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Abstract— Retinal prostheses aim to improve visual
perception in patients blinded by photoreceptor degen-
eration. However, shape and letter perception with these
devices is currently limited due to low spatial resolution.
Previous research has shown the retinal ganglion cell (RGC)
spatial activity and phosphene shapes can vary due to the
complexity of retina structure and electrode-retina interac-
tions. Visual percepts elicited by single electrodes differ in
size and shapes for different electrodes within the same
subject, resulting in interference between phosphenes and
an unclear image. Prior work has shown that better patient
outcomes correlate with spatially separate phosphenes.
In this study we use calcium imaging, in vitro retina, neural
networks (NN), and an optimization algorithm to demon-
strate a method to iteratively search for optimal stimulation
parameters that create focal RGC activation. Our findings
indicate that we can converge to stimulation parameters that
result in focal RGC activation by sampling less than 1/3 of
the parameter space. A similar process implemented clini-
cally can reduce time required for optimizing implant oper-
ation and enable personalized fitting of retinal prostheses.

Index Terms— Calcium imaging, closed-loop optimiza-
tion, electrical stimulation, retinal ganglion cell, retinal
prostheses.

I. INTRODUCTION

RETINAL implants help improve functional vision for
patients blinded by retinal degenerative diseases such

as age-related macular degeneration and retinitis pigmen-
tosa [1]–[3]. Percepts are created by electrically stimulating
the remaining cells of the retina, including retinal ganglion
cells (RGC) and bipolar cells. Patients with implants report
improvements in perceiving light, detecting motion, and fol-
lowing lines on the ground while walking. However, their
ability to recognize shapes and letters is currently limited
[4], [5]. The best visual acuity is reported as 20/1260 [6] for
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epiretinal and 20/460 [7] for subretinal implants, both of which
are lower than the acuity level for legal blindness (20/200).

The ability to precisely stimulate target neurons and avoid
off-target activation is critical to create focal, non-overlapping
percepts. However, human subject testing has shown that a
single electrode often elicits elongated percepts [10], and
in vitro studies have demonstrated off-target stimulation of
retinal ganglion cells, confirming the clinical results [8], [9].
Unintended axonal activation is an important factor that con-
tributes to elongated responses and low resolution of retinal
stimulation. Other factors include large electrode size, elec-
tric field spread [10], [11], and spatiotemporal interactions
between electrodes [12]. Prior work has related visual acuity
and other visual task performance metrics with two point
resolution in retinal prosthesis patients [13]. Thus, creating
focal percepts is important for better patient outcomes with
artificial vision systems.

Previous studies have focused on modulation of stimulation
parameters to avoid axonal activation. Some of these strategies
include using long duration pulses [9], and low-frequency
sinusoidal stimulations [14]. While successful at avoiding
axonal activation, these protocols have not proven to be
feasible clinically due to high threshold charge densities
associated with long pulse durations. Our previous study
showed that symmetric and asymmetric anodic-first pulses
with low duration ratios (ratio of anodic to cathodic phase
duration) can preferentially activate RGC somas and reduce
axonal activation [8]. However subsequent clinical experi-
ments did not show significant improvement in phosphene
elongation with those pulses, which may be due to the limited
parameter space explored in these tests [15]. In addition to
phosphene elongation, phosphene shapes and thresholds are
highly inconsistent across electrodes and subjects [10]. This
variability confirms that despite clinical use of retinal implants,
the visual experience of patients is not adequately under-
stood [16]. Contributing factors to these inconsistencies are
variable electrode-retina separation, complex axonal pathways,
heterogeneous degeneration, and perceptual interpretation of
electrically elicited neural activity [17], [18]. Previous studies
have shown that modifying stimulus parameters can transform
the spatial RGC activity [8], and phosphene shapes [19].
Manually tuning each electrode is time consuming and tiring
for patients, even when pulse shapes are limited to symmetric,
biphasic pulses. Adding asymmetric pulses as an option will
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increase flexibility and may offer some benefits with respect
to threshold and percept consistency, but this expands the
parameter space to cover during a fitting procedure. Patient
participation is required to confirm improvements in percept
shape, but a prolonged fitting procedure will diminish the
patient’s willingness and ability to provide useful feedback.
Therefore, there is a crucial need to make the fitting process
as efficient as possible.

Optimization algorithms have been applied to aid clinical
decision making for deep brain stimulation implants [20].
In this study, we demonstrate a process that optimizes RGC
spatial activity. We developed neural network (NN) mod-
els of RGC spatial activity and a real-time optimization
method to search for stimulation parameters that elicit focal
responses from in vitro retina. This work is based on our
previous computational study demonstrating optimization of
stimulation parameters for focal RGC activity [21]. The work
presented here extends our prior work in the following ways:
1. We include in vitro retina recording as part of the opti-
mization (not pre-recorded data) 2. We do not have prior
knowledge of the response characteristics 3. NNs are created
real-time 4. A convolutional neural network (CNN) is used
to classify the response shape. Using this approach, we can
rapidly identify stimulation parameters that produce a focal
response based on sampling less than 1/3 of the possible pulse
parameter combinations. A similar process may be applicable
to a clinical setting for efficiently tuning phosphene shape to
improve the function of visual prostheses.

II. METHODS

A. Overview

Wild-type mice C57BL/6 (n = 10) aged 3-4 weeks
purchased from Envigo were used for calcium imaging
experiments. Mice were injected with an adeno-associated
virus (AAV) vector encoding a genetically encoded calcium
indicator (GECI) 3 – 4 weeks prior to being euthanized for
experiments. All procedures were approved by the Institu-
tional Animal Care and Use Committee (IACUC) and the
Institutional Biosafety Committee (IBC) at the University of
Michigan.

B. Intravitreal AAV Injection

To transduce the GECI jGCaMP7f in RGCs,
pGP-AAV-CAG-Flex-jGCaMP7f-WPRE (Addgene #104496)
was obtained from Addgene (Watertown, MA). The plasmid
was then modified by the University of Michigan Vector Core
to create the final vector pGP-AAV-CAG-jGCaMP7f-WPRE.
Mice were anesthetized with intraperitoneal injection of
ketamine (100 mg kg−1) and xylazine (10 mg kg−1). Pupils
were dilated with 1% tropicamide and 2.5% phenylephrine
hydrochloride. Topical tetracaine hydrochloride was applied
for local anesthesia. A pilot hole was created through the
sclera, choroid, and retina 1 – 2 mm posterior to the corneal
limbus using a 30-gauge needle. A 5 μl Hamilton syringe
(Hamilton Robotics, Reno, NV) with a 32-gauge blunt needle
was used to inject 1 μl (1.83 × 1012 vg/ml) of pGP-AAV-
CAG-jGCaMP7f-WPRE in the vitreous area. Injection was

done slowly over 30 seconds and left in place for another
30 seconds after injection and slowly retracted to minimize
leakage. Antibiotic eye ointment was used on the injection
site to prevent infection.

C. Calcium Imaging

Retinas were harvested 3–4 weeks [8] after injecting
pGP-AAV-CAG-jGCaMP7f-WPRE. Animals were anes-
thetized with ketamine (100 mg kg−1) and xylazine
(10 mg kg−1). Both eyes were enucleated and hemisected
inside a perfusion chamber filled with bicarbonate-buffered
Ames’ Medium (Sigma-Aldrich, St. Louis, MO). After
removal of both eyes animals were euthanized by CO2
overdose. Dissected retina was flattened by making four cuts
on the periphery. Vitreous was removed with fine forceps to
ensure tight coupling between retina and the microelectrode
array (MEA). The MEA formed the bottom of the perfusion
chamber. Retina was then mounted on a porous membrane
(cat. No. JVWP01300; Millipore) attached to a titanium
ring and then placed on the transparent MEA with retinal
ganglion cells facing the MEA. During the experiment,
retina was superfused with bicarbonate-buffered Ames’
Medium equilibrated with 5% CO2 - 95% O2 gas, and
adjusted to 280 mOsm. Solution was kept at 33◦C and had
a flow rate of 4 – 5 ml min−1. Fluorescence excitation was
induced by a super bright white light emitting diode (LED).
Excitation and emission light were passed through a filter set
(49002 - ET - EGFP(FITC/Cy2), Chroma Technology
Corp, Bellows Falls, VT) and images are captured by an
electron-multiplied charge-coupled device (EMCCD) camera
(iXon 897, Andor Technology, Belfast, Northern Ireland)
through an Olympus UPLFLN 0.3 numerical aperture (NA)
×10 objective at 10 Hz.

D. Electrical Stimulation

A transparent microelectrode array (MEA) constructed from
glass, indium tin oxide, silicon nitride, and SU-8 epoxy
photoresist was used for electrical stimulation [8]. The MEA
contained 60 disk electrodes with 200 μm diameter and
500 μm electrode pitch. Electrical stimulus pulses were gen-
erated by the PlexStim system (Plexon Inc., Dallas, Texas)
controlled by a computer software. A custom circuit board was
used to relay the electrical signal to the MEA. A platinum wire
placed on top of the recording chamber was used as the return
electrode. Stimuli consisted of charge balanced, biphasic,
anodic-first current pulses delivered at 120 Hz for 5 seconds to
evoke a calcium response. Cathodic phase duration was 100 μs
in all experiments. Five different pulse types were used in
experiments: symmetric anodic-first, asymmetric anodic-first
with duration ratio of 2, 5, 10, and 20. Duration ratio is defined
as the ratio of the anodic phase to cathodic phase duration.
Pulse amplitude range was 20 – 110 μA, or 40 – 130 μA for
the cathodic phase, depending on the region’s response range.
The anodic phase amplitude was calculated according to the
duration ratio to keep the pulse charge balanced. For duration
ratios 1, 2, 5, 10, pulse amplitude was incremented by 10 μA
within the range stated above resulting in 10 pulse amplitudes
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Fig. 1. Flow chart of the optimization process. A group of 5 different stimulus trains are delivered at the beginning. Calcium images of spatial
RGC activity are recorded and analyzed for area and eccentricity values. Neural networks are trained for area and eccentricity as functions of pulse
amplitude and type. Interior point algorithm is run to find optimal stimulation parameters for a focal response, which is then delivered to the retina
and the resulting RGC spatial activity is recorded and classified by the CNN. If the image is classified as the required class, optimal amplitude and
type are reported as outputs. Otherwise, the loop continues with 10, 15, 20, and 46 different stimulus trains. Blue circles show the electrode position
on calcium images, and the best fit ellipse is outlined in red.

for these four pulse types. For the duration ratio of 20, a total
of 6 amplitudes were delivered, due to the stimulator resolution
(1 μA) limiting the possible amplitude of the longer, balancing
pulse. A total of 46 pulse parameter combinations were used
at each retinal region.

E. RGC Spatial Activity Analysis

For each stimulation protocol, the fluorescence images
around the active electrode were recorded at 10 fps. Images
were captured for 5 seconds before and 5 seconds during
electrical stimulation. The baseline image was obtained by
averaging images 2 – 3 seconds after recording initiation,
and the stimulation image was obtained by averaging
images 2 – 3 seconds after stimulation initiation. RGC
spatial activity was obtained by subtracting the baseline
image from the stimulation image. The resulting calcium
transient image (�F) was further normalized with respect to
baseline (F), and a threshold was selected (�F/F > 15%)
to remove noise based on the typical noise in the fluorescent
signal. The shape of the RGC spatial activity (response
shape) was quantified with two descriptors: activation area
and eccentricity. Activation area was defined as the area of
the best-fit ellipse to the RGC spatial activity, and eccentricity
was defined as the ratio of the distance between the ellipse
foci to its major axis length. Eccentricity values are always
between 0 and 1 (0 is a circle and 1 is a line segment), and
are a measure of response elongation.

F. Optimization Pipeline Overview

We use artificial neural networks (NN), a convolutional
neural network (CNN), and an optimization algorithm to

iteratively search the parameter space and classify activation
area and eccentricity, to converge to the desired response
shape. Two NNs, based on images recorded during the
experiment, are used to estimate surfaces for activation area
and eccentricity and the resulting objective function. The
optimization routine uses the objective function surface to
predict optimal stimulus parameters. We record the RGC
spatial activity to the predicted optimal stimulus parameters
and classify the resulting image using the CNN. The pro-
cedure ends if the required class is achieved, and continues
otherwise. Fig. 1 illustrates a flow chart of the optimization
steps.

G. Neural Network Training
Based on our previous results on empirical modeling of

RGC spatial activity [21], a single model could not be created
for the relationship between stimulus parameters (pulse ampli-
tude and type) and the spatial response descriptors (activation
area and eccentricity) that was generalizable to all regions
(a region is a retinal area above and nearby an electrode).
Therefore, we chose to train feedforward artificial neural
networks (NN) for each region separately to quantify this
relationship. Data points were divided into three subsets for
training (60-80%), validation (10-20%) and test (10-20%),
where the exact percentage was determined by the number
of data points. The network inputs are pulse amplitude and
type, and outputs are activation area and eccentricity. The NNs
include a hidden layer of size 10 with hyperbolic tangent
transfer functions. We used MATLAB (MathWorks, Natick,
MA) built-in functions and the Levenberg-Marquardt back-
propagation method for training the networks.
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H. Closed-Loop Search for Optimal Stimulation
Parameters

A closed-loop optimization algorithm was developed to find
stimulation parameters that elicit the desired response shape
by minimizing the following objective function:

f (a, t) = |A (a, t) − C| + E (a, t) (1)

where A and E are activation area and eccentricity respectively
as functions of pulse amplitude (a) and type (t), as estimated
by the NNs. C is a constant representing the electrode area.
Activation area and electrode area values were normalized to
the maximum value of the activation area for a given region.
The ideal response shape has an activation area equal to the
electrode area and eccentricity of zero (i.e. circular).

An interior point algorithm was implemented in order
to find the minimum of the objective function in each
region [22]–[24]. The algorithm combines line search and
trust-region steps to reduce the objective function value.
At each iteration the next testing point is selected based on
the direction of change in the objective function value and
searching stops when the last step is smaller than the step
tolerance (10−4). The FMINCON function from MATLAB
optimization toolbox was used to implement this algorithm.

In each retinal region we started by recording the fluorescent
transient images in response to 5 different sets of stimulation
parameters. These points were chosen by randomly selecting
one amplitude (20 – 140 μA) for each pulse type. NNs
for activation area and eccentricity were then trained on the
images of RGC spatial activity and the objective function was
created based on Eq. (1). The interior point algorithm was used
to search for the minimum of the objective function and the
optimal stimulation parameters. The next step was delivering
a stimulus train with the predicted optimal parameters and
recording the spatial RGC activity. In most cases the optimal
parameters were modified to settings possible for delivery with
the electrical stimulator. Similar steps were done on 10, 15,
20, (by randomly selecting 2, 3, 4 amplitudes per class) and
46 sets of stimulation parameters.

I. Convolutional Neural Network Training for Calcium
Image Classification

Prior work using a database of previously recorded RGC
spatial activity images [8] showed that in most regions there
were many pulse parameters combinations that resulted in a
near optimal solution, and the solution found by the algorithm
was not necessarily the global minimum of the objective
function. Therefore, we created 5 different classes for response
shape and used that as a measure of the desirability of
the response shape elicited by the predicted optimal stim-
ulus parameters. Initially, we categorized our images into
5 classes based on activation area and eccentricity values
extracted from a fitted ellipse. We classified our images as
class 0-4 with the following definitions: Class 0 – zero active
pixels; Class 1 – eccentricity < 0.5, area < 2X electrode area;
Class 2 – eccentricity > 0.5, area < then 2X electrode area,
Class 3 – eccentricity < 0.5, area > 2X electrode area,
Class 4 – eccentricity > 0.5, area > 2X electrode area. One

Fig. 2. Example images for each class. Class 0: no meaningful activity,
class 1: round and small response, class 2: long and small response,
class 3: round and large response, class 4: long and large response.

metric that distinguishes different classes from each other is
having an area larger or smaller than twice the electrode area.
This metric was chosen because it determines whether the
RGC activity overlaps with adjacent electrodes according to
the electrode pitch in the MEA, which is similar to the pitch
in Argus II implants. Another classification metric is having
an eccentricity larger or smaller than 0.5. This number was
chosen as the mid-point in the eccentricity range. However,
classifying images by ellipse fitting resulted in images with
sparse activity (1- 2 cells) being classified as equivalent to
images with more robust activity, since ellipse fitting only
required a few points. Plus, this method would classify visually
similar images in different classes based on subtle differences
in area and eccentricity values. Therefore, we relabeled images
manually to classify them into visually distinguishable cat-
egories, and trained a convolutional neural network (CNN)
for image classification. An initial total of 5466 images were
labeled to distribute images into 5 classes, using our revised
definition for classes 0-4: class 0 = no meaningful activity,
class 1: round and small response, class 2: elongated and small
response, class 3: round and large response, class 4: elongated
and large response. Subsequent data augmentation to balance
the number of images per class increased the total number to
8622. Data augmentation was implemented through orthogonal
rotations, image flipping, and addition of gaussian and salt and
pepper noise to classes 1, 2, and 3.

CNN architecture consisted of three convolutional layers
each containing 128, 3 × 3 kernels and a subsequent rec-
tified linear unit (ReLU) activation function followed by a
max pooling layer (pool size = 2 × 2). The output of the
convolutional layers is then flattened and fed into the dense
block composed of four fully connected layers. All layers have
128 nodes, except the output layer that has 5 nodes corre-
sponding to the five classes. The training protocol involved the
use of ‘Adam’ [25] optimizer with categorical cross-entropy
loss and learning rate of 0.001. A 20% dropout, L2-norm
regularization (λ = 0.0007), and a batch size of 32 were used.
Training-test data split was 90-10%, and a further 90-10%
training-validation split was done on the training data. Training
was done over 25 epochs while monitoring accuracy and loss
performance metrics.

III. RESULTS

A. In Silico Prediction of Optimal Stimulus Parameters
With NNs Based on RGC Spatial Activity Data

RGC spatial activity was obtained from 24 retinal regions
during the experiments. Fig. 3A – C shows three examples of
objective function maps based on pulse amplitude and type.
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TABLE I
NEURAL NETWORK PERFORMANCE (MSE)

Fig. 3. A–C) Three examples of closed-loop search for optimal stimulation parameters. Objective function maps are plotted against pulse amplitude
and type. The interior point algorithm is used to search for the optimal stimulus. Red dots represent the initial condition (lowest amplitude and class),
yellow dots are the intermediary points, and green dots are the optimal points. Calcium images resulting from the optimal stimulation parameters
are below each objective function map. All 46 calcium images were used to create these objective functions. Normalized activation area (A) and
eccentricity (E) values are displayed on each calcium image.

These examples demonstrate the variability of RGC spatial
activity to the same range of stimulation parameters. Stimuli
that did not result in a calcium response were not included
in the data points used for modeling. NNs were created for
activation area (A) and eccentricity (E), and the objective
function was constructed based on Eq. (1). The performance of
NNs was quantified as the mean squared error (MSE) between
the learned objective function maps and the experimental
objective function values. The performances on the test data
sets for all 24 retinal regions are shown in Table I. High
standard deviation of MSE values indicates that the perfor-
mance can be different for each retinal region. That is expected
as it is challenging to capture the full response dynamics in
some regions. The performance of NNs on training and test
data indicated low overfitting. Adding more layers, nodes,
or training epochs to the network can improve performance
on training data but will likely cause overfitting and poor
performance on test data. The stimulation and recording time
for each trial took 10 seconds. Training time for NN and
execution time for the interior point algorithm varied based on
the amount of data and the number of iterations, respectively.

But in general, these took less than 1 minute running on a
standard desktop computer, without any attempt to optimize
code. The operating system on the computer was Microsoft
Windows 10 Pro, 64 bit, RAM = 32.0 GB, with AMD FirePro
W5100 GPU. The approximate time for each number of trials
in the process is below 2 minutes, 3 minutes, 3.5 minutes,
4.5 minutes, and 9 minutes, for 5, 10, 15, 20, and 46 points
respectively.

Examples of interior point optimization are shown in Fig. 3.
The initial condition was chosen as the point with minimum
value of pulse amplitude and type. The interior point algorithm
explores the continuous space fitted to the experimental data in
each region, therefore the optimal point found by the algorithm
was not amongst the experimental data points in most cases.
Due to limitations in the resolution of the electrical stimulator,
the optimal amplitudes and types were rounded to parameters
within the stimulator capability. Example RGC spatial activity
resulting from the closest stimulation parameters to the optimal
point are shown in Fig. 3 for each corresponding objective
function map. These images show relatively focal RGC activ-
ities with only sparse axonal stimulation. This confirms that
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Fig. 4. Normalized confusion matrix for CNN accuracy. Individual class
recognition rates are shown for test data. Accuracy values for correctly
predicting each class are shown on the diagonal.

the NNs and interior point algorithm are effective at finding the
optimal stimulus parameters for different regions with various
response characteristics.

B. Real-Time Search for Optimal Stimulation Parameters
in Vitro

Closed-loop optimization was performed in each region on
objective function maps fitted to RGC spatial activity evoked
by 5, 10, 15, 20 and 46 stimulus parameter combinations.
As described in Fig. 1 and the previous section, the inte-
rior point algorithm predicted optimal stimulus parameters.
Pulse parameters near the optimal settings were delivered
to the retina and the RGC spatial activity was recorded.
The CNN was used to classify the response shape evoked
by both the randomly chosen stimulus parameters (used for
NN training) and the predicted optimal stimulus parameters.
The CNN performance was measured based on accuracy of
predictions. Fig. 4 is a confusion matrix for true labels vs.
prediction labels, showing the prediction accuracies ranging
from 93 – 100%.

The CNN classification step determined if the search was
completed or if the process should continue. Since our overall
goal was to create a focal response area, class 1 is the
most desirable class due to focal activation area and round
shape. If the CNN classified the response shape as class 1,
then the process was completed. Otherwise, a new set of
data was collected with more data points. Class 2, 3, and 4
follow class 1 in terms of desirability. Class 0 means no
meaningful activity in response to retinal stimulation. The
best class in each retinal region was defined as the most
desirable class achievable considering response areas across
all stimuli. Class 1 was not always achievable, but all regions
yielded either a class 1 or 2 response area using this range of
parameters. Class 1 was reached in 7 out of 24 regions and
Class 2 was reached in 17 out of 24 regions. Fig. 5 includes
examples of the optimization process in two different retinal

regions. The best possible class in these regions is 1 and
2 shown in fig. 5A and fig. 5B respectively. Best class was
achieved after 10 and 15 trials in these examples. Fig 6. Shows
the possibility of getting best class vs. the number of trials.
In all retinal regions, we achieved response shape with the best
class after 20 trials. The average and median number of trials
for achieving best class was 10. As a control, we randomly
selected 5, 10, 15, and 20 stimulation parameter combinations,
classified resulting images, and identified which groups of
results had the best class image, and calculated the probability
of finding the best class across 24 retinal regions. The result is
shown as a black trace in Fig 6. For every number of trials, the
optimization method using NNs and interior point algorithm
search is providing a higher probability of finding the best
class.

Figure 5 shows how the objective functions become more
complex when more data is used to train the NN. Objective
functions based on five points are simple, with gradients in
one direction. As more data points are used to train the NN,
the objective function surface becomes more complex. NNs
are created based on 5, 10, 15, 20, and 46 experimental
points, depending on the iteration. However, objective function
maps shown in Fig. 5 have a higher resolution, obtained
by calculating NN outputs with inputs of pulse amplitude
(resolution of 2 μA) and pulse type (resolution of 1).

IV. DISCUSSION

We have presented a process for guided modification of
epiretinal stimulation parameters to produce a focal RGC
response area. Prior work in patients with Argus II retinal
implants has shown the importance of increasing the focality
of percepts. There has been a strong correlation between two
point resolution and the grating visual acuity task; the higher
the two point resolution, the better the visual acuity [13].
Further work established a link between visual acuity and
performance on visually guided tasks, including line following,
door finding, and letter recognition. Therefore, artificial vision
can be improved by creating focal, non-overlapping percepts
from individual electrodes.

We have shown that we can iteratively search and classify
response areas using two NNs, a CNN, and an optimization
algorithm. With this approach we were able to converge to the
best possible response shape in all 24 retinal regions within
20 trials. The average number of trials needed to converge
to a class 1 or 2 response shape was 10. To validate our
approach, we performed a full parameter space search to
identify the most desirable class possible when considering the
entire parameter space. This process can reduce the exploration
time significantly compared to a manual search, especially
when the parameter space is large. For our experiments,
we limited the free parameters to only two: pulse amplitude
and pulse type. We used anodic-first pulses in this study
based on our results from a previous study demonstrating
anodic-first pulses elicit more focal activity and avoid axonal
stimulation compared to cathodic-first stimuli [8]. Other fixed
parameters included cathodic pulse width (100 μs) and inter-
phase gap (5μs). Increasing the number of free parameters
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Fig. 5. Examples for objective function maps at different iterations and the resulting optimal solution and calcium image. Colored dots are the
classified calcium images for every stimulus train delivered at each iteration. Red boxes designate the optimal solution found by the algorithm.
Calcium image corresponding to the optimal solution is shown below each objective function map. A) At the first iteration (5 points), the algorithm
is converging to a solution with class 0 spatial activity. At iterations 2-5 the algorithm is converging to a solution with class 1 spatial activity. B) At
the first and second iterations, the algorithm is converging to solutions with class 4 spatial activity. At iterations 3-5 the algorithm is converging to a
class 2 spatial activity, which is the best class possible based on all trials. Normalized activation area (A) and eccentricity (E) values are displayed
on each calcium image.

makes a manual process less likely to succeed. However,
a large parameter space will also increase the time for a
semi-automated optimization process like we demonstrate.
In our process, we randomly selected pulse amplitudes for
each of the five pulse types tested. If the desired class
was not achieved, we randomly selected a new set of pulse
parameters and increased the number of settings by five, but
we did not utilize the information obtained from the prior
group of settings. Adding additional samples to prior data
may yield a more efficient process, since the prior data can
guide the selection of the next set of parameters. We observed
qualitatively that class 1 and 2 responses are above class 0,
but below class 3 and 4 responses, which suggests that the
optimal response is slightly above threshold. Further efficiency
may be achieved by identifying key parameter settings that

may have high predictive power or by focusing the search
around perceptual threshold. In many cases image classes do
not follow a clear trend from a class 0 to 4 by increasing
pulse amplitude or type. Some regions do not show a class 1
or 3 response due to axonal activation. Plus, we tested with
discrete and limited number of settings, which makes the
output (response class) less continuous.

In most cases there were multiple parameter combinations
that resulted in a near optimal solution. Therefore, we defined
five distinct response shape classes to discretize the desir-
ability of the solution. This approach provides the flexibility
to choose any of the 5 classes as the desired outcome by
modifying multiplying factors for area and eccentricity, and
the C constant in the objective function. We did not optimize
for pulse efficiency, only for shape. Other studies have focused
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Fig. 6. Probability of converging to the best possible class. Maximum
number of trials to get the best class is 20 across all retinal regions.

on optimizing pulse parameters for stimulation efficacy and
lower thresholds by modifying pulse duration and polarities,
however these studies haven’t optimized for spatial RGC
activity [8], [26], [27]. Optimizing for efficiency can be added
to our framework simply by selecting the most efficient of the
several pulse types that create the most focal percept class. The
optimal stimulation parameters predicted by the interior point
algorithm were rounded to the nearest available parameter
settings. The rounded settings sometimes were less optimal
(as measured by the objective function value) than the original
solution.

The choice of training a CNN was based on the need for a
rapid execution time and to eliminate any error in the ellipse
fitting process. CNNs have recently received significant atten-
tion due to their superior performance in computer vision tasks
such as image segmentation and classification [28], [29]. These
deep learning models are comprised of learnable convolution
filters that significantly reduce input image dimensions while
preserving characteristic features necessary for good decision
making by the subsequently cascaded multi-layer neural net-
work. Our results show prediction accuracies of 93-100% and
a low misclassification rate. Training curves were monitored
throughout training over 25 epochs, a reasonable choice that
offers a balance between extreme fitting conditions. Hyper-
parameters such as the learning rate, drop-out, convolution
kernel sizes, depth and width of the fully connected layers
were iteratively adjusted to achieve an appropriately fitted
curve. However, it is important to note that an irreducible
error (Bayes error rate) persists even with a sufficiently trained
model. Errors of 2 classes were noted (e.g. CNN classification
of 2, true label 4), but this does not indicate poor CNN
performance. Instead, this reflects our definition of classes.
Class 1 and 3 are round but differ in area. Classes 2 and 4 are
oblong and differ in area. Therefore, a misclassification of two
classes is due to an image that is in-between classes in terms
of area.

The interior-point algorithm needs prior knowledge of the
retinal response and local derivative information in order to

select the next iterations effectively. Therefore, fitting NNs
to a set of images at each iteration was necessary. Initially,
we tried to use polynomial fitting of the data, since this
would allow the use of calculus to obtain an optimal value.
However, the NN approach provides more flexibility. Each
region’s response characteristics can vary and may not follow
a polynomial with a fixed order. In addition, the order of
polynomial is dependent on the number of samples in each
iteration. When dealing with a small sample number, the order
of polynomial is limited and some non-linear responses may
require a higher order polynomial to capture the response
dynamics. We used a hyperbolic tangent transfer function in
our NNs since it is smooth, differentiable, and works well with
backpropagation approaches. Algorithms that do not require
prior knowledge of the system such as evolutionary algorithms
and stochastic searching can also be considered for finding the
optimal solution. However, these methods require evaluating
the objective function at every point in the parameter space
at each iteration and generally require many iterations before
converging to the optimal point [30], [31]. An alternative
approach to using an optimization algorithm is performing an
exhaustive grid search to find the optimal inputs; however, this
approach becomes less efficient as the search space scales in
both parameter range and dimension.

We demonstrated that RGC spatial activity can vary for
different retinal regions in response to the same stimula-
tion parameters. This finding in in vitro mouse retina con-
firms the previous clinical findings on the inconsistency of
phosphene shapes across electrodes and subjects [16]. Future
work includes performing human subject testing to verify this
method. If this approach is applied in clinic, it can shorten the
repetitive process of drawing phosphenes for retinal implant
users compared to a manual searching approach. In place
of calcium images, patient drawings [16] would be used to
determine the focality of percepts. NNs can be trained on
a few drawings and dynamically updated as more drawings
are added. The previously trained NNs on in vitro data could
also be used as the basis in human subject experiments. Prior
studies have shown that electrical stimulation responses during
in vitro and human subject experiments are influenced in a
similar way when adjusting pulse parameters. Pulse durations
longer than 20 ms induced focal RGC activity in vitro and
round, small percepts in retinal implant users [9]. In most
cases the dynamic range was narrow, as evident from Fig. 5,
meaning that increasing the pulse amplitude resulted in a
less desirable response shape. However, adding frequency
as a variable could possibly provide a dynamic range for
phosphene brightness while maintaining phosphene size [19].
An alternative method for obtaining patient feedback on opti-
mal stimulus settings could be measuring grating acuity or
coupling data driven algorithms with biophysical modeling to
further refine the initial parameter settings [32]. The location
of electrodes on the retina may provide some prior information
that allows us to modify the optimization process. Studies
have shown less elongated percept shapes happen near the
fovea [16], [19]. Thus, areas near the fovea may be expected
to produce class 1 responses, while areas away from fovea
may produce class 2 responses at best. Building up a database
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of expected results based on retinal location will allow the
process to run more efficiently. Given that retinal degeneration
often results in rewiring of the neural retina, optimization
routines will be important, since electrode location alone
may not predict phosphene shape if retinal degeneration is
significant, heterogeneous, and patient specific. The overall
outcome of retinal prostheses can be improved by developing
a clinically applicable system using the presented approach for
electrode-specific optimization of stimulation parameters.
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