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Abstract— Predicting the next foot placement of humans
during walking can help improve compliant interactions
between humans and walking aid robots. Previous studies
have focused on foot placement estimation with wearable
inertial sensors after heel-strike, but few have predicted
foot placements in advance during the early swing phase.
In this study, a Bayesian inference-based foot placement
prediction approach was proposed. Possible foot place-
ments were modeled as a probability distribution grid map.
With selected foot motion feature events detected sequen-
tially in the early swing phase, the foot placement proba-
bility map could be updated iteratively using the feature
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models we built. The weighted center of the probability
distribution was regarded as the predicted foot placement.
Prediction errors were evaluatedwith collected walking data
sets. When testing with the data from inertial measurement
units, the prediction errors were (5.46 cm ± 10.89 cm,
−0.83 cm ± 10.56 cm) for cross-velocity walking data and
(−4.99 cm ± 12.31 cm, −11.27 cm ± 7.74 cm) for cross-
subject–cross-velocity walking data. The results were com-
parable to previous works yet the prediction could be made
earlier. For the subject who walked with more stable gaits,
the prediction error can be further decreased. The proposed
foot placement prediction approach can be utilized to help
walking aid robots adjust their pose before each heel-strike
event during walking, which will make human–robot interac-
tions more compliant. This study is also expected to inspire
additional probabilistic gait analysis works.

Index Terms— Human walking, inertial sensors, foot
placement, Bayesian inference, gait prediction.

I. INTRODUCTION

EXOSKELETON robots [1]–[3] provide assistance to
the human body by applying force directly to joints

or limbs. However, it is difficult to design a controller
to ensure that the assistance is consistent with the human
gait. An unsuitable controller may even interfere with a
human’s autonomous walking. Predicting foot placement
would improve the performance of walking aid robots
(e.g. exoskeleton robots, supernumerary robotic limbs [4], [5],
robotic prostheses [6] and cane-type walking-aid robots [7],
[8]) as it would provide the robots with knowledge of the
stride length and width in advance and help them adjust their
pose before providing assistance. In this study, we aim to
propose a probability distribution model-based approach to
predict foot placement when people are walking on flat ground.
The proposed method can serve as a solution for improving
the compliance of human–robot interactions, and it can also
inspire further applications of probabilistic methods in human
motion prediction.

Human gait measurement and estimation are essential for
falling risk assessment [9], disease diagnosis [10], etc., there-
fore there are increasing number of related studies in recent
years. The mainstream human gait measurement methods
include computer vision methods [11], which require external
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cameras and may bring heavy computational loads, and motion
trajectory tracking with small-size and low-cost inertial mea-
surement units (IMUs). Hao et al. [12] used IMUs to build
three-dimensional (3D) foot trajectories when a human is
walking with a steady gait, and from the trajectories they esti-
mated the stride length and width. Hannink et al. summarized
some stride length estimation methods in [13] and found that
the majority of methods had a similar mean accuracy, within
1 cm, and similar precision of approximately 6–8 cm.

Most of the existing work is focused on foot placement
measurement. Typical foot placement measurement methods
using IMUs [12], [14] rely on zero velocity update (ZUPT)
which can only be conducted after the heel-strike event.
However, for walking aid robots, predicting foot placement
prior to heel-strike can prevent them from interfering with
human walking and help them adjust to suitable poses to
assist users [9], [15]. Thus, compared with foot placement
measurement, foot placement prediction in advance is of
greater significance for compliant human–robot interaction.

We conducted a literature review on foot placement pre-
diction but found very limited related work. Zhang et al. [16]
predicted foot placements by fusing sequential 3D gaze and
environmental context when subjects were walking on rough
terrain with constrained footholds. With the user-dependent
time window and environmental context, the prediction error
was approximately 8.6 cm, but the error could exceed 18 cm
when the method was working without the environmental
context. Sahoo et al. [17] predicted human’s step length with
adaptive neural fuzzy inference system (ANFIS) using an IMU
mounted on the thigh. The walking dataset was collected with
fixed step lengths and the performance of the method with
various walking speeds and gaits remains to be evaluated. The
average angular velocity of the thigh during the swing phase
was used as an input of ANFIS, which can only be calculated
just before the heel-strike event and makes it hard to conduct
a real “prediction” in advance. When the proposed ANFIS
was tested on two unseen fixed step lengths, the root mean
square error (RMSE) was approximately 5 to 6 cm. Wang and
Srinivasan [18] proposed that the next foot placements can be
fitted with the motion state of the pelvis, which is consistent
with the conclusion of [19] that the foot placement is relevant
to the motion state of the center of mass (CoM), but the
prediction error was not analyzed quantitatively. The authors
of [18] found that the pelvis state, instead of the swing foot
state, was the dominant explainer of future foot placements
at the mid-stance phase, because most swing foot deviation
typically happens after mid-stance. However, it is difficult to
measure the state of CoM with motion sensors such as IMUs
because of the accumulated sensor drift [20]. Instead, it is
easier to estimate the motion state of the foot with IMU data
corrected with ZUPT methods [12], [21].

The Bayesian inference method is a good solution for
streaming data prediction on the premise that there is a clear
probabilistic model for the measured data and the parameter
to be predicted [22]. It has been widely applied in robotic
environment perception [23], [24] and human motion recogni-
tion [25]. However, it has not been used to predict human foot

placement quantitatively because of the lack of a probabilistic
model between human gait parameters and motion features.

In this study, a Bayesian inference-based foot placement
prediction approach was proposed using the swing foot motion
state features in the early swing phase. Walking data of 7 sub-
jects was collected, including multiple speeds (0.5∼1.4 m/s)
and many different gaits. Using the collected data, a few
foot motion state features and their relationship with foot
placements were investigated. Feature models were built with
a part of the data for the selected features and further used
to update the foot placement probability map. To evaluate
the performance of the proposed method, we tested it offline
on the collected IMU data with left-out speeds and left-
out subjects. The RMSEs of the prediction results along
the walking direction and horizontally perpendicular to the
walking direction are (12.18 cm, 10.58 cm) for cross-velocity
walking data, and (13.28 cm, 13.67 cm) for cross-subject–
cross-velocity walking data. For one of the subject who walked
with more stable and regular gaits, the RMSEs can be reduced
to (5.77 cm, 6.89 cm). The proposed approach can be applied
to various subjects with various walking speeds. Compared
with previous methods that predicted foot placements in the
late swing phase, the proposed method can make the prediction
earlier and achieve similar accuracy.

The main contribution of the study is the proposal of a prob-
ability distribution-based foot placement prediction approach
that can make predictions in the first 50% of the swing phase.
A Bayesian inference-based approach was firstly adopted to
quantitatively infer the next foot placement.

In terms of sensing technology, the IMU, which was
typically used to measure past and current motion signals,
is applied to predict future foot placement in this paper. Foot
motion state features can be detected by IMU and serve as
events triggering the update of the probability map.

In terms of foot motion state feature modeling, a few foot
motion features in the early swing phase are investigated. Their
relationship with foot placements are modeled in this paper,
which are rarely seen in literatures. These models are expected
to play a role in further human walking gait studies.

The rest of this paper is organized as follows. In Section II,
the Bayesian inference-based foot placement prediction
approach is introduced. Swing foot motion state feature selec-
tion and modeling are also presented. In Section III, the
data collection process is introduced and the performance
evaluation for the proposed approach is conducted. Section IV
concludes the paper.

II. THE BAYESIAN INFERENCE-BASED FOOT

PLACEMENT PREDICTION

A. Overview of the Proposed Approach
The proposed foot placement prediction approach consists

of two main parts: (1) 3D foot trajectory estimation and feature
extraction; and (2) foot placement probability distribution
modeling and updating using Bayesian inference. The scheme
of the proposed approach is illustrated in Fig. 1. To realize 3D
foot trajectory estimation, a widely used integration method
is adopted to process the acceleration data and the angular
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Fig. 1. A scheme of the proposed foot placement prediction approach. Part A illustrates the process of 3D foot trajectory estimation. Part B
illustrates the update process of the foot placement probability distribution map. Expected feature value functions are fitted and further used to
build the feature models. The estimated swing foot motion state features and the feature models are used in Bayesian inference to update the foot
placement probability map.

velocity data collected by the IMU. A few features can be
extracted from the foot trajectory and the motion state of the
swing foot estimated from the streaming data captured by
IMU. An area on the walking surface in front of the walking
subject is modeled as a grid map. The prior knowledge of
the foot placement probability distribution in the grid map is
obtained through the estimated historic stride length and width.
With the feature events detected sequentially, the probability
distribution is updated iteratively using the feature models
built in this paper. The weighted center of the probability
distribution is considered as the predicted foot placement.
In the following two subsections, the two parts are introduced
in detail. The fourth subsection gives an example workflow of
the proposed approach.

B. 3D Foot Trajectory Estimation

Foot trajectory estimation usually involves three main pro-
cedures: (1) orientation estimation, (2) velocity estimation,
and (3) trajectory estimation. The gyroscope signals and the
accelerometer signals are captured by an IMU attached to
the heel of the subject. The gyroscope signals are integrated
to obtain the angular orientation of the IMU. The Kalman
filter was applied during this process to reduce the sensor
drifting error. The velocity estimation first uses the obtained
orientation to project accelerometer signals onto the global
axes and then corrects for gravity. The global accelerations are

integrated to obtain the linear velocities. Accumulated sensor
drift may affect the estimation accuracy. ZUPT methods have
been widely used to restrain the estimation error [12], [21].
Considering that the foot is stationary on the ground during
stance phases, the foot velocity can be set to zero at this
instant. The foot velocity profile in the previous swing phase
can be corrected with linear corrections, which can further
reduce drift errors [26]. Finally, the foot position is estimated
by integrating linear velocities, and trajectory of the foot
is reconstructed. The above process is illustrated in Part A
of Fig. 1. Since foot trajectory estimation is not the main
contribution of this paper, readers can refer to our previous
paper [12] for more details.

With the estimated swing foot trajectory and velocity profile,
the selected features in Section II-C1 can be detected from
the data flow in each early swing phase by recording historic
feature extremums.

C. Foot Placement Probability Distribution Modeling and
Updating Using Bayesian Inference

1) Swing Foot Motion State Feature Selection: Although
complete time-series foot positions in the whole swing phase
during walking can be recorded by motion capture systems or
IMUs, real-time foot placement prediction relies on streaming
foot motion state data, and prediction is expected to be
conducted in the early swing phase. Therefore, commonly
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Fig. 2. Illustrations of features fA − fF and the distribution of the feature events in the swing phase. (a)–(d) present the vx, vy, vz, and z profiles in the
swing phase of the 7403 steps. fA–fF present an example set of feature values. tfA –tfD refer to the time intervals from toe-off to the corresponding
feature event. (f) shows the percentage of tfA –tfD in the swing phase duration.

used features in data prediction (e.g., mean and variance of
time-series data) are not suitable for foot placement prediction.
Instead, we have to investigate a few feature events that usually
occur in the early swing phase and are easy to detect in the
data flow.

According to [18] and [27], the motion state of the swing
foot is related to the next foot placement no matter the
subject is walking stably or trying to restore the balance.
After comparing the correlation between the foot placements
and multiple swing foot motion state features, six features
were selected for further modeling and used in foot placement
prediction. More details on feature selection are presented in
the Supplementary Document attached with the paper. Let us
define the coordinate system as: the origin is where the foot
starts to swing, x axis is alone the walking direction, y axis
is horizontally perpendicular to the walking direction, and z
axis is perpendicular to the floor. The six selected features are:
fA: the first extremum of vx ; fB : the first positive extremum
of vy ; fC : the first positive extremum of vz ; fD : the largest
offset of the heel along the z axis; fE : the corresponding offset
along the x axis when the heel reaches the highest position;
and fF : the corresponding offset along the y axis when the
heel reaches the highest position. To investigate when these
feature events typically occur during the swing phase, walking
data of seven subjects were collected (details are presented in
Section. III-A). The foot motion state profiles in 7403 steps
are plotted in Fig. 2. The selected features are also illustrated.
It can be seen from Fig. 2(f) that the top edges of the boxes are
all below 50% swing phase and that all the outliers stay below
60%, which means that all these feature events can usually be
detected in the early swing phase. Therefore, these features are
suitable for the proposed foot placement prediction method.

2) Bayesian Inference-Based Foot Placement Prediction: The
typical Bayesian inference workflow consists of three main

steps [22]: capturing available knowledge about a parame-
ter via the prior distribution, which is typically determined
before data collection; determining the likelihood function
using the information about the parameters available in the
observed data; and combining both the prior distribution and
the likelihood function using Bayes’ theorem in the form of
the posterior distribution. The posterior distribution reflects
the updated knowledge about the parameter, balancing prior
knowledge with observed data.

In this paper, it is assumed that the next foot placement
C = (x, y) of a walking subject will be always located within
an area A on the ground in front of the subject. x and y refer to
the offset of the heel along the walking direction (stride length)
and horizontally perpendicular to the walking direction (stride
width), respectively, from the toe-off event to the heel-strike
event. The gait phases and the area A are illustrated in Fig. 3.

The area A is modeled as a grid map, of which the number
of grid cells is a × b. Before the toe-off event in a step,
the prior knowledge about the next foot placement is vague.
Although the uniform distribution is widely used as a prior dis-
tribution [22]–[24], in this paper, the historic foot placements
also contribute to build the prior distribution because humans
normally walk with bounded acceleration and jerk such that
the difference of stride length and width between sequential
steps is limited. Therefore, the prior probability distribution
about the next foot placement is built as a Gaussian distribution
with bias. The probability that the next foot placement will fall
on the i th (1 � i � a × b, i ∈ Z ) grid cell is:

P0 (C = (xi , yi ))

= α0

(
1 + β√

2πσ
exp

(
− (xi − xh)2 + (yi − yh)2

2σ 2

) )
, (1)

where xi and yi represent the position of grid cell i taking the
toe-off position of the foot as the origin. β is a scaling factor
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Fig. 3. Illustrations of the gait events, the foot placement, and the area A. In (a), the person depicted with the darker color is at the toe-off event.
After the person takes a stride, the person will turn to the heel-strike event when the swing foot contacts the ground. The red curve represents the
swing foot trajectory. In (b), the darker footprint represents the foot placement at the toe-off event, while the lighter one represents the predicted foot
placement at the next heel-strike event. The area A is illustrated with a grid box.

adjusting the degree of uncertainty of the prior distribution and
is set to be 0.5 in this paper. xh and yh are variables related
to historic foot placements. In this study, they are defined
as the average stride length and width in the previous two
steps. α0 acts as a normalizing factor to ensure the sum of the
probability of all cells equals to 1, and can be calculated as:

α0 = 1
a×b∑
i=1

(
1 + β√

2πσ
exp

(
− (xi−xh )2+(yi−yh)2

2σ 2

)) . (2)

Noting that selected feature events (introduced in
Section II-C1) can be detected sequentially during the
swing phase, the posterior distribution of the next foot
placement can be updated according to Bayes’ rule:
Pn(C = (xi , yi )| fn,m , fn−1,m . . . f1,m)

= αn · P( fn,m |C = (xi , yi )) · Pn−1, (3)

where 1 � n � N , n ∈ Z . N refers to the total number of
selected features and is equal to 6 in this study. n refers to
the sequence of the detected feature events. fn,m represents
the measured value of the nth detected feature. Pn−1 refers
to the posterior probability after the (n − 1)th iteration and
acts as the prior probability in the nth iteration. P0 can be
calculated using Eq. (1). αn acts as a normalizing factor to

keep
a×b∑
i=1

Pn(C = (xi , yi )| fn,m, fn−1,m . . . f1,m) = 1.

To achieve the iterative probability update in Eq. (3),
“feature models” P( fn,m |C = (xi , yi )) have to be built for all
selected features. From the collected motion capture data set,
we are able to conduct curve fitting on the measured feature
values ( fA,m , fB,m, fC,m , fD,m, fE,m , fF,m) versus the foot
placements Cg = (xg, yg). The walking data of subjects
1−4 with walking speeds of 0.5 m/s, 1.0 m/s, and 1.4 m/s are
utilized in curve fitting. All the measured feature values are
normalized to [0, 1] with the upper-lower-bound normalizing
method [28]. The normalized feature values are fitted into
the quadratic polynomial functions of xg and yg (shown in
Fig. 4). These functions are called “expected feature value
functions” in this paper. It can be seen from Fig. 4 that there
is a clear correlation between the next foot placement and

the selected features, therefore the selected features can be
utilized to infer foot placements. The correlation coefficients
are presented in Section 1 of the Supplementary Document.
The expected feature values ( fA,e, fB,e, fC,e, fD,e, fE,e, fF,e)
calculated with the fitted functions for each grid cell (xi , yi )
and the RMSE (γA, γB , γC , γD, γE , γF ) of the fitted functions
are used to build the feature model. Assuming the next foot
placement will fall at grid cell (xi , yi ), the expected value
of feature j ( j = A, B . . . F) is f j,e(xi , yi ). Then the feature
model assumes that the measured value of feature j follows the
Gaussian distribution N( f j,e(xi , yi ), γ

2
j ). The feature model

of feature j can be expressed as:
P( f j,m |C = (xi , yi ))

= 1√
2πγ j

exp

(
− ( f j,m − f j,e(xi , yi ))

2

2γ 2
j

)
. (4)

An more intuitional illustration of the feature model is
presented in Section 2 of the Supplementary Document. The
feature models will remain fixed throughout the prediction
process. At each probability map updating iteration, Eq. (4)
is calculated for the detected feature. After the last iteration
(n = N), the weighted center of the probability distribution is
regarded as the predicted foot placement Ĉ = (x̂, ŷ), that is:

(x̂, ŷ) =
a×b∑
i=1

(xi , yi ) · PN (C = (xi , yi )| fN,m , . . . f1,m). (5)

D. Demonstration of Foot Placement Prediction Workflow
In this subsection, an example iteration process for the

probability map updating in one step is shown to demonstrate
the foot placement prediction workflow more clearly.

The size of area A is set to be 1.4 m × 1.1 m, which
can cover all the sampled foot placements. The grid size is
0.02 m. Before the swing phase of the subject’s right foot,
the prior probability distribution in A can be calculated by
Eq. (1), where (xh, yh) are the average foot placements in
the previous two steps. The prior probability distribution is
shown in Fig. 5(a) as a normalized 2D Gaussian distribution.
Then the right foot starts to swing until the first feature event



2600 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 4. Illustrations of expected feature value functions fj,e(x, y), j = A,B . . .F. In (a)–(f), the red dots refer to sampled (xg, yg,normalized fj,m). The
surfaces are the quadratic fitting results for the sampled data, that is, the expected feature functions.

is detected, that is, vz reaches its positive extrumem fC,m ,
which is also denoted by f1,m . Using Eq. (4) and (3), the
probability map P1(C = (xi , yi )| f1,m) can be calculated (see
Fig. 5(b)). During the swing phase, the extrumem of vx , vy and
the maximum z is detected in sequence, and the probability
map is updated iteratively with fA,m , fB,m , fD,m , fE,m , and
fF,m (see Fig. 5(c)-5(g)). It should be noted that since the
update of the probability map is triggered by detected feature
events, there is not a fixed time interval between iterations.

In Fig. 5(g), the weighted center of the probability
map is considered as the predicted foot placement, that
is, (x̂, ŷ) = (1.4223 m,−0.1414 m). According to the
motion capture data, the ground truth foot placement is
(xg, yg) = (1.3964 m,−0.1156 m). The distance error is
(0.0259 m,−0.0258 m). The computational complexity is ana-
lyzed in Section 3 of the Supplementary Document.

III. DATA COLLECTION AND PERFORMANCE EVALUATION

To conduct performance evaluation for the proposed
approach, walking data of different subjects were collected.
The experimental setup and data collection settings will be
introduced in the following subsections. A motion capture data
set and an IMU data set were collected. Using the motion cap-
ture data set, the ground truth trajectory of the right foot was
built. With the swing foot trajectory and the foot velocity pro-
file during the swing phase in each step, the selected features
were extracted for foot placement prediction. The performance
of the proposed approach was evaluated on the collected
walking data set offline. Section III-C evaluates the approach
with only the motion capture data. Section III-D tests the foot
placement prediction approach with the IMU data.

A. Walking Data Collection: Subjects Walked With
Various Gaits

Seven healthy adult subjects of various genders, heights,
weights, and ages were recruited on campus to collect walking
data. Data collection was approved and performed under
the supervision of the Sustech Medical Ethics Committee

(approval number: 20210009, date: 2021/3/2). Sufficient safety
measures were taken to prevent any possible injuries during
data collection.

An IMU (XSENS MTi-1s-DEV) was attached to the right
heel of each subject while they were walking on a treadmill
(shown in Fig. 6). The IMU was attached at the heel for
two reasons. One reason is that the influence of the error
associated with the zero-velocity assumption is minimized
at this position [12], [29]. The second reason is that the
acceleration and orientation information at the heel can be
better utilized to detect the heel-strike event and divide the
stance phase and the swing phase. The coordinate system is
shown in Fig. 6(a). The X axis is oriented along the walking
direction, and the Y axis and Z axis are horizontally and
vertically perpendicular to the walking direction, respectively.
The IMU collected the angular velocity and acceleration of the
right foot with a sampling rate of 100 Hz. A motion capture
system (Motion Analysis Raptor-12, sampling rate: 120 Hz)
with 12 cameras was arranged around the data collection
working space. A marker that could be captured by the motion
capture system was attached close to the IMU on the right heel
of each subject. The ground truth position of each subject’s
right foot was recorded in this way for further analysis and
modeling.

To further test the performance of the proposed algorithm
on different subjects and walking speeds, four out of the
seven subjects were instructed to walk at speeds of 0.5 m/s,
0.8 m/s, 1.0 m/s, 1.2 m/s, and 1.4 m/s (Setting A). The
other subjects were instructed to walk at speeds of 0.6 m/s,
0.7 m/s, 0.9 m/s, 1.1 m/s, and 1.3 m/s (Setting B). Details
of the subjects and their walking velocity settings are shown
in Table I. Data collection lasted for 260 s for each walking
velocity. To synchronize the data captured by the IMU and the
motion capture system, a stamping-foot action was conducted
by the subjects before they started walking, during which the
highest foot position can be captured by both the IMU and the
motion capture system. The clock of the IMU and the motion
capture system can then be synchronized by aligning the
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Fig. 5. The updating process of the probability map. The coordinate system is the same as in Fig. 3(b). The color of each grid cell represents the
probability that the next foot placement will fall on it.

Fig. 6. Illustrations of the data collection experimental setup.

TABLE I
DETAILS OF SEVEN SUBJECTS AND THE VELOCITY SETTINGS

corresponding time. All the subjects were instructed to walk
with various gaits, including long-stride, jog, split-stepping,
cross-step, etc., while walking on the treadmill as long as they
felt safe.

B. Motion Capture Data Processing

Interpolation has been conducted on the motion capture data
to keep the time interval the same as the IMU data. The motion
capture data set consisted of the ground truth position of
the subjects’ right heel (xm,0, xm,1 . . . xm,T ) while they were
walking on the treadmill (T refers to the timestamp when the
subjects stopped walking). The data set was processed offline
with the following steps: (1) treadmill velocity compensation,
and (2) swing phase extraction.

Because the treadmill was rolling backwards with a preset
velocity vw along the X axis while the subjects were walking,
the right heel velocity and position at each timestamp t should
be compensated using Eq. (6) and Eq. (7).

vt = xm,t − xm,t−1

Δt
+ (vw, 0, 0)T, (6)

xt = vtΔt, (7)

where vt = (vx,t , vy,t , vz,t )
T and xt = (xt , yt , zt )

T are
the compensated heel velocity vector and position vector,
respectively. Δt is the time interval between two sequential
timestamps.

With the compensated velocity and position, the swing
phase and stance phase of the subjects’ right foot were
detected with a threshold method. In this study, only the
foot trajectory in the early swing phase was used to predict
foot placements, therefore we extracted the compensated heel
velocity and position in each swing phase of the subjects’
right foot. From the raw motion capture data set, we finally
obtained a postprocessed data set, which consisted of the
heel position and velocity in the right foot swing phase in
7403 steps. For each step, the ground truth foot placement
position Cg = (xg, yg) was calculated by Eq. (8):

Cg = (xtend, ytend)
T − (xtstart, ytstart)

T, (8)

where tstart and tend refer to the timestamps when the right foot
starts to swing and switches to the stance phase, respectively.

The foot placements in these 7403 steps are shown in Fig. 7.
It can be seen that the distribution of foot placements in
our collected data sets has great randomness and variance
because the subjects were instructed to walk with various gaits,
which differed from any previous foot placement measure-
ment/prediction work we reviewed in the Introduction. The
randomness and variance of gaits bring significant difficulties
to foot placement prediction.



2602 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 7. Foot placements of 7403 steps in the postprocessed motion
capture data set. The black dots represent the foot placements.

C. Prediction With the Motion Capture Data

In order to eliminate the influence of sensor drift and
evaluate the Bayesian inference based method itself, we first
tested the method on the collected motion capture data. The
foot motion state features were all extracted from the captured
foot motion trajectory.

Considering that the feature models introduced in
Section II-C were built with the walking data of subjects 1 − 4
with 0.5 m/s, 1.0 m/s, and 1.4 m/s walking speeds, two tests
were conducted to test the universality of the proposed algo-
rithm. The first test was the “cross-velocity” test, in which the
method was tested on the walking data of subjects 1 − 4 with
0.8 m/s and 1.2 m/s walking speeds. The second test was the
“cross-subject–cross-velocity” test, in which the method was
tested on the walking data of subject 5 − 7 with 0.6 m/s,
0.7 m/s, 0.9 m/s, 1.1 m/s, and 1.3 m/s walking speeds. The
prediction results are shown in Table II.

It can be seen that for Test 1, the mean prediction errors of
x̂ and ŷ were within 0.5 cm, and the RMSEs were 10.32 cm
and 8.85 cm, respectively. These results are comparable to the
results in [17], which used a method that could only predict
foot placements just before the heel-strike event, and the
results in [16], which used additional environmental context.
The prediction error is also of a similar dimension to some pre-
vious works on gait parameter measurement/estimation [13].
Scatter plots of the ground truth and the predicted foot place-
ments are shown in Fig. 8(a) and (b). Blue dashed lines depict
unity slopes, which represent perfect predictions. The scattered
points (xg, x̂) and (yg, ŷ) are linear fitted into the orange lines.
It can be seen that in Test 1, there are some gaps between the
linear fitting of (xg, x̂) and the unity slope because of the
irregular gait change in the walking data collection process.
The linear fitting of (yg, ŷ) matches the unity slope well
but still has some variance since most swing foot deviation
typically happens during the late swing phase [18]. It should
be noted that the subjects were instructed to take intentionally
irregular gaits during walking, which could make the motion
pattern in each separate step much different from our modeling
and thus lead to prediction errors.

Subject 5-7 was also instructed to walk with various gaits,
but their own walking patterns were different from the feature
models built from the walking data of subject 1-4. Therefore,

TABLE II
PREDICTION ERROR OF x AND y ON THE MOTION CAPTURE DATA SET

TABLE III
PREDICTION ERROR OF x AND y ON THE IMU DATA SET

the RMSEs in Test 2, 13.00 cm and 12.39 cm for foot
placement x and y, were higher than those in Test 1. The
absolute values of the mean errors of x and y were also higher
than those in Test 1, which can be explained by the cross-
subject gait differences. Some interesting results that should
be noted is that the RMSEs of subject 5, who walked with
a more stable and regular gaits than others, are 6.29 cm and
5.42 cm on x and y, respectively.

Overall, without additional environmental context, the pro-
posed algorithm can achieve foot placement prediction in the
early swing phase, which is earlier than existing research [17]
yet has comparable prediction errors. The proposed foot place-
ment prediction method can be applied to various subjects and
various walking speeds. For subjects who walk with stable and
regular gaits, which are more commonly seen in reality, the
RMSE of prediction can be further decreased.

D. Prediction With the IMU Data

To demonstrate that the proposed foot placement prediction
approach can also work with the IMU data, which contains
noise and accumulated sensor drift, the collected IMU data,
instead of the motion capture data, were utilized to extract
selected features and update the probability map. We used a
real-time integration of the foot motion in the swing phase
to extract features. Once the swing foot contact the ground,
ZUPT was conducted to make sure the foot would start from
zero velocity in the next step. The motion capture data only
provided the ground truth (xg, yg) for performance evaluation.

The reliability of using the feature values extracted from the
IMU to predict foot placement were analyzed in Section 4 of
the Supplementary Document. With the feature values esti-
mated from the real-time integration of IMU data, the foot
placement errors were calculated and shown in Table III. It can
be seen that both the mean errors and the RMSEs were larger
than the prediction error in Table II, which is in accordance
with our expectations because of unavoidable sensor noise.
But the prediction errors were still within a reasonable range
and still comparable to existing works.
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Fig. 8. Prediction results on the motion capture data. The x axis is the ground truth foot placement. The y axis is the predicted foot placement. The
black dots are the prediction results. The blue dashed line is the unity slope, and the orange line is the linear fitting of the prediction results.

Fig. 9. The mean distance error d̄ when removing any one of the selected
features. 0 means using all the six features. A - F means removing fA−fF,
respectively.

E. How Do Features Affect the Prediction Results?

It has to be admitted that there are differences on the
gait pattern between various subjects and walking speeds,
which may lead to biased feature modeling and unsatisfactory
results. Therefore, we further studied how the accuracy of the
proposed algorithm will be affected when removing any one of
fA − fF . The resulting mean distance errors d̄ were calculated
for test 1 using the motion capture data and presented in Fig. 9.

It can be seen from Fig. 9 that removing feature fA,
fC , fE and fF resulted in a higher d̄ , which reflected a
substantial contribution of these four features. On the other
hand, removing feature fB and fD resulted in a lower d̄.
These results may due to the biased feature modeling brought
by the irregular and unstable gaits. According to these results,
removing feature fB and fD and only using the other four
features should improve the prediction accuracy. We tested the
method with four features on the IMU data set and presented
the results in Table IV. It can be seen that the accuracy was
further improved in Test 2. These results verify that removing
features with modeling bias could promote the prediction
accuracy on data set with different gait patterns. But it does
not mean that removing fB and fD can always substantially
improve the accuracy. On data sets with less modeling bias
(e.g. Test 1), the prediction accuracy may decrease with the
reduction of features – the RMSE on y in Test 1 increased
compared to that in Table III. Our suggestions for applying
the method in this situation are: if the prediction accuracy on
y is more important, keep all the features. If the accuracy on
x or the short computation time is more important, fB and fD

may be removed.

IV. DISCUSSIONS ON FURTHER APPLICATION

A. Application Potential on Walking-Aid Robots

In this paper, the foot placement prediction is made using
the data from the first 50% of the swing phase, which means

TABLE IV
PREDICTION ERROR ON THE IMU DATA SET USING FOUR FEATURES

that the corresponding actions of the walking-aid robot should
be conducted within the second 50% of the swing phase before
foot contact. It may raise a concern whether this short duration
is sufficient for a robotic device. The answer is yes. According
to Fig. 2 in the manuscript, a swing phase lasts around 0.7 s,
of which the second 50% should be around 0.35 s. Previous
researches on robotic control [30], [31] reported that sliding
mode control can realize fast tracking in such a short time
(e.g., in [30], after unknown external disturbances, the 2-DOF
lower-limb exoskeleton’s velocity tracking error can coverage
to 0 in 0.15 s). Therefore, the second 50% of the swing phase
should be a sufficient buffer time for walking aid robots to
adjust their motion state to support their users.

In terms of the prediction accuracy, in the “cross-velocity–
cross-subject” test on the IMU data set, the proportional
distance error was 9.71%, and the mean absolute distance error
was 13.51 cm. Despite that there are limited literatures on foot
placement prediction, and that the minimum accuracy required
for a walking-aid robot remains to be studied, we believe
foot placement prediction error less than 10% of the foot
displacement can make sense to predict a rough range of
possible foot placements. This rough range should be enough
for typical walking-aid robots (e.g., exoskeletons and robotic
prostheses) to estimate the terrain type for the next step and
adjust their pose and stiffness [32].

B. Expansion of Foot Placement Prediction

The proposed method may be expanded to make further
foot placement prediction, such as the height of foot place-
ment on ramps or stairs, and the orientation of the foot.
The models between the foot placement (x, y, z), the foot
orientation, and the feature values can be built in the same
way as this paper did. The probability distribution will be of
higher dimension depend on the number of parameters being
predicted. But it should be noted that maintaining higher-
dimensional probability distributions leads to high compu-
tational cost. Decoupling the dimensions, that is, replacing
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the high-dimensional probability distribution with a few low-
dimensional distributions can help reducing the computational
complexity.

V. CONCLUSION

This study demonstrates a probability distribution model-
based approach for foot placement prediction. This approach
can make predictions in the early swing phase (i.e., first 50%
of the swing phase) by modeling possible foot placements
as a probability distribution map and updating the map with
selected foot motion features, which can be detected sequen-
tially in the early swing phase. The two main contributions of
this study are as follows: (1) Foot motion features and their
relationship with foot placements were studied and modeled;
and (2) Using the feature models, a Bayesian inference foot
placement prediction method was formulated. The proposed
approach can be applied to various subjects with various
walking speeds. Compared with methods of previous works,
which predicted foot placements in the late swing phase,
the proposed method can make the prediction earlier and
achieve similar accuracy. The RMSEs of the prediction results
were (12.18 cm, 10.58 cm) for the cross-velocity test and
(13.28 cm, 13.67 cm) for the cross-subject–cross-velocity test.

The proposed foot placement prediction approach can help
walking aid robots adjust their pose before each heel-strike
event during walking, which will make human–robot interac-
tions more compliant. This study is also expected to inspire
additional probabilistic gait analysis works.

Future work will focus on user-adaptive online feature
modeling and adapting the foot placement prediction method
to patients walking with abnormal gaits.

REFERENCES

[1] Z. Li, Z. Ren, K. Zhao, C. Deng, and Y. Feng, “Human-cooperative
control design of a walking exoskeleton for body weight support,” IEEE
Trans. Ind. Informat., vol. 16, no. 5, pp. 2985–2996, May 2020.

[2] Z. Li et al., “Human-in-the-loop control of a wearable lower limb
exoskeleton for stable dynamic walking,” IEEE/ASME Trans. Mecha-
tronics, vol. 26, no. 5, pp. 2700–2711, Oct. 2021.

[3] J. Huang, W. Huo, W. Xu, S. Mohammed, and Y. Amirat, “Control
of upper-limb power-assist exoskeleton using a human-robot interface
based on motion intention recognition,” IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 4, pp. 1257–1270, Oct. 2015.

[4] M. Hao, J. Zhang, K. Chen, and C. Fu, “Design and basic control of
extra robotic legs for dynamic walking assistance,” in Proc. Int. Conf.
Adv. Robot. Social Impacts (ARSO), 2019, pp. 246–250.

[5] B. Yang, J. Huang, X. Chen, C. Xiong, and Y. Hasegawa, “Supernu-
merary robotic limbs: A review and future outlook,” IEEE Trans. Med.
Robot. Bionics, vol. 3, no. 3, pp. 623–639, Aug. 2021.

[6] K. Zhang et al., “Environmental features recognition for lower limb
prostheses toward predictive walking,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 27, no. 3, pp. 465–476, Mar. 2019.

[7] Q. Yan, J. Huang, Z. Yang, Y. Hasegawa, and T. Fukuda, “Human-
following control of cane-type walking-aid robot within fixed relative
posture,” IEEE/ASME Trans. Mechatronics, early access, Mar. 23, 2021,
doi: 10.1109/TMECH.2021.3068138.

[8] S. Nakagawa et al., “Tandem stance avoidance using adaptive and
asymmetric admittance control for fall prevention,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 24, no. 5, pp. 542–550, May 2016.

[9] P. Di et al., “Fall detection and prevention control using walking-aid cane
robot,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 625–637,
Apr. 2016.

[10] B. Mariani, M. C. Jiménez, F. J. G. Vingerhoets, and K. Aminian,
“On-shoe wearable sensors for gait and turning assessment of patients
with Parkinson’s disease,” IEEE Trans. Biomed. Eng., vol. 60, no. 1,
pp. 155–158, Jan. 2013.

[11] K.-D. Ng, S. Mehdizadeh, A. Iaboni, A. Mansfield, A. Flint, and B. Taati,
“Measuring gait variables using computer vision to assess mobility and
fall risk in older adults with dementia,” IEEE J. Transl. Eng. Health
Med., vol. 8, 2020, Art. no. 2100609.

[12] M. Hao, K. Chen, and C. Fu, “Smoother-based 3-D foot trajectory
estimation using inertial sensors,” IEEE Trans. Biomed. Eng., vol. 66,
no. 12, pp. 3534–3542, Dec. 2019.

[13] J. Hannink et al., “Mobile stride length estimation with deep convo-
lutional neural networks,” in Proc. IEEE J. Biomed. Health Inform.,
vol. 22, no. 2, pp. 354–362, Mar. 2018.

[14] N. Kitagawa and N. Ogihara, “Estimation of foot trajectory during
human walking by a wearable inertial measurement unit mounted to
the foot,” Gait Posture, vol. 45, pp. 110–114, Mar. 2016.

[15] T. Kagawa, T. Kato, and Y. Uno, “On-line control of continuous
walking of wearable robot coordinating with user’s voluntary motion,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015,
pp. 5321–5326.

[16] K. Zhang et al., “Foot placement prediction for assistive walking by
fusing sequential 3D gaze and environmental context,” IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 2509–2516, Apr. 2021.

[17] S. Sahoo, S. K. Panda, D. K. Pratihar, and S. Mukhopadhyay, “Predic-
tion of step length using neuro-fuzzy approach suitable for prosthesis
control,” IEEE Trans. Instrum. Meas., vol. 69, no. 8, pp. 5658–5665,
Aug. 2020.

[18] Y. Wang and M. Srinivasan, “Stepping in the direction of the fall:
The next foot placement can be predicted from current upper body state
in steady-state walking,” Biol. Lett., vol. 10, no. 9, p. 20140405, 2014.

[19] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, Part 1:
Theory and application to three simple gait models,” Int. J. Robot. Res.,
vol. 31, no. 9, pp. 1094–1113, 2012.

[20] J. Luo, Y. Zhao, L. Ruan, S. Mao, and C. Fu, “Stimation of CoM
and CoP trajectories during human walking based on a wearable
visual odometry device,” IEEE Trans. Autom. Sci. Eng., early access,
Nov. 20, 2020, doi: 10.1109/TASE.2020.3036530.

[21] Y. Wang, A. Chernyshoff, and A. M. Shkel, “Study on estimation errors
in ZUPT-aided pedestrian inertial navigation due to IMU noises,” IEEE
Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 2280–2291, Jun. 2020.

[22] R. Van De Schoot et al., “Bayesian statistics and modelling,” Nature
Rev. Methods Primers, vol. 1, no. 1, pp. 1–26, 2021.

[23] X. Chen and J. Huang, “Combining particle filter algorithm with bio-
inspired anemotaxis behavior: A smoke plume tracking method and
its robotic experiment validation,” Measurement, vol. 154, Mar. 2020,
Art. no. 107482.

[24] X. Chen, A. Marjovi, J. Huang, and A. Martinoli, “Particle source
localization with a low-cost robotic sensor system: Algorithmic design
and performance evaluation,” IEEE Sensors J., vol. 20, no. 21,
pp. 13074–13085, Dec. 2020.

[25] U. Martínez-Hernandez and A. A. Dehghani-Sanij, “Adaptive Bayesian
inference system for recognition of walking activities and predic-
tion of gait events using wearable sensors,” Neural Netw., vol. 102,
pp. 107–119, Jun. 2018.

[26] J. R. Rebula, L. V. Ojeda, P. G. Adamczyk, and A. D. Kuo, “Measure-
ment of foot placement and its variability with inertial sensors,” Gait
Posture, vol. 38, no. 4, pp. 974–980, 2013.

[27] L. Zhang and C. Fu, “Predicting foot placement for balance through
a simple model with swing leg dynamics,” J. Biomechanics, vol. 77,
pp. 155–162, Aug. 2018.

[28] R. T. Marler and J. S. Arora, “Function-transformation methods for
multi-objective optimization,” Eng. Optim., vol. 37, no. 6, pp. 551–570,
Sep. 2005.

[29] A. Peruzzi, U. Della Croce, and A. Cereatti, “Estimation of stride length
in level walking using an inertial measurement unit attached to the foot:
A validation of the zero velocity assumption during stance,” J. Biomech.,
vol. 44, no. 10, pp. 1991–1994, Jul. 2011.

[30] S. Ahmed, H. Wang, and Y. Tian, “Model-free control using time delay
estimation and fractional-order nonsingular fast terminal sliding mode
for uncertain lower-limb exoskeleton,” J. Vib. Control, vol. 24, no. 22,
pp. 5273–5290, Dec. 2018.

[31] D. M. Ka, C. Hong, T. H. Toan, and J. Qiu, “Minimizing human-
exoskeleton interaction force by using global fast sliding mode control,”
Int. J. Control, Autom. Syst., vol. 14, no. 4, pp. 1064–1073, 2016.

[32] K. Zhang et al., “A subvision system for enhancing the environmen-
tal adaptability of the powered transfemoral prosthesis,” IEEE Trans.
Cybern., vol. 51, no. 6, pp. 3285–3297, Jun. 2021.

http://dx.doi.org/10.1109/TMECH.2021.3068138
http://dx.doi.org/10.1109/TASE.2020.3036530


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


