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Abstract— Fall detection systems are designed in view to
reduce the serious consequences of falls thanks to the early
automatic detection that enables a timely medical inter-
vention. The majority of the state-of-the-art fall detection
systems are based on machine learning (ML). For training
and performance evaluation, they use some datasets that
are collected following predefined simulation protocols i.e.
subjects are asked to perform different types of activities
and to repeat them several times. Apart from the quality
of simulating the activities, protocol-based data collection
results in big differences between the distribution of the
activities of daily living (ADLs) in these datasets in com-
parison with the actual distribution in real life. In this work,
we first show the effects of this problem on the sensitivity
of the ML algorithms and on the interpretability of the
reported specificity. Then, we propose a reliable design of an
ML-based fall detection system that aims at discriminating
falls from the ambiguous ADLs. The latter are extracted from
400 days of recorded activities of older adults experiencing
their daily life. The proposed system can be used in neck-
and wrist-worn fall detectors. In addition, it is invariant to
the rotation of the wearable device. The proposed system
shows 100% of sensitivity while it generates an average of
one false positive every 25 days for the neck-worn device
and an average of one false positive every 3 days for the
wrist-worn device.

Index Terms— Fall detection, wearable sensors, machine
learning, elderly health care.
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|. INTRODUCTION

ALLS represent a major public health problem since

every year more than 37 million falls require medical
intervention [1]. In addition, the health system costs from fall
related injuries of older adults are substantial. Fall detection
systems are designed in view to reduce the serious conse-
quences of falls thanks to the early automatic detection that
enables a timely medical intervention. These systems are based
on either wearable or ambient sensors. In this paper, we focus
on wearable fall detectors that can be used continuously
accompanying the user all the time.

Fall detection is still an open research topic to date [2], [3].
Most of fall detection algorithms are based on machine learn-
ing (ML) like [4]-[10]. ML-based solutions require relatively
large datasets for training and performance evaluation. The
majority of the state-of-the-art works use datasets of simulated
falls and activities of daily living (ADLs) that are collected
following some predefined protocols [11]. Some examples
of the datasets used to develop ML-based fall detection
systems are: FallAlID [7], SisFall [12], UMA-Fall [13] and
UniMiB [14]. To show the drawbacks of the state-of-the-art
works that are considerably dependent on such kind of
datasets, we first discuss the considered performance criteria.

ML-based fall detection is generally formulated as a binary
classification problem that aims at classifying human activities
into two classes: falls and ADLs. ML models are iteratively
optimized, on a given training set, to maximize the clas-
sification accuracy. In other words, they implicitly aim at
finding the best trade-off between sensitivity and specificity
i.e. they aim at detecting as much falls as possible and
avoiding false positives (FPs). In all state-of-the-art datasets
that we explored [7], [12]-[15], the ADLs were collected in
a protocol-based way i.e. subjects were asked to do a set of
activities for a while and to repeat them several times. Hence,
the distribution of ADL types in these datasets is considerably
different from the actual distribution in real life. For instance,
in the FallAlID dataset [7], the number of samples repre-
senting jumping is almost equal to the number of samples
representing walking. This balance between the number of
samples that belong to different ADL types in a given dataset
is beneficial to conduct some statistical analysis. However, the
aforementioned difference in the ADLs distribution between
the simulated datasets and real life leads to two major issues.
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The first is that maximizing the accuracy with the presence of
a large percentage of highly ambiguous ADLs (e.g. jumping,
stumbling without falling, ...) leads to augmenting the system
specificity at the expense of sensitivity. Since the ultimate
objective of fall detection systems is the safety of older
adults, the sensitivity raises as the most important performance
criterion and decreasing it is a clear drawback. Moreover, the
gain in the specificity achieved from the sensitivity/specificity
trade-off might not result in a significant reduction in FPs in
real life conditions since some ambiguous ADLs like jumping
are rarely met in the daily life of the elderly people. The
second drawback of the above-mentioned difference in the
ADLs distribution is that the reported specificity in most of
the state-of-the-art works does not reflect the performance in
real world conditions. More precisely, the reported specificity
does not reveal the expected number of false positives during
a fixed period in real life. For example, assume we want to
embed a given fall detection system that has been evaluated
on a simulated dataset and reported a specificity of 99.99% in
a wearable fall detector that is designed to make one decision
per second (86 400 decision/day). Theoretically, the specificity
of 99.99% translates to 8 false positives per day which is
relatively high.

Besides the drawbacks inherited from the aforementioned
gap in the ADLSs’ distribution, simulations in most of the
state-of-the-art datasets have been executed by young subjects.
On the one hand, simulating falls by young people is justified
because collecting a large number of real falls is a tough task
that requires long time and extensive resources. On the other
hand, simulating ADLs by young subjects is not well justified
since it is possible to collect ADLs from older adults. In fact,
the SisFall dataset [12] that was collected using waist-worn
devices tackled this problem where the ADLs were collected
from 15 subjects aged over 60 years. However, like in most
of the state-of-the-art datasets, ADLs were collected follow-
ing a predefined protocol. Therefore, developing ML-based
systems using these datasets suffer from the aforementioned
problems related to the distribution of ADL types. It is
worth mentioning that collecting fall events data in real-world
conditions has received little attention in the literature. Besides
the FARSEEING real-world fall repository [16], where data
have been recorded using inertial sensors, the majority of
datasets on the public domain are lab-based as previously
discussed.

Our current work tackles all the above-mentioned problems.
The first step in the proposed strategy is collecting a large
amount of data that represents the activities of older adults in
their daily life. Then, these real-world data are analyzed and
a preprocessing system is proposed to extract the ambiguous
ADLSs (ADLs that are suspected to be falls) from the recorded
data. A hybrid dataset that consists of the aforementioned
ambiguous ADLs and a wide variety of simulated falls is
constructed. A reliable ML-based fall detection system is
then proposed where, contrary to the classical works, the
objective is to discriminate falls from the real-life ambiguous
ADLs. The objectives of the proposed fall detection system
are summarized as follows:

« fall detection sensitivity has the highest priority. Nonethe-

less, the specificity is to be maximized (but not at the

4.0cm

3.5cm
The considered positions of wearable devices and the printed

Fig. 1.

circuit.
expense of sensitivity), since frequent false alarms may
cause additional burdens on users;

« the same fall detection system could be used in neck- or
wrist-worn devices;

« the fall detection system is rotation-invariant, i.e. rotating
the device does not affect the system behavior;

o the ML model is to be trained on real-world ADLs of
older adults collected for a long time period. The falls
used for training represent a wide variety of fall types
simulated by healthy young subjects;

« the fall detection algorithm is to be evaluated for a long
period in order to give an accurate estimate of the number
of false positives in real-world conditions.

The paper is organized as follows: we start by exploring
the data acquisition system in Section II. Then, 400 days of
real-life activities of older adults are analyzed in Section III
in order to develop an efficient preprocessing system for fall
detectors. The proposed ML-based fall detection algorithms
are then explained in Section IV. The performance of the
proposed algorithms is evaluated in Section V. Some practical
considerations are discussed in Section VI before concluding
the paper is Section VII.

I1. DATA ACQUISITION

We assume that motion data could be well represented
by acceleration and barometric pressure signals. To this end,
our partner company, RF-Track, designed and implemented
the required data-loggers for collecting the motion data by
means of accelerometers and barometers. In order to satisfy the
acceptability requirements of the subjects, we considered two
types of wearable devices: wrist-worn and neck-worn devices,
as shown in Fig. 1. Although a waist-mounted device might
be one of the best in terms of reliability [7], it is hardly
worn under the shower (one of the most important causes
of falls) or in bed. Hence, it cannot accompany the elderly
everywhere to ensure continuous monitoring and thus provide
timely intervention in case of a fall. The printed circuit of
a data-logger is also illustrated in Fig. 1. Data-loggers were
equipped with:

o the accelerometer LIS3DH which is configured to a
sampling frequency of f¢ = 50 Hz and a measurement
range of 8 g;

« the barometric pressure sensor MS5611 which is config-
ured to a sampling frequency fsb = 10 Hz;

e the  micro-controller = STM32L431
STMicroelectronics.

made by

The employed accelerometer measures 3-D acceleration i.e.
a = [ay, ay, a;]. The objective of measuring the barometric
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pressure is to estimate the changes in the user’s altitude AH
which is helpful to increase the specificity of fall detectors as
will be discussed in the next section. In fact, the employed
barometer measures both the barometric pressure and the
temperature. In order to convert the measured pressure into
the corresponding altitude, the measured pressure signal is first
denoised using a slope limit filter. Then, the following formula
is applied [17]:
p 1/5257
"=t <R ) W

where & is the height in meters, T represents the measured
temperature in kelvin, P represents the measured pressure and
Py represents the pressure at sea level in normal conditions.

Using the above described data-loggers, motion data have
been collected from 16 subjects (25% male and 75% female)
aged 80 years or older and living in long-term care facilities.
The height and weight of those subjects range between [142,
176] cm and [44, 86.3] kg respectively. An ethical approval
that allows the collection of the elderly activity data was
obtained from the Rennes CHU Ethics Committee (approval
number 19.56, date of approval: 11/05/2019). In addition, the
subjects have given their consent to participate in this study
and to use their data for research purposes. Wrist-worn devices
have been used by 9 subjects while the remaining 7 subjects
used neck-worn devices. The total amount of recorded data
was 400 days (214 with wrist-worn +186 with neck-worn
devices). During this period, two real falls occurred. One fall
has been captured by a wrist-worn device and the other one
by a neck-worn device. This real world dataset will be named
RealAct throughout this paper.

In the remainder of the paper, the lab-based dataset
FallAlID [7] and the real world dataset RealAct are both
considered to develop and to evaluate the performance of
the proposed fall detection approach. The falls of FallAlID
were simulated by relatively young subjects who wore body
protection during these simulations. Although a comprehensive
protocol has been set to represent all possible falls, the human
reflex will prevent the subjects unconsciously from falling
strongly, which leads to an attenuated impact compared to real
falls. Furthermore, younger subjects are more dynamic during
the pre-impact phase, and the ADLs are simulated with higher
intensities compared to the movements of elderly. Therefore,
RealAct is better suited for performance evaluation in free-
living conditions. Nonetheless, seeing the lack of falls in this
dataset, FallAlID will be used as a complementary dataset
to train the machine learning models and to evaluate their
sensitivity. The ADLs as well as the falls in the Real Act dataset
are analyzed in the next section.

I1l. AN EFFICIENT PREPROCESSING SYSTEM
FOR FALL DETECTORS

In this section, the RealAct dataset described in Section 11
is analyzed where the objective is to propose a pre-processing
system for fall detectors with minimal assumptions about the
mechanism of falling. This pre-processing system is aimed
to achieve 100% of sensitivity with an initial reasonable
specificity. The idea is inspired by the generic definition of

TABLE |
THE CONSIDERED CONDITIONS IN THE PREPROCESSING SYSTEM

[ Condition [[ formula [ description |
C1 [la]] >2.25 ¢ This condition represents the
presence of an impact shock
Co Tinac > 3200 ms | The user remained inactive for
3200 ms at least
Cs AH < —25¢cm The user moved downwards 25
cm at least

a fall given by WHO [1]: “A fall is defined as an event
which results in a person coming to rest inadvertently on
the ground or floor or other lower level”. Following this
definition, we define three conditions {C;, Cp, C3} that are
described in Table I. The condition C; reflects the inadver-
tent movement of a person coming to rest which could be
characterized by the presence of an impact shock in the
acceleration signal. Particularly, the sum vector magnitude

of acceleration |[a|| = /a?+a?+a? is compared with
a predefined threshold 2.25 g. It is worth mentioning that
this threshold is quite low since human could generate such
level of acceleration with soft and safe movements like e.g.
laying down on a bed. The condition C3 inspects whether the
movement happened in the downward direction as mentioned
in the previous definition. Particularly, A H is compared with a
predefined threshold to verify whether the subject moved down
for more than 25 cm. While falling from an altitude of only
25 cm seems unlikely, we set this low threshold for ensuring
the sensitivity of the fall detection system. Intuitively, after
falling down, old subjects would not be able to recover rapidly.
The condition C, monitors whether the subject remained
inactive for more than 3.2 seconds (7j;4c > 3.2 s). This period
is long enough to express inactivity while it is not too long to
affect the sensitivity. It is worth mentioning that, for industrial
constraints, we might adjust these parameters (particularly
raise their values) to increase the specificity of the system.
Nevertheless, the number of false negatives (i.e. the number
of missed falls) might also increase. We assume that the three
conditions are met in all falls. Particularly, we expect first
the presence of an impact shock (C; is met) followed by an
inactivity period (C> is met) and the difference in altitude A H
between the inactivity period and the pre-fall phase is greater
than the predefined threshold (C3 is met). To understand the
impact of the aforementioned conditions on the specificity of a
fall detector in a meaningful way, the following combinations
of conditions are analyzed:
« the presence of an impact shock: C;
« the presence of an impact shock followed with an inac-
tivity period, denoted as C;&C>
« the presence of an impact shock followed with an inac-
tivity period with a downward movement for more than
25 cm, denoted as C1 &Cr&C3.

To justify the election of the aforementioned three thresholds,
our team compared the proposed method to a reference fall
detector on the market. The latter device detects heavy falls
(high impact shock) and is based on two conditions, namely
(1) loss of altitude (a downward fall of 60 cm) and (ii) an
inactivity period of atleast 15 seconds. As a result, the sen-
sitivity of this device is very low compared to our proposed
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Fig. 2. 3D acceleration signals of two real falls of older adults: a) a fall
captured using a wrist-worn device. b) a fall captured using a neck-worn
device.
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Fig. 3. The average number of false positives per day for wrist- and
neck-worn devices represented in box plots. Results are first averaged
per subject and then averaged per day.

method. For instance, falls from bed are hardly detectable by
this reference fall detector.

Now, activity signals are scanned using overlapped sliding
windows. The length of a sliding window is set to T, = 13 s
since this length is sufficient to capture all the phases of falling
i.e. 3 s for the pre-fall phase, 1 s for the critical phase and
9 s for the post-fall phase. More detailed description of fall
phases is provided in Section IV-B. Since a small decision-
making period, Ty, increases the sensitivity of the fall detection
system, we set T; = 200 ms. Thus, the number of decisions
made per day is 432 000.

Fig. 2-a illustrates the acceleration signal of a real fall
captured by a wrist-worn device. The subject was walking
using a walker and he/she stumbled and fell down on the
ground. As shown in Fig. 2-a, the impact shock of accel-
eration is ||a]| = 6.54 g. The change in altitude between
the inactivity period and the pre-fall phase is around 60 cm
downwards. Fig. 2-b illustrates the acceleration signal of a real
fall captured by a neck-worn device. The subject was sitting
on the w.c. seat then he/she fell down ending half-sitting on
the ground. The acceleration impact shock is 4.83 g while the
change in the altitude is only 29 cm downwards.

Now, we discuss the expected number of false positives,
in terms of the above-mentioned conditions. Particularly,
we are interested in analyzing the average number of FPs per
day denoted as FNP/day. Fig. 3 shows FP /day for wrist-
and neck-worn devices where the results are first averaged per
subject and then averaged per day. From this figure, we first

Wrist-worn device Neck-worn device

60 -

Number of false positives
\v
S

100F | g Y 4 30

C&Cr&Cy Cy C&Cy  C1&Cr&Cy

Cy C1&Cy
Fig. 4. The average number of false positives per day for wrist- and

neck-worn devices represented in violin plots. Each point represents one
day and the results are not averaged per subject.
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Fig. 5. The number of positives as a function of the subjects’ weight.

note that FP/day is considerably higher for wrist-worn
devices than for neck-worn ones. It is an expected result
since the arm can move in higher degrees of freedom than
the chest leading to higher probabilities of meeting the three
defined conditions with normal ADLs. The condition C;p is
met on average 168 times per day with wrist-worn devices
and 33 times per day with neck-worn devices (averages are
represented by red stars in Fig. 3). This shows that the prede-
fined threshold (2.25 g) could be easily reached with normal
ADLs of older adults and is highly unlikely to affect the
sensitivity. When considering C1&C>, we note that FP /day
decreases to 70 and 25 using wrist- and neck-worn devices,
respectively. This emphasizes the importance of inspecting the
presence of a short inactivity period after the impact shock.
When combining the three conditions, FP /day considerably
decreases to 11 and 3.5 for wrist- and neck-worn devices,
respectively. Clearly, employing the barometer to check the
difference in altitude is helpful to reduce the number of FPs
while it is not expected to affect the sensitivity since falling for
less than 25 cm is highly unlikely. Fig. 4 shows the complete
distribution of the numbers of FPs per day where each point in
this figure represents one day. Since the results in this figure
are not averaged over subjects, they are more useful when
analysing the worst case of the proposed preprocessing system
i.e. the maximum number of FPs per day. When considering
the three conditions, the maximum number of FPs is 58 and
15 for wrist- and neck-worn devices, respectively.

Fig. 5 illustrates the effect of the subject weight on
FP/day. We note that there is no monotonic relationship
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Fig. 6. The number of positives as a function of the subjects’ height.

between the weight and FP /day neither for wrist- nor for
neck-worn devices. One clear observation with neck-worn
devices is that the subjects whose weight is over 75 kg generate
the minimal number of FPs in terms of the three considered
combinations of conditions. Fig. 6 shows the effect of the
subject height on FP /day. There is also no monotonic rela-
tionship between the height and FP /day. The only obvious
point is that the users of neck-worn devices whose height
is greater than 170 cm show the minimal number of FPs
in terms of the three considered combinations of conditions.
We conclude from Fig. 6 and Fig. 5 that FP/day is almost
independent from the weight and height while it is clearly
subject dependent.

The combination of conditions C1&C>&C3 can be used
as an efficient preprocessing system for fall detectors for the
following reasons:

« it reduces the number of windows that should be further

inspected for falls from tens of thousands per day (e.g.
432 000/day in our configuration) to an average of
11/day for wrist-worn devices and 3.5/day for neck-worn
devices;

« the considerable reduction in the number of suspected
windows is achieved at a low computational cost and it
is not gained at the expense of sensitivity;

« it makes minimal assumptions about the mechanism of
falling;

e it is invariant to the position of the fall detector
(wrist/neck), invariant to the orientation of the fall detec-
tor and almost invariant to the weight and the height of
the user.

The proposed preprocessing system is followed by an
ML-based fall detection algorithm which is explored in the
next section.

IV. THE PROPOSED FALL DETECTION ALGORITHMS

In this section, we propose several machine learning algo-
rithms for fall detection. We first describe the datasets used
for training and evaluating the performance of the proposed
algorithms. Then, we explain how an activity window is
dynamically segmented into several time phases from which
the features are extracted. Feature engineering is then explored
where the objective is to derive a set of rotation-invariant fea-
tures that could be used for representing acceleration signals
in both wrist- and neck-worn fall detectors. The extracted fea-
tures are then used by a multitude of machine learning-based
classifiers that are introduced at the end of this section.
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A. Datasets

In order to train the proposed models, two data sources are
employed: 1) the RealAct dataset that has been introduced
in Section II, and 2) the public dataset, FallAlID [7], that has
been recently published by our team as an open access dataset.
Particularly, RealAct is used as a source of real world ADLs
(+ two real falls) and FallAlID is used as a source of simulated
falls.

While both acceleration and barometric pressure signals are
used in the preprocessing system, only acceleration signals are
considered in the machine learning models. The preprocessing
system keeps only the acceleration signals that are suspected
to represent falls and introduces them to the machine learning
model. To this end, we extract from the RealAct dataset
only the acceleration signals where the conditions Cp, Cs
and C3 are satisfied. Clearly, only such kind of signals will
arrive to the machine learning model and it is not appropriate
to train the model on conditions that could never be seen.
In other words, we train the proposed models to discriminate
between falls and the ambiguous ADLs. The total number
of the considered data samples is 3665. These data are
divided into a training set of 1259 samples and a test set of
2406 samples. Particularly, a balanced training set has been
built such that the following samples are used for training:
1) ambiguous ADLs from 97 days (621 samples) extracted
from the RealAct dataset, and 2) around 75% of falls from the
FallAlID dataset (638 samples). On the other hand, the test set
contains: ambiguous ADLs from 303 days (2170 samples) of
the RealAct dataset, 2 real falls from the same dataset and 25%
of falls from the FallAlID dataset. Training data are extracted
from a set of 21 subjects while test data are extracted from a
set of 17 different subjects i.e. to ensure a fair evaluation of
the generalization capability of the trained models, the test set
does not contain data from any subject who contributed to the
training set.

B. Dynamic Segmentation of an Activity Window

As we introduced in Section III, activity signals are scanned
using overlapped sliding windows whose length is 75 = 13 s.
The period between two consecutive overlapped windows is
T, = 200 ms. Some methods in the literature [5] extracted
global features from the whole window. Other methods [8],
[9] extracted local features from fixed positions in the window.
Contrary to both types of methods, our strategy is to dynam-
ically segment the sliding window in order to extract features
from particular phases of an activity that is suspected to be
a fall. Fig. 7 illustrates the proposed dynamic segmentation
strategy. We start by looking for an impact peak in the ||al|
signal between the 37¢ and 4" seconds of the sliding window,
period denoted as “critical phase”. If an impact peak is found,
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a sub-window of a duration of 0.2 s centered around the peak is
segmented, period denoted as “impact phase”. The 0.5 s-length
period that precedes the impact phase is defined as “pre-impact
phase” while the period that precedes the pre-impact phase is
defined as “pre-fall phase”. The period of the pre-fall phase is
between 2.4 and 3.4 s according to the position of the impact
peak in the critical phase. The period after the critical phase
is then scanned in order to find any inactivity period that lasts
more than T}, = 3.2 s. Particularly, this period is divided into
sub-windows of 200 ms. The variance of these 200-ms accel-
eration signals are calculated. If 16 contiguous sub-windows
possess a relatively low variance (below 0.005625), then this
period of 3.2 s is segmented and defined as “inactivity phase”.
It is worth mentioning that this threshold is somewhat tolerant
for detecting inactivity, which means that even if the subject
is slightly moving his hand, the inactivity phase would still
be detected. The period between the impact and inactivity
phases is defined as the “adjustment phase”. Its length varies
from O to 6.7 s depending on the positions of the impact and
inactivity phases. For example, suppose that the impact phase
lies between 3.6 s and 3.8 s, while the inactivity phase lies
between 5.3 s and 8.5 s, then the adjustment phase is the
period between 3.8 s and 5.3 s (with a length of 1.5 s). Now,
when it comes to falls including a series of successive peaks,
the same logic is followed. In this case, the impact phase will
be centered around the highest peak, the pre-fall and the pre-
impact phases will include the peaks which precede the highest
peak, and the adjustment phase, which is of variable length,
will include the remaining peaks which follow the highest one.
Consequently, the inactivity period of 3.2 s, if found, would
occur after these consecutive peaks. Features are extracted
from the dynamically segmented window as explained in the
next section.

C. Feature Engineering

In this section, three rotation-invariant features are proposed
to be used in wrist- and neck-worn fall detection systems.

Intuitively, falls are expected to show higher level of ran-
domness than ADLs. Since entropy E is usually used as an
expression of randomness, it could be used as a helpful feature
when calculated in the impact and adjustment phases. To this
end, the first feature Fi, is the sum of distribution entropy Ey,
Ey and E; of the three acceleration components a,, ay and
a; respectively, over the impact and adjustment phases.

In addition, falls usually result in a change of the body
orientation. Such changes of orientation could be captured by
comparing the mean values of the acceleration signals in the
pre-fall and inactivity phases, denoted respectively as @/ and
&(’:’“c Vo € {x,y, z}. This constitutes the second feature F,.

The third and last feature is based on the weightlessness: the
fact that the sum vector magnitude of acceleration ||a|| goes to
zero when the body experiences a free fall. The weightlessness
feature has been used in several fall detection systems in the
literature like [18]. However, weightlessness is unlikely to
happen in complex falls in which the body shocks some object
before reaching the ground. To this end, it is better to monitor
the sudden jumps in the acceleration signal in the impact and
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Fig. 8. The three considered features in the fall detection system
extracted from falls and ADLs. Left: the individual features represented
in violin plots. Most right: the three features are represented together
in a 3D space with a separating hyperplane generated using an SVM
classifier with a 3 order-polynomial kernel.

adjustment phases. The idea is to count the number of times
where the difference between two consecutive acceleration
samples exceeds a predefined threshold, € = 0.7 g. The total
count is then normalized, i.e. it is divided by the number of
samples in the impact and adjustment phases. In fact, this
feature is inspired by a widely used measure of heart rate
variability: the pNNx that is described in detail in [19]. The
pNNO.7 is applied to ay, ay, and a;. Expressly, these three
features are calculated using the following formulas:

Fl :Ex"‘Ey"r‘EZ
= Zae{x,y,z} |a(zlnac - &Oltjr| 2)
F3 = maXge(x,y,2){PNNO.7(aq)}

Fig. 8 illustrates, in violin plots, the distribution of the afore-
mentioned features over falls and ADLs. Clearly, none of these
individual features is sufficient to discriminate between falls
from ADLs. However, when they are considered together as an
input to a machine learning-based classifier, it is expected to
achieve much better classification results. To illustrate this, the
most right sub-figure in Fig. 8 shows the 3 considered features
in a 3-D space with a separating hyperplane generated using
a support vector machine (SVM) classifier with a 37 order-
polynomial kernel. Visually, this classifier shows good classifi-
cation performance. In the next section, a multitude of machine
learning-based classifiers are introduced to be applied to the
proposed features.

D. Machine Learning-Based Classifiers

Falls and ADLs, represented by the proposed features, are
to be classified using nine machine learning-based classifiers.
We use the scikit-learn Python library in which all the
considered classifiers are implemented. To avoid listing all
the tested configurations, only the configurations that have
shown an interesting change in the results are reported. Unless
explicitly mentioned otherwise, all the configurations are set
to the defaults of the scikit-learn.

The first family of the considered classifiers covers three
ensemble methods: gradient boosting (GB) [20], [21], random
forest (RF) [21], [22] and AdaBoost [23] classifiers. The GB
classifier is configured such that the learning rate is 0.4, the
maximum tree depth is 2, and the number of estimators is
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TABLE Il
EXPERIMENTAL RESULTS
Device — Neck-worn Wrist-worn
Criteria — Sensitivity | Specificity. | Accuracy | Number of FPs Sensitivity | Specificity | Accuracy | Number of FPs
Methods | (%) (%) (%) Per day (%) (%) (%) Per day
GBin, =100} 100.00 98.52 98.95 0.04 100.00 96.73 96.89 0.32
GB(n,., =50} 97.84 96.44 96.85 0.10 97.94 93.73 93.94 0.62
RE(ma=10} 94.24 93.77 9391 0.18 94.85 87.73 88.08 1.22
RFna—2} 92.09 88.43 89.50 0.33 94.85 84.12 84.66 1.57
AdaBoosty, ,—100} 97.12 93.18 94.33 0.19 96.91 88.87 89.27 1.10
AdaBoost,,_ 50} 93.53 91.39 92.02 0.25 97.94 86.42 86.99 1.35
SV Mpinear 91.37 91.10 91.18 0.25 96.91 83.25 83.94 1.66
SV Mqguadratic 90.65 94.07 93.07 0.17 93.81 86.91 87.25 1.30
SV Mpory—3 88.49 94.66 92.86 0.15 92.78 90.02 90.16 0.99
SVMgrBF 91.37 91.69 91.60 0.24 95.88 83.69 84.30 1.62
MLPg 91.37 93.18 92.65 0.19 93.81 85.00 85.44 1.49
MLP 30,72 92.81 91.69 92.02 0.24 95.88 82.38 83.06 1.75
DT mq=5) 90.65 91.99 91.60 0.23 93.81 82.65 83.21 1.72
DT na=10} 92.09 92.58 92.44 0.21 92.78 84.89 85.28 1.50
KNN(—3y 92.81 89.02 90.13 0.31 95.88 81.56 82.28 1.83
KNNp—5) 92.81 91.39 91.81 0.25 94.85 83.09 83.68 1.68
LDA 93.53 90.50 91.39 0.27 96.91 80.80 81.61 1.90
QDA 92.81 90.80 91.39 0.26 96.91 80.36 81.19 1.95
[ NB [ 9588 ] 8320 | 8383 ] 1.66 [ 9364 | 8419 [ 8512 | 1.13 |

nest € {50, 100}. The number of estimators in the RF classifier
is set to 20 while the maximum depth of the trees is set to
two different values md € {10, 2}. The number of estimators
in the AdaBoost classifier is set to n.g € {50, 100}. The sec-
ond family covers SVM classifiers where a linear, quadratic,
374 order-polynomial and radial-basis-function (RBF) kernels
are considered. The third family covers multi-layer percep-
tron (MLP) neural networks. Two MLPs are designed where
the number of hidden layers is 2 and 3, respectively, and
the number of neurons in the hidden layers is {8, 2} and
{20, 7, 2}, respectively. The last family covers diverse basic
classifiers that are: decision tree (DT), k-nearest neighbors
(KNN), linear and quadratic discriminant analysis (LDA and
QDA) and naive Bayes (NB) classifiers. The maximum depth
of the tree in the DT classifier is configured to two different
values md € {5, 10}. Finally, the number of nearest neighbors
in the KNN classifier is set to k € {3, 5}. The performance of
the aforementioned classifiers is evaluated in the next section.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed machine
learning-based solutions is evaluated in terms of 4 performance
criteria: sensitivity, specificity, accuracy and the average num-
ber of false positives per day. Before exploring the detailed
results, it is worth mentioning that all classifiers (with all
the considered configurations) succeeded to detect the two
real falls. Table II shows the experimental results for both
wrist- and neck-worn fall detection systems. Despite that the
proposed solution is independent from the position of the
fall detector (wrist/neck), i.e. the models have been trained
using a mixture of activities collected by wrist- and neck-worn
devices, we show the results on each position separately to
clarify the performance differences. From Table II, we observe
that the specificity of all classifiers, except the NB classifier,
is higher for the neck-worn devices than the wrist-worn
devices. As introduced in Section III, this result is expected

since more ambiguous ADLs could be generated by the hand
than the chest recalling that the hand can move with more
degrees of freedom than the chest. From Table II, we clearly
note that the best classifier is the gradient boosting machine
that is configured to n.s;; = 100 estimators. It shows a perfect
sensitivity for both wrist- and neck-worn fall detectors. With
GB,,,,=100, neck-worn devices generate an average of one
false positive every 25 days while the average number of
false positives generated by wrist-worn devices is about one
every 3 days. From acceptability point of view, some users
could prefer wrist-worn devices. However, if the user has no
preferences, neck-worn devices are clearly to be recommended
since they generally show better accuracy.

To experimentally show the effect of using simulated ADLs
on the system sensitivity, the same best model, G By;,,,=100},
has been trained on the same falls but on simulated ADLs
from the FallAlID dataset instead of the RealAct dataset. The
sensitivity decreased to 95.43% and 80.12% for neck- and
wrist-worn devices, respectively. This emphasizes the impor-
tance of the proposed strategy of considering real-life ADLs.

The results also confirm our claims concerning the inter-
pretability of the specificity results. We note that the classifier
G Byy,,, =100y shows a specificity of 98.52% and 96.73% on
the neck- and wrist-worn devices, respectively. If we have no
access to the results of the 4'" criterion, the average number of
FPs per day, it will be quite difficult to understand the impact
of the small difference (1.79%) in the specificity values of the
neck- and wrist-worn devices. Thanks to the proposed strategy,
we have access to this important performance criterion and
thus we are able to know that, despite the small difference in
specificity, wrist-worn fall detectors generate 8 times as many
false positives as neck-worn devices.

VI. PRACTICAL CONSIDERATIONS

This section provides some perspectives for applying the
proposed fall detection system under the hardware limitations
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of wearable devices. We first recall that the proposed design
consists of a threshold-based preprocessing step followed by
a ML algorithm. The computational cost of the preprocessing
system is low since it requires only simple comparison
operations. As shown in Section III, the preprocessing system
filters out the majority of the scanned activities and keeps
only few number of suspected windows for further ML-based
processing. Particularly, the average number of windows
that requires ML-based processing is 11/day for wrist-worn
devices and 3.5/day for neck-worn devices. Given this limited
number of suspected windows, two possible solutions could
be used to implement the ML-based system: 1) sending
the raw acceleration data to a remote computer which is
equipped with the ML algorithm. This is feasible since the
average amount of data to be sent is only 42 K Bytes/day
(11 windowsx 13 sx50 Hzx3 axesx2 Bytes) for wrist-worn
devices and 13 K Bytes/day for neck-worn devices. We tested
this kind of solution in our previous work [10] in which
a remote computer receives the raw acceleration data and
executes a complex fall detection algorithm; 2) embedding
the algorithm in a wearable fall detector that is not necessarily
restricted to give a decision in real-time but in near-real-time
instead. For instance, the algorithm could give a decision
delayed for few seconds. This small delay allows for
employing more complicated algorithms. Selecting between
the above two solutions depends on the computational
resources of the wearable device and the complexity of the
employed ML algorithm.

VIl. CONCLUSION

The majority of the state-of-the-art ML-based fall detection
systems are trained on simulated datasets. Typically, the dis-
tribution of the ADL types in these datasets is considerably
different from the actual distribution in real life. In this
work, we have shown that this phenomenon causes two major
problems. First, it leads to improving the specificity at the
expense of sensitivity. Second, it makes the specificity measure
uninterpretable. These problems have been tackled in this
work where a reliable design of a machine learning-based fall
detection system has been proposed. It is based on analyzing
the activities of older adults experiencing their daily life. The
proposed system can be used either with neck- or wrist worn
fall detectors and it is rotation invariant. The system has shown
a sensitivity of 100% on real falls as well as on simulated falls.
When evaluated on 303 days of recorded activities of older
adults, it has shown a reasonable specificity. Particularly, the
system generates only one false positive, on average, every
25 days for the neck-worn device and an average of one false
positive every 3 days for the wrist-won device. In future works,
the computational complexity and the embeddability issues of
the proposed solution will be conducted.
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