN is making more valid rejections generally than
CNN, supported by the TRR shown in orange. One may
observe that ECNN has a lower TRR when the δ varies
from 0 to 0.1, which may be caused by the extremely low
RR of ECNN, i.e., very few predictions are rejected when
the δ is small. Although ECNN has shown its superiority
in this example, we have to claim that one example can
not prove ECNN is more reliable than CNN. Therefore, the
illustration here can only be considered as supplementary for
readers to better understand the special properties of ECNN
with evidential uncertainty. This small example also indicates
how to investigate the rejection-capable sEMG-based finger
movement recognition performance with uncertainty measures
conventionally. The proposed proper reliability analysis for
both models will be explained in detail later.

V. EXPERIMENTS

A. Database

Our evaluations were carried out on the NinaPro Database
5 (NinaPro DB5), which was recorded with a double Myo
setup in one session consisting of 6 repetitions of 52 hand

movements (plus rest), which were divided into exercise sets
A (finger movements), B (hand and wrist movements), and
C (other functional movements), performed by 10 healthy
subjects [2]. It is noted that each repetition of all complete
movements is sometimes referred to as a trial [6] or a cycle [5].
Here the term ‘cycle’ is employed to avoid confusion from the
term ‘trial’ used in the hyperparameter optimisation process.
Since we are particularly interested in sEMG-based finger
movement recognition, only exercise A is used, which covers
12 finger movements involving both flexion and extension of
five fingers plus thumb adduction and abduction. To meet the
real-time demands of controlling devices such as prostheses,
i.e., the 300 ms constraint [42], the raw sEMG data was
segmented by applying a sliding window of 250 ms with a
non-overlap length of 25 ms. Such high overlap was used for
data augmentation [5]. Hence, each frame has a dimension of
16 electrode channels × 50 sEMG sample points since the
sampling frequency of NinaPro DB5 is 200 Hz. Note that no
extra signal preprocessing was required.

B. Models

To reduce any bias, in our work, the enhanced raw ConvNet
architecture, which was first proposed by [5], was employed
here to evaluate finger movement recognition performance in
terms of both accuracy and reliability as a baseline method.
It was modified to adapt for this task, which is to classify
12 finger movements by taking a frame of raw sEMG signals
with a dimension of 16×50. In essence, the CNN architecture
is composed of two convolutional layers and two fully con-
nected layers which have 2304 and 500 hidden units, respec-
tively. The 3×5 kernels with a stride of 1 and no zero padding
were used on the convolutional layers. Furthermore, recent
techniques such as Batch Normalisation (BN) [43], Parametric
Rectified Linear Unit (PReLU) activation function [44], and
dropout were applied to each layer. For a fair comparison,
ECNN has the same network architecture as CNN except in the
way of interpreting the model outputs and the loss functions
used for training the network. More details are shown in Fig. 3.

C. Experimental Setup

All experiments were implemented in PyTorch v.1.1.0 and
Python 3.7.3. The experimental sequences were constructed
by data loading, data segmentation, model training, and model
testing. A standard cross-validation (CV) procedure may cause
biased results when assessing classification models [45], [46].
To reduce the bias and to better compare the finger movement
recognition performance between CNN and ECNN, a stratified
nested CV procedure [46], [47] was employed in this work,
where an inner CV loop was used to determine the best
hyperparameters for the training of a model, whereas an
outer CV was then applied to test and compare the results.
Stratification allows each fold divided from the data to have
similar proportions of samples with the same label. This could
be done by simply splitting the data via the repetition number
here. Since each subject performed 6 repetitions of all gestures
in the NinaPro DB5, the splitting ratio of training, validation,
and testing datasets was set to 4 : 1 : 1 regarding cycle number
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Fig. 3. The detailed illustrations of the proposed Evidential Convolutional Networks (ECNN) and its conventional version (i.e., CNN).

to maximise the data used for training. Such data splitting
could also avoid data leakage between training and testing.
Recall that the raw sEMG signal was segmented by a sliding
window and the overlap between every two consecutive frames
was as high as 90%. Hence, randomly splitting the sample set
may cause such a leakage scenario where a sample falls into
the training set while its adjacent segments could be found
in the testing set. Furthermore, early stopping was employed
to avoid overfitting by setting the patience term to 10. The
training would then be stopped when no improvement was
found in the validation set after waiting for 10 epochs or the
training epoch up to 1000.

Unlike conventional hyperparameter optimisation (HPO)
algorithms such as Grid or Random Search, we applied
one of the SoA HPO algorithms, the Tree-structured Parzen
Estimator (TPE) [48], [49], to reduce the computation burden.
Being an approach based on sequential model-based global
optimization algorithms [48], [50], the TPE organises hyper-
parameters into a tree-like space so that the available values
of a specific hyperparameter will be determined based on
the previous search results. With the aid of Optuna [51],
which is a powerful hyperparameter optimisation framework,
the unpromising trials will be terminated at an early stage
where each trial refers to each evaluation of an objective
function. Such a strategy is also referred to as pruning, and the
‘MedianPruner’ constructed by the Median Stopping Rule [52]
was used here. Specifically, the objective value is then the
mean of the validation losses collected from the inner CV
loops. Moreover, the number of study trials was set to 25 and
the pruning was enabled after 5 trials were completed in each
process of HPO. The source code for this study is available
on GitHub (https://github.com/YuzhouLin/ECNN-RAnal), and
the determined optimal hyperparameters of each model on
each test trial of CV for each individual can be found here
as well.

The hyperparameter search space is listed in Table I. The
common hyperparameters used for training both CNN and
ECNN include batch size, learning rate, and optimizer method.
To better explore the potential of ECNN, we investigated
different functions to generate the evidence vector (called
‘evidence fun’ in Table I) and train the model. Instead of
employing ReLU as the last activation function for ECNN

TABLE I
HYPERPARAMETER SEARCH SPACE

to turn the model outputs into the nonnegative evidence
vector for the predicted Dirichlet distribution, other functions
such as SoftPlus and the exponential function (Exp) can be
investigated. Note that any value larger than 3 would be
limited to 3 when using the exponential function for training
convergence. More importantly, ECNN can be trained by
incorporating a Kullback-Leibler (KL) divergence term into
the sum-of-squares loss function [25], as shown in (7):

L(�) = E(xi ,yi )∼D
[L1 ( f (xi | �, yi )

+ λK L
[
Dir (p−k; α−k) ‖ Dir (p−k ; 1)

]]
, (7)

where λ is the trade-off coefficient and k is the ground
truth class of sample i . This may avoid further generating
misleading evidence for i by penalising those divergences
from Dirichlet distribution over wrong classes and the uniform
Dirichlet. For comparison’s sake, three ECNN variants were
explored regarding the loss function:

• ECNN-A was trained by (5).
• The loss function (7) was used to train ECNN-B

and ECNN-C. For ECNN-B, λ is an annealing coeffi-
cient and its degree is controlled by a hyperparameter
called ’annealing step’ s shown in Table I, i.e., λ =
min(1.0, t/s) where t is the current training epoch num-
ber.

• For ECNN-C, λ is a constant coefficient, which is consid-
ered as a hyperparameter called ‘tau’ shown in Table I.

D. Performance Evaluation

1) Evaluation of Accuracy: First, we used the recall to
evaluate the general efficacy of sEMG-based finger movement
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recognition. As a multiclass classification problem, recall can
be calculated by taking the macroaverage and microaverage.
The macroaverage recall is calculated as:

rM = 1

K

K∑
j=1

t p j

t p j + f n j
, (8)

where rM is the macroaverage recall; t p and f n represent the
number of true positives and false negatives; K is the number
of finger movements and j refers to a specific one. It was
employed here to measure the average per-class accuracy of
such recognition because each finger movement is considered
equally important, whereas the microaverage one favours
bigger classes [53]. It would be further averaged over subjects
for overall comparison. Second, to further investigate the
accuracy of rejection-capable sEMG-based finger movement
recognition, and for the sake of consistency with its related
studies, the evaluation metric of the accuracy-rejection curve
(ARC) [16], [23] was used here to compare the performance
of CNN and ECNN variants in terms of their rejection rates.
By varying the rejection threshold δ from 0 to 1, different
pairs of RR and the corresponding accuracy (i.e., TAR) could
be achieved when testing a trained classifier. For the overall
comparison, we calculated the mean ARC for each model
using 20 bins of RR under the CV scheme.

2) Evaluation of Reliability: As pointed in Sec. II, the
reliability of the sEMG-based finger movement recognition
could be evaluated by measuring the performance of the
misclassification detection. The AUROC and AUPRC can then
be used to calculate the model reliability and are noted as
RAU ROC and RAU P RC , which can be simply computed using
the trapezoidal rule and Average Precision (AP) shown in (9),
respectively. Consider a testing data set D(test) with n samples
and the number of positive (incorrect predictions) and negative
samples (correct predictions) are represented by n pos and nneg ,
respectively,

AP = 1

n pos

n pos∑
i=1

p(i), (9)

where n samples will be sorted from high to low based on
uncertainty estimates and i is the rank in the sequence of sorted
positive samples; p(i) is the precision at cut-off i . It has been
proved that it is one of the most robust estimators to summarise
the information in PRC [33].

Since each model has a specific class skew π on the mis-
classification detection, defined as n pos/n, it is inappropriate
to use RAU ROC and RAU P RC for direct comparison between
models. We recommend measuring the model reliability by
Rn AU P RC for a robust and fair comparison, which is a
normalised AUPRC. In this paper, we will present the results
of RAU ROC and RAU P RC for all models as a reference only
and the ones of Rn AU P RC for the performance comparison.
Boyd et al. [31] first proved that there is a region of PRC
that is not achievable and the area of such an unachievable
region depends on π . The nAUPRC was therefore proposed
to account for this by using normalisation. As such,

Rn AU P RC = AP − APmin

APmax − APmin
, (10)

TABLE II
MACROAVERAGE RECALL OF THE CONVNETS WITH COMPARISONS

where APmax = 1, i.e., the theoretical maximum AUPRC;
APmin = 1

n pos

∑n pos
i=1

i
nneg+i , i.e., the theoretical minimum

AUPRC proved by [31].
3) Evaluation Under Cross-Validation: There are two incom-

patible ways to compute the proposed evaluation metrics under
nested CV. It can be calculated by either taking the mean of
the results from each fold in the outer loop CV or aggregating
the data from all folds into one first and then followed by
the equations. Since merging assumes that the models are
calibrated [54], which is not the case here, all evaluation
metrics will be computed using the former approach here.

VI. RESULTS

In all experiments, unless otherwise stated, the performance
of CNN is taken as the baseline and compared with ECNN
variants using statistical analysis with the Wilcoxon signed-
rank test, where the null hypothesis assumes that there is
no difference of evaluation results between the two models
and will be rejected when p-value < 0.05. The difference in
performance among ECNN variants will also be investigated.

A. Accuracy Analysis

Here we verified the accuracy of CNN and three ECNN
variants. Table II shows that the ECNN-A and ECNN-C
outperformed CNN overall in terms of classification accuracy
on the NinaPro DB5. The average improvements, which were
statistically significant, reached 1.72% and 1.46% respectively.
It should be noted that the difference of accuracy between
ECNN-A and ECNN-C was not statistically significant, and
CNN significantly outperformed ECNN-B but with a differ-
ence of only 2.17% on accuracy. As such, one could notice
that the rank of model accuracy was ECNN-A ≈ ECNN-C >
CNN > ECNN-B. More comparisons of accuracy in terms of
outer loop CV and each class are provided in Appendix II.

Fig. 4 shows the recognition accuracy comparison of rejec-
tion schemes in the form of ARC by revealing the trade-
off relationship between the proportion of rejections and
the resulting accuracy of the active predictions. One could
observe clearly that ECNN-A was not substantially greater
than ECNN-C and both of them outperformed CNN and
ECNN-B in terms of recognition accuracy under the rejection
condition, where the latter two also had approximately equal
performance. With a specific focus on the regions where
models had low RRs (i.e., 0 < RR ≤ 15%), which may
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TABLE III
RELIABILITY COMPARISON OF THE CONVNETS BY EVALUATING THE MISCLASSIFICATION DETECTION REGARDING UNCERTAINTY ESTIMATES

be a reasonable target range in practical scenarios, all ECNN
variants obtained higher accuracy than CNN.

B. Reliability Analysis

Here, we investigated the reliability analysis of CNN and
three ECNN variants regarding different uncertainty esti-
mates. Common uncertainty estimates such as unEntropy and
unnmp were considered for all models, whereas evidential
uncertainty such as uvac and udiss only for ECNN vari-
ants. Furthermore, from the perspective of practical use,
the overall uncertainty was noted as ‘overall’ in Table III
and calculated by max(unEntropy, unnmp) for CNN and
max(unEntropy, unnmp, uvac, udiss) for ECNN variants. Recall
that the reliability analysis directly measures the quality of
uncertainty estimates and only Rn AU P RC can be used for
performance comparison between models.

From Table III, our first findings regarding the quality of
uncertainty estimates were that all models with the uncertainty
estimate unnmp achieved an overall highest R measured by
either RAU ROC , RAU P RC , or Rn AU P RC compared to other
types of uncertainty estimate. Moreover, ECNN variants with
the uncertainty estimate of either uvac or udiss alone obtained
generally poor results of R. Our second findings regarding the
R comparison between CNN and ECNN variants were that
ECNN-B significantly outperformed CNN in any condition,
where the highest improvement of reliability Rn AU P RC of
19.33% was achieved with the uncertainty estimate unEntropy

and 15.90% for the ‘overall’ uncertainty estimate. However,
the difference in Rn AU P RC between CNN and ECNN-A was
not significant in any condition, while that between CNN
and ECNN-C was not either with unnmp only. Regarding the
comparison of ECNN variants, ECNN-B achieved the highest
R when using vacuity as the uncertainty estimate. Despite

Fig. 4. The mean ARC plots of all models under CV scheme when
considering the ‘overall’ uncertainty estimate.

ECNN-A performed best when using dissonance as the score
of misclassification detection, the results of Rn AU P RC for
all ECNN variants were generally quite low (no more than
36.98%). Eventually, the observed order of Rn AU P RC obtained
with the uncertainty estimate of ‘overall’ was ECNN-B >
ECNN-C > ECNN-A ≈ CNN.

VII. DISCUSSION

The current study had a particular focus on improving model
efficiency and robustness, but not directly investigating model
reliability. To fill this gap, we defined the model reliability
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R as the quality of its uncertainty estimate and proposed an
offline framework to quantify it. We focused our examination
on the model reliability, and one implication of the results is
that ECNN has great potential for complex and versatile finger
movement recognition. Specifically, ECNN-C outperformed
CNN with p < 0.05 in both accuracy and reliability with a
difference of 1.46% in rM (Table II), and 2.54% in Rn AU P RC

with the ‘overall’ uncertainty (Table III), respectively. This
suggests that the training of ECNN with a constant effect
of KL should be applied when both model efficiency and
reliability are weighted equally. Additionally, the loss function
excluding the KL term is suggested for training the ECNN
if model efficiency matters more than reliability. This is
supported by the finding that ECNN-A achieved the best rM of
76.34%, which was 1.72% higher than CNN with p < 0.001
(Table II) - but no significant difference of Rn AU P RC was
found between them (Table III). Note that ECNN-A has shown
its efficiency by presenting the SoA performance on NinaPro
DB5 (Exercise A) since the best accuracy reported in the
literature was 76.02%, achieved by taking an input of 300 ms
sEMG signals to an ensemble classifier of three CNNs [4].
Conversely, ECNN is recommended to be trained by taking the
annealing effect of KL term when there is a serious concern
about model reliability, e.g., controlling a prosthetic limb for
daily tasks to meet the needs of transradial amputee users. Our
findings indicate that ECNN-B was determined as the most
reliable one by showing improvements ranging from 14.25%
to 19.33% in Rn AU P RC with different uncertainty measures
(Table III), compared to CNN. Even though it was found less
accurate than CNN where the difference in rM was about
2% (Table II), its accuracy under the rejection scheme was
approximately equal to CNN in general, and even better than
CNN when RR is in a low range of 0% to 15% (Fig. 4).

Defining the comparable model reliability has implications
for understanding how much an sEMG-based hand gesture
classifier knows about its predictions, thereby providing us
with general guidelines for designing such a reliable model
which has the potential to improve its efficiency by rejecting
making wrong predictions with the aid of its uncertainty
estimate. The proposed framework of reliability analysis mea-
sures R by evaluating the performance of misclassification
detection using the score of uncertainty estimate. Therefore,
a model with a higher R could generate more discriminate
uncertainty estimates, i.e., lower uncertainty estimates are
assigned to correct predictions and vice versa. This implies
that the value of R indicates how easily an optimal rejection
threshold used for rejection-capable sEMG-based hand gesture
recognition can be found. By measuring it, one can easily
check the reliability of a model without the need to test its
performance when allowing rejection by measuring several
evaluation metrics such as RR, TAR, and TRR across a
range of rejection thresholds. Additionally, we highly recom-
mend using nAUPRC to measure R even though AUROC
and AUPRC are commonly used for testing the performance
of a misclassification detection task. One may observe the
following order in each reliability analysis of a model with an
uncertainty estimate: RAU ROC > RAU P RC > Rn AU P RC . This
finding is consistent with other research that reported ROC

Fig. 5. Accuracy comparisons of the CNN and ECNN variants with
nested cross validation. 0 is CNN and 1 − 3 refer to ECNN-A, B and C.

plots usually make innocent impressions, whereas PR curves
reveal the bitter truth, especially on imbalanced datasets [55].
We argue that the overall low value of Rn AU P RC may just
exactly represent the situation in reality since averaging the
nAUPRC under the CV can further reduce the effect of
skew [31].

There are a few limitations that are important to note. First,
one can not investigate the R of a model when it is tested with
a classification accuracy of 100% or 0% because there are no
positive or negative samples for misclassification detection in
this case. We suggest setting R to 0 since such unusual results
imply the model needs to be further investigated and can not
be easily trusted. Second, even though we have demonstrated
the potential of ECNN, the implications of its meaningful
evidential uncertainty remain to be explored. Hypothetically,
understanding the source of uncertainty is helpful to improve
model robustness by making valid rejections. A potential
research direction would then be to investigate the relationship
between the proposed reliability analysis and the current stud-
ies on model robustness. Third, measuring the performance of
misclassification detection with nAUPRC may not be the only
way to investigate R. For example, it could be investigated
by computing the area under the ARC or measuring the
performance of out-of-domain data (e.g., unseen gestures or
adversarial samples) detection. We encourage researchers to
address the problem of sEMG-based hand gesture recognition
from the perspective of model reliability together with model
efficacy and robustness.

VIII. CONCLUSION

This paper has raised a concern about model reliability in
sEMG-based hand gesture recognition. By defining the model
reliability R as the quality of its uncertainty measures and
providing an offline framework to investigate it, we have
demonstrated that ECNN has great potential for classifying
12 individuated finger movements. Results on NinaPro DB5
(Exercise A) with extensive comparisons across CNN and
ECNN variants show that ECNN-A significantly outperformed
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Fig. 6. Confusion matrices averaged over all subjects with nested cross validation of the CNN and ECNN variants.

CNN in model efficacy and achieved 0.32% higher accu-
racy than the SoA; ECNN-B has shown great reliability by
presenting the highest improvement of 19.33% in R than
CNN; ECNN-C has achieved the best trade-off between model
efficacy and reliability by presenting 0.06% higher accuracy
than the SoA and the best improvement of 7.87% in R
than CNN. We encourage researchers to investigate model
reliability and use the proposed reliability analysis as a sup-
plementary tool for pursuing an accurate, robust, and reliable
classifier, which is the overarching goal for sEMG-based
hand gesture recognition. Our future work will focus on
extending the reliability analysis of sEMG-based hand gesture
recognition for amputee subjects and investigating if mean-
ingful uncertainty estimates can be used to improve model
robustness.

APPENDIX I
ALGORITHM FOR MODEL TRAINING WITH STRATIFIED

NESTED CROSS-VALIDATION

See Algorithm 1.

APPENDIX II
SUPPLEMENTARY RESULTS ON ACCURACY ANALYSIS

It can be seen that the rank of model performance regarding
recognition accuracy averaged over all subjects is ECNN-A ≈
ECNN-C > CNN > ECNN-B on each fold in outer loop CV
in Fig. 5. This is consistent with our main finding presented
in Sec. VI-A. It is interesting to note that all models achieved
the lowest accuracy on the 1st fold, indicating that there is sig-
nificant variability between the first trial of sEMG and others.
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Algorithm 1 Model Training With Stratified Nested CV

Input: D = {Xi , Yi }N
i=1, dataset includes segmented raw

sEMG signals with labels, which has been divided by the
repetition number from 1 to N . Define loss function J .

Output: Model parameters θ = {θ1, . . . , θN } after training
1: for Each Repetition i do {Outer Loop CV}
2: Load testing set D(test) = {X(test)

i , Y(test)
i }

3: (Hyperparameter Optimisation)
4: for Each trial of hyperparameter study k do
5: Define the objective function of hyperparameter study

with proposed hyperparameter search space
6: Initialise a list O for collecting the objective values
7: Initialise a list L for collecting the validation losses

from the inner loop CV {Inner Loop CV}
8: for Each repetition j ( j not i ) do
9: Load validation set D(val) = {X(val)

j , Y(val)
j }

10: Let the remaining dataset be the training set D(train)

11: Initialise θi j with random values
12: best_val = in f
13: for Each epoch do
14: Update the θi j

15: if J (X(val), y(val)) < best_val then
16: best_val = J (X(val), y(val))
17: counter = 0
18: else
19: counter += 1
20: end if
21: Stop training when counter reaches to 10
22: end for
23: if the pruning is activated then
24: Break the inner loop and move to the next hyper-

parameter study trial
25: else
26: Add best_val to the list L
27: end if
28: end for
29: Add the objective value mean(L) to the list O
30: end for
31: Load retraining dataset by combining both D(val) and

D(train), i.e., D(retrain) = {X(retrain), y(retrain)}
32: Initialise the model parameters θi with random values
33: Apply the optimal hyperparameter set which yields

min(O)
34: for Each epoch do
35: Update the θi

36: Stop training when J (X(retrain), y(retrain)) reaches to
min(O)

37: end for
38: Save model parameters θi to θ

39: end for
40: return θ

This may be because subjects need time to accommodate the
Myo band to perform hand gestures.

Fig. 6 shows the average confusion matrices for CNN and
three ECNN variants, where each annotated score represents

the per-class normalised accuracy averaged over 6 outer CV
trials across 10 subjects. It can be observed that all models
have similar performance. For example, they all performed
well in the classes ‘2 (Middle flexion)’, ‘3 (Middle exten-
sion)’, ‘7 (Little finger extension)’, ‘9 (Thumb adduction)’ and
‘11 (Thumb flexion)’, while the pair (8, 10) is found
more closely related than the other classes. Note that class
8 (‘Thumb abduction’) and class 10 (‘Thumb extension’)
are commonly confused with each other. Regarding the per-
class performance comparison of models for finger move-
ment recognition, it can be observed that ECNN-A and
ECNN-C performed better than CNN and ECNN-B on all
classes except ‘Ring flexion’ (class 4) and ‘Thumb extension’,
where ECNN-C achieved a slightly lower accuracy than CNN
on these two classes, with the differences of 0.05% and
0.26% only. Furthermore, CNN outperformed ECNN-B on
most classes except for ‘Middle extension’, ‘Ring extension’
(class 5), and ‘Thumb adduction’.
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