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Abstract—The electroencephalography (EEG), which is
one of the easiest modes of recording brain activations in
a non-invasive manner, is often distorted due to recording
artifacts which adversely impacts the stimulus-response
analysis. The most prominent techniques thus far attempt
to improve the stimulus-response correlations using linear
methods. In this paper, we propose a neural network based
correlation analysis framework that significantly improves
over the linear methods for auditory stimuli. A deep model
is proposed for intra-subject audio-EEG analysis based on
directly optimizing the correlation loss. Further, a neural
network model with a shared encoder architecture is pro-
posed for improving the inter-subject stimulus response
correlations. These models attempt to suppress the EEG
artifacts while preserving the components related to the
stimulus. Several experiments are performed using EEG
recordings from subjects listening to speech and music
stimuli. In these experiments, we show that the deep mod-
els improve the Pearson correlation significantly over the
linear methods (average absolute improvements of 7.4% in
speech tasks and 29.3% in music tasks). We also analyze
the impact of several model parameters on the stimulus-
response correlation.

Index Terms— Canonical correlation analysis (CCA), mul-
tiway CCA (MCCA), deep learning, audio-EEG analysis.

I. INTRODUCTION

NDERSTANDING the human brain has been a topic of

profound interest in both science and engineering fields.
One of the most common methods to perform this analysis is
to measure the evoked brain response for a given stimuli and
establish a relation between them. The electroencephalography
(EEG) constitutes the simplest non-invasive technique to col-
lect brain signals while having sufficient temporal resolution
for auditory analysis. Since the EEG recordings involve scalp
level measurements, the recordings are significantly impacted
by noise [1]. The most popular method for analyzing auditory
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invoked EEG signals is the classical event-related poten-
tial (ERP) approach [2], [3]. This approach involves averaging
the EEG responses in time/frequency domain to suppress the
noise in the recordings [4]. However, this approach is limited
to isolated stimuli that have to be repeated and is therefore
often restrictive for use in the analysis of natural stimuli like
speech and music.

One of the first successful attempts in this direction is
the temporal response function (TRF) proposed by Lalor and
Foxe [5]. The linear TRF model describes the relationship
between a stimulus and its response as a linear time-invariant
(LTI) system. It can be a linear forward model where the
model estimates the EEG response for the stimulus or a
backward model where the model predicts the components of
the stimulus from the EEG response. The model estimation is
performed using linear least squares. The performance of these
models is typically validated using the Pearson correlation
value between the target signal and the predicted signal [6].

The initial studies used the slowly varying speech envelopes
of the stimuli and the corresponding single-trial EEG
responses [7], [8]. The analysis can also be extended to speech
spectrograms [9], phonemes [10], or semantic features [11].

The Canonical Correlation Analysis (CCA) is an extension
of the linear methods for analysis. Here, two signals are pro-
jected onto a subspace that maximizes the correlation between
them [12]. It determines a set of orthogonal directions on
which the two signals are highly correlated. The CCA has been
shown to be better than forward and backward TRF models
in auditory-EEG analysis recently [13], [14].

For each subject, the stimulus and response representations
are defined as “views” of the auditory signal. The stimulus-
view represents the audio signal using a temporal envelope
and the response-view represents it using the brain responses
collected as EEG recordings. The linear CCA can be per-
formed only on two views of the data at a time. In order to
aggregate the EEG responses from multiple-views (subjects),
multiway CCA (MCCA) or generalized CCA [15]-[17] has
been proposed. As all views (EEG responses) represent the
same object (audio stimulus), some components are common
across the views [18]. The application of multiway CCA for
EEG mapping has shown improvements over the intra-subject
CCA [19].

In this paper, we explore a deep neural network based
architecture for correlating the EEG response with the stim-
ulus features. The deep CCA framework, introduced by
Andrew et al. [20], had shown promise over the linear CCA
for image data. However, the direct application of the deep
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CCA to the EEG data is cumbersome as the EEG data is
significantly noisy with signal-to-noise ratio (SNR) below
—20dB [1]. The dropout strategy [21] alleviates the impact
of noise partly. In audio-EEG experiments, we show that the
deep CCA consistently improves over the linear CCA model.

We also propose an approach for deep multiway CCA where
multiple EEG responses for the same stimuli can be combined
in a neural network architecture. For this task, we use a
reconstruction approach with a shared hidden representation
to derive the deep transform that aligns multiple views. Using
this novel approach, we show that the deep MCCA improves
over the linear MCCA model [19]. In subsequent analysis,
we also illustrate how the deep MCCA can be combined with
the deep CCA model for EEG analysis.

The data used in the experiments consists of EEG responses
for speech and music listening tasks. The speech task
is the same dataset used in the linear CCA work by
Cheveigné et al. [13] where subjects listen to the narration
of an audiobook. The music dataset used in this work is
the Naturalistic Music EEG Dataset - Hindi (NMED-H) [22]
which is an open dataset of EEG responses collected for Hindi
pop songs.

The remainder of the paper is arranged as follows. Section II
highlights prior work done in the domain. Section III describes
the background of linear CCA and multiway CCA. Section IV
discusses the proposed deep CCA model and the deep MCCA
model. Section V details the datasets and experimental setup.
Section VI reports the results of the proposed deep models
and a comparison with linear models. Section VII presents
a discussion on the hyper-parameters. Finally, Section VIII
presents the summary of this work.

Il. RELATED PRIOR WORK

Machine learning methods for the extraction of information
from brain signals like EEG have a significant impact on both
understanding and applications like brain-computer interfaces
(BCI) [23]. It is therefore of profound importance to transfer
the recent advancements in machine learning (for example,
deep learning [24]) to improve the models for brain signal
decoding and single-trial analysis. One of the first works in this
direction involved the use of convolutional neural networks
to identify the P300 wave in EEG signals [25]. The recent
years have seen the use of deep learning for several brain
mapping tasks like computational memory prediction [26],
driver’s cognitive state prediction [27], and the brain activity
reconstruction for visual stimuli [28]. A review of several
efforts in decoding brain activity using deep learning tech-
niques is given in Zheng et al. [29].

In auditory tasks, EEG recordings have shown to contain
rhythm information in music perception using classifiers based
on deep networks [30]. A recent work by Das et al. [31]
has shown that auditory attention decoding in the percep-
tion of noisy speech can also be improved by deep learn-
ing techniques. In multi-speaker cocktail party scenarios,
Deckers et al. [32] showed that neural networks are capable
of identifying the attended speaker. A Convolutional Neural
Network (CNN) based model for EEG-based speech stimulus
reconstruction was also proposed by de Taillez ef al. [33],

showing that deep learning is a feasible alternative to linear
decoding methods. Our work on deep CCA models [34]
for intra-subject analysis and inter-subject analysis [35] is
extended in this paper with inter-subject models and additional
evaluations on music dataset.

I1l. MATHEMATICAL BACKGROUND
A. Linear Canonical Correlation Analysis

For a dataset with pairs of multi-variates, linear Canonical
Correlation Analysis [36] obtains an optimal linear transform
for both the views such that the Pearson correlation of the
two transformed vectors is maximized. Let x € RP! and y €
RP2 be two random vectors that represent two views of the
data. Let d be the dimension of the projected subspace. The
subspace is determined such that resultant projection vectors
are maximally correlated. For example, if d = 1, then a pair
of transform vectors u; € RP1 and V| € RP2 need to be
determined such that x = ulTx and y = VlTy are maximally
correlated. Mathematically,

-
u; Cyyvy

p (g, vy) = (D

T T
\/“1 Cxxuv; Cyyvy

(uf, vi) = argmax p (uy, vi)
up,v

where, Cxx, Cyy are the auto-correlation matrices of X, y
respectively while Cxy = E[(X — ux)(y — ,uy)T] is the cross
correlation matrix. Here, yx and uy are the mean vectors of
x and y respectively.

It can be shown that the optimal solution to the transform
vectors uj and vy is given by the first left and right singular
vectors of the matrix

T2 Cox 2CryCyy ™2 @)

respectively. For d > 1, the solution is obtained by finding the
subsequent singular vectors of T [20].

B. Linear Multiway CCA

The multiway CCA is a linear method that generalizes
the linear CCA to multiple (more than two) data-views.
It finds a linear transform for each data-view, such that all the
projections are maximally correlated to each other [18], [19].

Letx, € R4 forn =1 to N, denote the N data-views and
Dy = ZQ’ZI dy. For the 1-D projection case, let v, € Rn
denote the transform vector that projects x,, onto the common
subspace. The goal of MCCA is to find the transform vectors
{vn}fl\'=l such that the inter-set correlation (ISC) is maximized.
The ISC is defined as

1 e

S 3
PISC= N 3)

where rp is the between-set covariance and ry is the within-
set covariance. The between-set and within-set covariances are,

=
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where R/% € R4> is the cross-covariance matrix between
the views x; and xy.

The cross-covariance matrices among all the views form
elements of a block matrix R e RP¥*PN guch that
[R];; = R/ . By considering only the autocovariance matrices,
a block-diagonal matrix D € RP¥*P¥ is formed whose
block diagonal entries are the same as that of R. The opti-
mal transform vectors {V,,};V:1 are obtained by solving the
equation [18]:

Rv = ADv @

The eigenvector v € RPV*! with the maximum eigenvalue is
the concatenation of the transform vectors {V"};]1V=1'

For projection onto a higher dimensional subspace d (>1),
the transform matrix for each multivariate x,, becomes V,, €
R%&>d_ This involves finding the top d eigenvectors of
Equation (4).

C. Understanding CCA for EEG Decoding

The CCA model attempts to find a subspace of brain activity
which is maximally correlated with the auditory stimulus.
The EEG signal in the form of spatial channels (electrodes)
and time-domain lags are used while the time-lagged audio
envelopes are used as stimulus features. These two vectors
form the data-views for CCA [13]. Specifically, the stimuli
features, x, in our experiments represent the time-lagged
envelope of the audio signal while the response features, y,
represent the EEG recordings. These two features are provided
at the same sampling rate and the CCA model attempts to
relate them. This is done by finding the linear transforms,
uj and vy, that transform the stimulus and the response
respectively, in such a way as to maximize the correlation.

In this case, the components of CCA can also be regarded as
spatio-temporal filters applied on the EEG data and modulation
filters on the audio envelope. The multiple CCA components
of the audio signal correspond to FIR filtered envelopes that
are orthogonal. Similarly, the CCA components of the EEG
signal represent spatio-spectrally filtered projections that are
orthogonal. The CCA was used recently for auditory and
audio-visual EEG analysis by Dmochowski ef al. [37]. The
use of CCA in forward and backward models with time lags
has shown additional improvements in correlation values [13].

When multiple subjects are presented with the same stim-
ulus, the functional similarity is expected to generate similar
responses [38]. However, the position or orientation of the
sources with respect to the electrodes may be different for
different subjects and therefore, the direct mapping of the
EEG responses for the same stimulus from different subjects is
cumbersome. The multi-CCA attempts to align the data from
each subject to a common representation that makes it possible
to compare across subjects. This is achieved by deriving spatial
filters that are specific to each subject [39].

For the MCCA model, the N subjects’ response features
(EEG recordings), x, for n = 1to N and the common
stimulus features (audio envelope) Xy41, are provided as
inputs. Now, the model provides a linear transform for each

of them, v} for n = 1to N 4 1, such that the projected
representations (VZTX,,) are highly correlated to each other.

IV. PROPOSED ANALYSIS APPROACH

A. Deep CCA

A deep CCA model finds a pair of optimal non-linear
transforms for the two views of the dataset through a pair of
neural networks such that the two new projections are highly
correlated [20]. As before, let random vectors x € RP1 and
y € RP:2, denote the data-views. Let fi(-) and f»(-) denote the
non-linear functions realized by the neural networks operating
on x and y respectively. Let #; and @, represent the trainable
parameters of f; and f> respectively. We find their optimal
values by solving the following optimization problem:

(6%, 03) = argmax p (fi (x; 01), f>(y; 02)) Q)
01.62)

where p corresponds to the cross correlation coefficient.

For a batch of m examples from each of the (x, y) data-
views, let Hy € R4*M denote the matrix whose columns are
the neural network outputs fi(-). Similarly, let Hy € RExm
denote the outputs from the second network f(-).

Let, He = Hy — LH,1 and similarly, Hy = Hy — 1Hy1
denote the centred data matrices, where 1 is an all-1 matrix
of dimension m x m. The covariance matrices of the feed-
forward network outputs are given by,

" 1 = = T ~ 1 = =T
Cix = m ~Hy s ny:m yHy
. |
ny = meHy
Further, let
A—1/28 A—1)2
Ty 2 Col*CryCyy/ ©)

Let Ty = UDVT denote the SVD of Tg. It can be shown
that optimization' of Equation (5) is given by,

dp (Hy, Hy) 1 - -
oH, = m—1 (zvxxHx + nyHy) (7
where
~A —1/2 A =172
Y = Cox UVTC, @)
1 .- P
v}m = _5Cxxl/ZUDUTCXXI/2 (9)

Similar expression can be obtained for gradient with respect
to Hy. These gradients are backpropagated to learn the optimal
model parameters 61 and 6. Note that the gradient ascent, for
Jj =1,2, is performed as

op (Hy, Hy)

10
20 (10)

t+l _pit
0,7 =6;"+n
where the # is the learning rate for the gradient ascent.

1A detailed derivation of the gradients is given in Appendix A.
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Fig. 1. The proposed deep multiway CCA Model. N inputs are provided
to N encoders. All N outputs are provided to the correlation loss and
all N decoders. The decoders’ outputs are provided to the reconstruc-
tion (MSE) loss. The sum of the correlation loss and negative of the
reconstruction loss becomes the cost function.

B. Deep Multiway CCA
N

For each of the N data-views {x, € Rd"}n:p the goal
of deep MCCA is to derive optimal non-linear transforms
such that the transformed vectors are highly correlated. Let
fn(), forn =1 to N, represent neural networks with trainable
parameters 6, operating on X,.

The N neural networks are trained to maximize the inter-set
correlations defined as:

N N
proa = > p(fi (x:0;). f i 0) (1D
j=1k=1,k#j
Comparing with Equation (3), the correlation cost here
(PTotal) 1s the summation of pairwise correlation coefficients.
While the two definitions are related, the cost based on sum
of pairwise correlations is more suitable for gradient based
optimization. The parameters are obtained as:

65....

The backpropagation for each network is similar to the deep
CCA model, as described in Equation (7).

The proposed model (shown in Figure 1) has multiple
autoencoders sharing encoded representations (N autoen-
coders for N dataviews respectively). Each view x, for-
ward propagates through the encoder part of its autoencoder,
fu(@,,-). All the encoded representations, f,(x,;#,) are
concatenated (denoted as y), and propagated to the decoders,
f,, (6., -). This shared encoder-decoder model allows the learn-
ing of data-view specific transforms that align the views.

The model is trained to maximize the joint cost function of
correlation and negative of the mean square error (MSE) in
reconstruction. This cost function is given as,

0N) (12)

> 07\/) = argmax pTota](ol 5 e e
©1,....0n)

N
E = pro — 4 > MSE (%, fo(y: 6)) (13)
n=1

where p Total is defined by Equation (11) and MSE(:) is the
average squared reconstruction loss. The parameter 4 controls
the trade-off between maximizing the correlation metric and
minimizing the MSE in learning the model parameters.

The model is trained using the N data-views {xn}fl\':1 with
the cost metric defined. Note that the correlation loss is

independent of the decoder parameters (3,, while the MSE(-)
is a function of both the encoder parameters 6, and decoder
parameters 6,,. Once the model is trained, each data-view x,
is projected using the encoder f; (x,; 0,).

V. AuDIO-EEG SETUP
A. Datasets

We experiment our methods on two datasets. The first one
is a dataset of EEG responses for speech stimuli, recorded
by Liberto et al. [10]. The second dataset is NMED-H [22].
It contains EEG recordings for a music listening task.

1) Speech-EEG Dataset: The EEG recordings were col-
lected using 128 channels, when the subjects were listening
to a male speaker reading snippets of a novel.> A Biosemi
system, sampled at 512 Hz, was used to collect the EEG
data. We perform the same preprocessing steps as described
in Cheveigné et al. [13]. Specifically, the EEG data are down-
sampled to 64 Hz and processed using noise suppression
software [40]. A band-pass filtering with a passband in the
range of 0.1—12 Hz is applied to the EEG data. At the stimulus
side, the speech envelopes sampled at 44, 100 Hz, are squared
and smoothed by a convolution with a square window. Finally,
the stimuli data are downsampled to 64 Hz with a cubic-root
compression.

2) Music-EEG Dataset: The NMED-H [41] is an open
source dataset containing EEG responses to naturalistic
music - 4 versions (normal, time-reversed, phase-scrambled,
and shuffled) of 4 full-length “Bollywood” songs, each approx-
imately of 4.5 minutes long. The last three stimuli versions
were chosen to manipulate the temporal features at vary-
ing degrees, while the aggregate frequency content of each
stimulus was same. The shuffled version imposes minimal
temporal disruption whereas the phase-scrambled versions
were considerably distorted [41].

In the phase-scrambled subset, three stimuli files were not
considered in the analysis as the features had discontinuities.
The EEG recordings were recorded from 125 electrodes at
1 kHz. Each recording is filtered between 0.3-50 Hz and
downsampled to 125 Hz. We use the “Clean EEG” recordings
which are cleaned and aggregated on a per-stimulus, per-listen
basis. More details on data acquisition and preprocessing are
given in Kaneshiro et al. [42], Kaneshiro [41].

The stimuli features are extracted as described in
Gang et al. [43]. The acoustic features are extracted using
the music information retrieval (MIR) toolbox, Version
1.7.2 [44]. From the stimuli, 20 features are extracted in
25ms analysis windows with a 50% overlap between frames
[45], [46]. The 20 features are discussed in the Section IX-B
as an appendix. The principal component analysis (PCA)
is performed to obtain a 1D representation (PC1) on these
20 extracted features. The two individual features, root mean
square (RMS) and spectral flux, along with the PC1 are
chosen to obtain a 3D representation for the stimuli. The EEG
responses are re-sampled to the sampling rate of the acoustic
features (80 Hz).

2The speech-EEG dataset is available open source at https://datadryad.org/
stash/dataset/doi: 10.5061/dryad.070jc
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Fig. 2. The LCCA and DCCA methods. The stimulus features are low-
pass filtered envelopes.

B. CCA Methods

In all our experiments, the linear CCA (LCCA) [13] and
linear MCCA (LMCCA) [19] analysis act as the baseline
setup for comparison with the deep CCA (DCCA) and the
deep multiway CCA (DMCCA) methods. For the multi-subject
EEG analysis, the outputs from the multiway CCA are further
processed with CCA (either LCCA or DCCA).

1) LCCA: On the 1D preprocessed stimuli data, a dyadic
bank of 21 FIR band-pass filters is applied that contains filters
that are approximately uniformly distributed on a logarithmic
scale [13]. At the response end, a PCA is applied to the EEG
data that transforms the 128D (or 125D for music data) EEG
data to 60D. The filterbank is applied on these 60D EEG data
to yield 1260D data. A second PCA is applied that transforms
them to 139D subspace. Now, the 21D stimuli data and the
139D EEG data are projected onto common subspace using
CCA transforms. The data are processed (the choice of
PCA and the dimensions after each stage) as proposed by
Cheveigné ef al. [13]. The combination of PCA and filterbank
acts as a spatio-temporal filter on the data.

2) DCCA: The neural networks used in DCCA model have
a 2 hidden layer architecture, for each view, with 2038 and
1608 units for the first and second layers respectively followed
by a d dimensional output layer. The data are processed
similar to the LCCA method, and the final 21D and 139D
representations are input to a deep CCA model. Figure 2
describes the LCCA and DCCA methods.

3) LMCCA: The preprocessed EEG responses from N sub-
jects and a time-lagged version of their common stimuli (d;D),
are provided to a linear MCCA model to obtain the denoised
representations for each subject’s EEG response. Now, each
subject’s denoised EEG data and their corresponding stimuli
can be provided, separately, to the LCCA and DCCA methods
to obtain final representations. This is performed as proposed
in Cheveigné et al. [19].

4) DMCCA: The preprocessed EEG responses, along with
the common stimuli are provided to a deep MCCA model to
obtain a dD denoised representation for each EEG response.

The architecture of the DMCCA model is shown in
Figure 1. The encoder has two hidden layers of 60 units each
and an output layer of d units. The decoding part has two
hidden layers of 60 and 110 units respectively.

LMCCA + L(D)CCA

——
@cce®
—: D, I —> Filter
@ccc0 L . LCCA
or
. @@
Stimulus — e p o 5 |pca| — Filter DCCS
(1D) - ol ® Bank
DMCCA + L(D)CCA
—a < E_ ® —| Filter
e [T N 2
=)
Ly ——{ Filter
Bank

Fig. 3. Configuration of the four systems - linear multiway CCA with
linear CCA (LMLC), linear multiway CCA with deep CCA (LMDC), deep
multiway CCA with linear CCA (DMLC) and deep multiway CCA with
deep CCA (DMDC) methods.

Response #n
(128D)

Response #n
(128D)

LCCA
or

Stimulus DECS

(@D)

The ds and d are hyperparameters and the best values are
selected by varying them, for both the variants of MCCA.
More details are discussed in Section VII-A. The outputs from
the linear MCCA model are of 128D for speech (125D for
music) dataset. For both the MCCA methods, the denoised
responses are provided to the filterbank followed by a PCA to
generate 139D vectors. The dD stimuli obtained are projected
onto a 1D subspace using PCA, followed by the filterbank
resulting in a 21D data. These steps make sure that the inputs
to the CCA transforms are equivalent in both versions of
MCCA.

For intra-subject analysis, the LCCA/DCCA are performed
on each subject’s data separately. For inter-subject analysis,
the LMCCA/DMCCA are performed on data from multiple
subjects data followed by a subject-specific LCCA/DCCA
method. Thus, we have four combinations

1) LMLC: LMCCA + LCCA

2) LMDC: LMCCA + DCCA

3) DMLC: DMCCA + LCCA

4) DMDC: DMCCA + DCCA

Figure 3 shows the four combinations of the MCCA denois-
ing followed by CCA analysis for each subject.

C. Experimental Setup

For the speech dataset, the methods are performed on the
preprocessed 1D stimuli envelopes and 128D EEG responses.
For NMED-H, along with the 1D stimuli envelopes, each
dimension of the 3D preprocessed stimuli is also used with
the 125D clean EEG recordings.

From the speech dataset, stimulus-response data of 8 sub-
jects are considered randomly to perform the experiments.
The data from each subject contains 20 sessions with approxi-
mately 160s of recording in each session. For all the methods,
20 fold validation experiments are performed where 18 ses-
sions are used for training, one session for validation and the
remaining session for testing. Given a sampling rate of 64 Hz,
the approximate number of instances for the linear/deep model
training per subject is about 200k.

The NMED-H dataset contains recordings from 48 subjects
and 16 stimuli. The subjects were divided into 16 groups of
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12 subjects with each subject appearing in 4 groups. Each
group is presented with 2 trials of a stimulus which results
in each subject listening to 2 trials of 4 different stimuli.
In our analysis, we have used all the data available. All the
12 subjects that were available for each stimulus were used in
the inter-subject analyses and the intra-subject analysis.

We split the data into 90 —5 — 5 for training, validation and
test respectively. It results in about 155k samples for training
and 8.5k samples for testing and validation, for each subject
in the CCA experiments. Similarly, we use 38k samples for
training and 2k samples for testing and validation, for each
subject per stimulus in the MCCA experiments.

A leaky ReLU activation function with a negative slope
coefficient of 0.1 is used in the DCCA model and the encoder
part of the DMCCA model. A linear activation function
is used at the output layer of the decoder sections in the
DMCCA model.? Further, dropout regularization [21], [47] is
incorporated in the deep models training to avoid over-fitting
in the noisy conditions.

1) Performance Metric: The primary metric used is the
Pearson correlation between the transformed EEG and audio
signals on the held-out test set. For each subject, the LCCA
and DCCA methods performance is measured by the cor-
relation coefficient (p) of the two final representations. The
LMCCA tries to maximize the pisc, and the DMCCA tries to
maximize the pora1. For overall results, instead of direct aver-
aging of Pearson correlation values which is mathematically
incorrect, we perform a z-score based averaging implemented
in the Statsoft software [48].

We also use a secondary performance metric based on
classification of aligned versus misaligned EEG-audio seg-
ments [13]. Here, fixed-length segments of EEG and audio
signals that are randomly located are correlated using the
models. If the audio and EEG segments are aligned, the
model is expected to generate a higher correlation score
than when the two signals are misaligned. The correlation
scores are analyzed using the sensitivity index (Cohen’s
d’ statistic).

Let the means of the matched and mismatched segments’
correlation coefficients be 1 and uo respectively. Let, 012 and
022 be their respective variances. The Cohen’s d’ is:

[ — u2|

3 (07 +03)

d = (14)

VI. RESULTS

The results comparing the linear and deep CCA mod-
els for intra-subject and inter-subject experiments on the
speech-EEG dataset are given in Table I and Table II
respectively. The results for the music-EEG dataset are shown
in Table III and Table IV. Pairwise one-tailed t-tests are per-
formed on the pairs of LCCA-DCCA (Table I and III) and
LMLC-DMDC (Table IT and IV).

3The implementation is available at https://github.com/iiscleap/deep-cca-for-
audio-EEG

TABLE |
PEARSON CORRELATION VALUES FOR LCCA AND DCCA METHODS
ON THE SPEECH - EEG DATASET. A PAIRED T-TEST WITH {P-VALUE}
AND [T-VALUE] ARE INDICATED. STATISTICALLY SIGNIFICANT
(p < 0.025) FOR 4 OUT OF 8 SUBJECTS AND
THE OVERALL AGGREGATE

Models | LCCA DCCA t-test
Subl 0.220 0.275 {0.01}[2.3]
Sub2 0.258 0.316 {0.01}[2.5]
Sub3 0.175 0.213 {0.051}[1.7]
Sub4 0.316 0.403 {1e-3}[3.3]
Sub5 0.307 0.338 {0.03}[1.9]
Sub6 0.315 0.354 {0.049}(1.7]
Sub7 0.260 0.292 {0.06}[1.5]
Sub8 0.183 0.232 {0.02}[2.2]

Overall 0.255 0.304 {Te-6}[4.8]

TABLE Il

PEARSON CORRELATION VALUES FOR LMLC, LMDC, DMLC AND
DMDC. A STATISTICAL SIGNIFICANCE TEST (T-TEST) BETWEEN
LMLC AND DMDC ({P-VALUE} [T-VALUE]) IS ALSO REPORTED.
THE IMPROVEMENTS ARE STATISTICALLY SIGNIFICANT
(p < 0.025) FOR 5 OUT OF 8 SUBJECTS AND
THE OVERALL AGGREGATE

Models | LMLC LMDC DMLC DMDC t-test
Subl 0.262 0.271 0.375 0.377 {9.1e-7}[5.6]
Sub2 0.289 0.325 0.367 0.374 {5.1e-4}[3.6]
Sub3 0.160 0.177 0.258 0.259 {6.3e-5}[4.2]
Sub4 0.310 0.378 0.341 0.361 {3.6e-2}[1.8]
Sub5 0.309 0.354 0.389 0.392 {8.5e-5}[4.2]
Sub6 0.327 0.342 0.416 0.420 {4.6e-5}[4.4]
Sub7 0.275 0.289 0.310 0.310 {4.4e-2}[1.7]
Sub8 0.221 0.245 0.259 0.272 {2.8e-2}[2.0]

Overall | 0.270 0.299 0.339 0.344 {9e-14}[7.7]

A. Speech-EEG Dataset Results

For speech-EEG experiments, the 20 cross-validation results
(correlation values) for the 20 folds for all the subjects are
considered for a pairwise t-test. As seen in Table I, the DCCA
improves over the LCCA for all the subjects. The average
absolute improvements for DCCA over the LCCA in terms
of correlation value is 5%. The improvements are also
statistically significant (p < 0.025)* for 4 out of 8 subjects
and the overall aggregate.

The comparison of various inter-subject experiments on the
speech-EEG dataset is shown in Table II. Here, the inter-
subject alignment using linear method (LMLC) improved over
the linear intra-subject correlation model (LCCA) on all sub-
jects except subject 3 and 4. The inter-subject alignment using
deep learning (DMLC/DMDC) improves the correlation scores
compared to the intra-subject scores reported in Table I for all
cases except subject 4. Further, the deep models consistently
improve over the linear counterparts. In particular, the deep
multiway CCA approach improves over the linear multiway
CCA by an absolute correlation value of 7.4% on the average.
The improvements are found to be statistically significant
(p < 0.025) for 5 out of 8 subjects. The overall aggregate
score is found to be statistically significant as well.

4Compensating for multiple comparisons on two datasets, the significance
threshold (o = 0.05) is divided by 2 to obtain a threshold of 0.025 as per the
Bonferroni correction method [49].
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Fig. 4. Comparison between LCCA and DCCA methods for PC1 stimuli features, of the 48 subjects from the NMED-H dataset, arranged in the
increasing order of the LCCA correlation values. The last column shows the average of the 48 subjects.

AVERAGE CORRELATION VALUES FOR 48 SUBJECTS FROM THE NMED-H DATASET IN INTER-SUBJECT ANALYSIS. A STATISTICAL SIGNIFICANCE

TABLE IlI

TEST (T-TEST) BETWEEN LMLC AND DMDC METHODS (INDICATED AS {P-VALUE} [T-VALUE]) IS ALSO REPORTED.
THE IMPROVEMENTS ARE STATISTICALLY SIGNIFICANT (p < 0.025) FOR ALL EXPERIMENTS

Stimulus feature Normal Reversed Phase-Scrambled Shuffled
CCA Model LCCA DCCA [t-test] LCCA DCCA [t-test] LCCA DCCA [t-test] LCCA DCCA [t-test]
Envelope 0.007  0.118 {le-4}[3.7]1 | -0.003  0.117 {3e-5}[4.1] | -0.052  0.095 {4e-7}[5.3]1 | -0.013 0.134 {3e-5}[4.2]
PCI -0.020  0.077 {9e-4}[3.2] 0.012  0.105 {1e-3}[3.0] | -0.016 0.072 {le-3}[3.1] 0.030  0.135 {1e-3}[3.0]
RMS -0.004  0.087 {2e-4}[3.6] 0.008  0.101 {3e-4}[3.5] | -0.042 0.091 {4e-7}[5.2] | -0.025 0.100 {3e-5}[4.2]
Spectral Flux 0.008  0.102 {3e-4}[3.5] | -0.004 0.113 {9e-6}[4.5] | -0.034  0.107 {3e-7}[5.3] 0.005  0.123 {3e-5}[4.2]

AVERAGE CORRELATION VALUES FOR 48 SUBJECTS FROM THE NMED-H DATASET IN INTER-SUBJECT ANALYSIS. A STATISTICAL SIGNIFICANCE

TABLE IV

TEST (T-TEST) BETWEEN LMLC AND DMDC METHODS (INDICATED AS {P-VALUE} [T-VALUE]) IS ALSO REPORTED.
THE IMPROVEMENTS ARE STATISTICALLY SIGNIFICANT (p < 0.025) FOR ALL EXPERIMENTS

Stimulus feature Normal Reversed
MCCA Model LMLC LMDC DMLC DMDC t-test LMLC LMDC DMLC DMDC t-test
Envelope 0.076 0.146 0.344 0.349 {3e-26}[14] 0.062 0.099 0.299 0.384 {1e-37}21]
PC1 -0.007 0.102 0.384 0.321 {1e-26}[14] 0.030 0.159 0.360 0.323 {2e-19}[11]
RMS 0.001 0.114 0.341 0.246 {3e-13}[8.5] 0.042 0.135 0.318 0.220 {1e-08}[6.2]
Spectral Flux 0.017 0.110 0.341 0.343 {2e-24}[13] 0.053 0.170 0.340 0.321 {1e-16}[10]
Stimulus feature Phase-Scrambled Shuffled
MCCA Model LMLC LMDC DMLC DMDC t-test LMLC LMDC DMLC DMDC t-test
Envelope 0.042 0.092 0.312 0.299 {8e-26}[14] 0.077 0.132 0.341 0.333 {4e-19}[11]
PC1 0.012 0.166 0.262 0.389 {6e-21}[12] 0.051 0.149 0.345 0.347 {5e-21}[12]
RMS 0.020 0.108 0.176 0.397 {2e-07}[7.4] 0.051 0.156 0.327 0.345 {le-19}[11]
Spectral Flux 0.038 0.207 0.340 0.390 {3e-22}[12] 0.061 0.145 0.294 0.322 {8e-15}[9.2]

B. Music-EEG Dataset Results

For LCCA/DCCA methods, the average correlation values
for the 48 subjects in the NMED-H dataset is reported in
Table III. The results are reported for different music condi-
tions - normal, shuffled, time-reversed and phase-scrambled;
and stimuli features - envelope, PC1, RMS and spectral
flux. The pair-wise t-test on the NMED-H dataset shows
that all improvements obtained by the deep versions are
statistically significant (p < 0.025). The performance of
LCCA and DCCA methods on the PCl features of 48
subjects from the NMED-H dataset is shown in Figure 6.
The average absolute improvements are about 11% for
the DCCA over LCCA method. For inter-subject analy-
sis, the Table IV shows that the DMDC improves over
the LMLC method with an average absolute improvement
of 29.3%.

C. Statistical Analysis

In order to measure the significance of the improved corre-
lations of our proposed deep models over the baseline system,
we have performed two statistical tests: a) one-tailed pairwise
t-test and b) Cohen’s d’. The pairwise t-test is performed to
objectively quantify the difference in the distribution of the
correlation scores from the two methods. Given that the same
hypothesis (LCCA versus DCCA on intra-subject analysis or
LMLC versus DMDC on inter-subject analysis) is tested on
two different datasets (speech-EEG and music-EEG), a com-
pensation is required for multiple comparisons. We use the
Bonferroni correction [49]. Thus, a p-value 0.05/2 = 0.025
is used to check if the improvements in the correlation are
statistically significant on each dataset. The pairwise t-test
results comparing the linear and deep models are reported for
speech-EEG (Table I, IT) and music-EEG (Table III, IV).
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Fig. 5. The d’ metric for both the datasets. linear-speech and linear-
music correspond to the d’ values of the final representations from LMLC
models for the speech and music datasets. Similarly, deep-speech and
deep-music correspond to DMLC models.

As mentioned in Section V-C, a classification metric is also
performed where audio-EEG segments are classified as aligned
or misaligned based on the Pearson correlation measure. The
second statistical test, Cohen’s d’ [50], is an effect size used
to indicate the standardised difference between two classes (in
our case, these classes are aligned and mis-aligned audio-EEG
pairs). The d’ metric quantifies the model’s ability to match the
corresponding stimulus-response pair based on the correlation
value, p. The test data is divided into N segments of ¢ seconds
each, and the correlation coefficient values p are calculated for
the linear the deep methods for both aligned and mis-aligned
segments (speech/audio-EEG pairs). The Cohen’s d’ metric
measures the model’s ability to separate aligned versus mis-
aligned pairs. The LMLC/DMLC methods are used on the
audio-EEG segments and the correlation values are computed.
Using the correlation score from the respective models, the
Cohen’s d’ is computed on the correlation score. The d’ statis-
tics are presented in Figure 5. This is performed separately for
the speech-EEG and music-EEG datasets. As seen in Figure 5,
the deep model improves over the linear model in all the cases
except for 1 second segments in speech-EEG data. In longer
segments, considerable improvements in the d’ statistic are
observed for the deep models.

VII.

A. Impact of Hyperparameters

DiscussIiON

In this section, we analyze the impact of the hyperparame-
ters involved in the deep CCA/MCCA models on the correla-
tion metric. The parameters analyzed are: model architecture,
dropout percentage, regularization parameter in DMCCA, and
the number of output dimensions in DMCCA. We use a
learning rate of 1e —3 and a batch size of 2048 on experiments
where these parameters are not mentioned. Further, the number
of time-lags used in the stimulus input is also varied to
understand its impact. For initializing the models, we start
with multiple random seeds and choose the one which gives

the best correlation on the validation data before the model
training. Unless specified otherwise, the values of parameters
ds and A are fixed to 60 and 0.1. The value of d is fixed to 1
and 10 for all the DCCA and DMCCA models respectively.

1) Dropout: For the speech-EEG dataset, we experiment
with dropout percentage from 0 —20% in the DCCA/DMCCA
model. The correlation values obtained by DMLC and DCCA
methods are shown in Figure 6 (A). When there is no dropout,
there is a tendency for the model to overfit. A similar effect
is seen in the DCCA model as well.

2) Batchsize: The effect of the batch size is analyzed
for the DCCA model. The average correlation values of 6
subjects from the speech dataset, for 20 cross-validation trials
is reported in Figure 6 (B). Given the noisy nature of the data,
we find that the higher batchsizes (compared to typical choices
of few hundreds in supervised classification setting) are found
to improve the final correlation value. The optimal batch size
on the validation data is 2048.

3) DCCA Output Dimension: Just like the CCA model where
multiple canonical components dimensions can be derived
from the data, the DCCA model also can be trained for
multiple output dimensions. The comparison of the linear and
deep CCA models for 5 canonical correlation components is
shown in Figure 6 (C) for each subject in the speech-EEG
dataset. As seen here, the DCCA model improves over the
linear CCA model consistently for all the subjects.

4) DMCCA Output Dimension: We have varied the number of
output dimensions in the DMCCA model from 10 to 128. The
performance, average of the final correlation values of all the
subjects, of the DMLC model is presented in the Figure 6 (D)
on the speech-EEG dataset. The best performance is achieved
for DMCCA outputs of 10 dimensions.

5) Context Size of Stimuli: The time-lag applied to the
stimulus (ds) in the DMCCA model also plays an important
role. It is varied from 10 to 110. For 6 subjects from the
speech-EEG dataset, the DMLC model is trained and tested
and the average correlation of all the subjects is shown in
the Figure 6 (E). A stimulus time-lag of 80 gives the best
performance.

6) Regularization Parameter: The DMCCA model incorpo-
rates the MSE regularization loss in addition to the inter-set
correlation loss. The effect of the regularization parameter (1)
is studied in Figure 6 (F), by varying it from 0 to 1000. The
results show that the regularization with 4 = 10 gives the best
performance.

B. Model Architecture

We also experimented with various architecture choices for
the DCCA model. The experiments with varying the number
of hidden layers (L) from 2 to 5 and number of units (n7) in
each layer is shown in Figure 7. As seen in this plot, increasing
the number of layers degrades the correlation, as the model
tends to over-fit. This trend may also be attributed to the lack
of sufficient audio-EEG data for each subject. We hypothesize
that, with more training data, the deeper models may further
improve over linear models as well as the shallow models.



2750

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

A B C
= LCCA
0.304+ 0.25 B DCCA
0.30 1
0.302
I~ 0.20
< 0.251 0.300
=
2
= 0.298 1 0.15
S 0.201
z 0.296
= 2964
3 0.10
015 0.294
0.05
0.10 0.292
: . , : , r . : : : ; . . r . : , : 0.00
0 5 10 20 0 5 10 20 128 200 256 400 512 800 1024160020484096 Subl Sub2 Sub3 Sub4 Sub5 Sub6 Avg
D Dropouts (%) E Batchsizes F DCCA with 5D outputs
0.28 0.320
0.21
0.26 0.315
0.20
=
= 0.24 0.310 0.19
]
=
E 0.22 0.3051 0.18
s
< 0.20 0.17
0.300 A
0.18 0.16
0.295 0.15
2 5 8 10 20 30 40 50 60 70 80 90100128 10 20 30 40 50 60 70 80 90 100110 0 0.01 0.1 1 10 100 1000

DMCCA outputs dimension

Stimuli features time-lags

MSE loss Regularization parameter

Fig. 6. A. Effect of Dropout percentage on the final correlations of DMLC method and DCCA method. B. Effect of varying batchsizes on a DCCA
model with output as 1D. C. Comparison between the correlation per dimension of the final representations from linear and deep CCA models with
outputs of 5D. D. Comparing the performance of DMLC with varying output dimensionality E. Impact of choice of time-lags for the stimulus, given as
input to the DMLC method. F. Effect of the MSE regularization parameter in the DMLC method.

0.3

o

0.2

v

0.20

M-HH

0.15

0.10

Correlation (p)

0.05

0.00

—0.05

256;2 256;3 256;4 256;51608;2 1024;3 1024;4 1024;5 10240;2
DCCA Models

Fig. 7. Different architectures explored in DCCA models. The x-axis
denotes “number of units per layer; number of layers.”

C. Impact of Improved Correlations

The EEG recordings capture various unrelated brain
processes along with the response to the stimuli. Thus, only a
fraction of the variance in the EEG signal can be explained by
its stimulus. This results in low correlation values for many
of the linear methods proposed in the past. In this paper,
we have explored the application of deep models whereby
consistent improvements in correlations are illustrated. Many
applications based on EEG would benefit significantly with
the improvements in stimulus-response correlations. For exam-
ple, the improved correlations will help the EEG enabled
auditory assistance device (e.g. hearing aid) as suggested
by Cheveigné et al. [13]. In music information retrieval, the

performance improvement in EEG decoding systems will
enable the understanding of the perceptual attributes of music.
Throughout the study, we have pursued simple features like
envelope. However, audio signals are encoded in several other
dimensions like pitch, rhythm, zero-crossings, phase, semantic/
linguistic features etc. The exploration of the model with
additional features may further throw light on the encoding of
these dimensions in the EEG signals. Further, the techniques
proposed in this work would be applicable to other brain
signals like MEG, ECoG and fMRI signals as well.

VIIl. SUMMARY

In this paper, we have proposed extensions to models that
uncover the stimulus-response relationships between auditory
signals like speech and music and their EEG responses. The
models advance linear correlation methods and are proposed
for improving single trial analyses. The models pose the
problem of finding the optimal transforms that need to be
applied to the stimulus and response in a deep learning frame-
work which enables the learning of these transforms using
established optimization methods. Using the proposed deep
models, we show that the correlations between the stimulus
and the response can be significantly improved over the linear
methods. Further, the applicability of the proposed models is
separately analyzed for speech and music EEG tasks.

APPENDIX A
DERIVATION OF THE DEEP CCA MODEL GRADIENTS
The matrix Ty is defined as Ty = é;xl / zéxyé;yl /2 and its
SVD decomposition is denoted as Ty = UDV ". The objective
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Similarly, the partial derivative of the objective function

with respect to the matrix Cyy,
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APPENDIX B
AcousTIC FEATURES USED FOR NMED-H DATASET

The 20 acoustic features are extracted from the NMED-H
Dataset as discussed in the baseline work by Gang et al. [43].
The features are extracted using the MIR toolbox provided
by Lartillot and Toiviainen [44]. The 20 acoustic features are
calculated as following.

Let, M;[f] represent the magnitude of Discrete Fourier
transform (DFT) of a given audio signal (m; (n)) at frame
instant ¢ and frequency bin f. Let, the number of frequency
bins be F.

1) Zero Crossing Rate: It represents the number of sign

changes of the audio signal m;(n).

2) Spectral centroid: The spectral centroid is the first order

moment of the DFT given as:

Y EyAv
D SANYAYY

3) High/Low Energy Ratio: It represents the ratio of the
highest to the lowest magnitudes in M; [ f].

4) Spectral Spread: It represents the standard deviation of
the M; [ f] in the frequency domain.

5) Spectral Roll-off: At a given instant, the roll-off R,
is measured as the frequency below which 85% of the
magnitude of the Fourier transform is concentrated.

C 24)

R; F
> Mf1=085> M [f] (25)
f=l1 f=l1

6) Spectral Entropy: It is measured as the relative
Shannon entropy of the normalized magnitude M; [ f].

7) Spectral Flatness: It represents whether the magnitude
distribution in the frequency domain is smooth or spiky.
It is measured as the ratio between the geometric mean
and the arithmetic mean of the magnitudes in the fre-
quency domain at each instant.

. i Mi [ f]
S ST

8) Roughness: It tries to measure the sensory distance
related to the beating phenomenon when a pair of
sinusoidal signals are close in frequency. It is estimated
by obtaining the peaks of the DFT M;[f], and taking
the average of the distances between all pairs of peaks.

9) RMS energy: It measures the root mean square value

of the magnitudes in the frequency domain, M; [ f], at a

given instant.

Broadband Spectral Flux: It measures the Euclidean

distance between the normalized DFT and its previous

instant M;_1[ f].

Spectral flux for 10 octave-wide sub-bands: It is

measured by dividing the frequency domain into 10 bins

and calculating the absolute differences of each bin for
the two time instants (after normalizing the DFT).

SiILf1= (M1 [f1— M, [f1)?

(26)

10)

11)

27)

More details about these features are available in the primer
of the music information retrieval (MIR) toolbox by Lartillot
and Toiviainen [44].
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