
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021 2569

Effect of BCI-Controlled Pedaling Training
System With Multiple Modalities of Feedback

on Motor and Cognitive Function Rehabilitation
of Early Subacute Stroke Patients

Ziwen Yuan , Yu Peng, Lisha Wang, Siming Song, Shi Chen, Liu Yang, Huanhuan Liu,
Haochong Wang, Gaige Shi, Chengcheng Han, Jared A. Cammon,

Yingchun Zhang , Senior Member, IEEE, Jin Qiao,
and Gang Wang , Member, IEEE

Abstract— Brain-computerinterfaces (BCIs) are currently
integrated into traditional rehabilitation interventions after
stroke. Although BCIs bring many benefits to the rehabili-
tation process, their effects are limited since many patients
cannot concentrate during training. Despite this outcome
post-stroke motor-attention dual-task training using BCIs
has remained mostly unexplored. This study was a ran-
domized placebo-controlled blinded-endpoint clinical trial
to investigate the effects of a BCI-controlled pedaling train-
ing system (BCI-PT) on the motor and cognitive function
of stroke patients during rehabilitation. A total of 30 early
subacute ischemic stroke patients with hemiplegia and cog-
nitive impairment were randomly assigned to the BCI-PT or
traditional pedaling training. We used single-channel Fp1 to
collect electroencephalography data and analyze the atten-
tion index. The BCI-PT system timely provided visual, audi-
tory, and somatosensory feedback to enhance the patient’s
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participation to pedaling based on the real-time attention
index. After 24 training sessions, the attention index of the
experimental group was significantly higher than that of
the control group. The lower limbs motor function (FMA-L)
increased by an average of 4.5 points in the BCI-PT group
and 2.1 points in the control group (P = 0.022) after
treatments. The difference was still significant after adjust-
ing for the baseline indicators (β = 2.41, 95%CI: 0.48-4.34,
P = 0.024). We found that BCI-PT significantly improved
the patient’s lower limb motor function by increasing the
patient’s participation. (clinicaltrials.gov: NCT04612426)

Index Terms— Ischemic stroke, brain-computer
interfaces, EEG, attention, neurorehabilitation.

I. INTRODUCTION

ABOUT 50% of stroke patients are unable to live indepen-
dently because of their disabilities, which has brought a

heavy burden to families, medical institutions, and society [1].
The evaluation and improvement of post-stroke motor dysfunc-
tion has always been a research hotspot [2]. Pedaling training
is a training method often used in sports rehabilitation after
stroke and has shown effectiveness in lower-limb rehabili-
tation [3]. To further promote functional rehabilitation after
stroke, brain-computer interfaces (BCIs) are currently inte-
grated into traditional rehabilitation. BCIs are communication
systems that measure central nervous system (CNS) activity
and translate it into control signals of external devices that may
replace, restore, enhance, supplement or improve the natural
CNS output [4]. By bridging the stroke-induced gap between
motor intention and sensory feedback (in forms like actual
movement, haptic feedback, visual feedback, etc.) of motor
movement, BCI-based interventions may further improve the
limb motor function [5].

Following the success in upper-limb rehabilitation, a few
studies have found promising improvements in the lower
limb functions after BCI-based rehabilitation. Chung et al.
have reported further clinical improvements in the balance
and gait function of chronic stroke patients following a
BCI-based functional electrical stimulation (FES) interven-
tion when compared to FES alone [6]. Another study found
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it could effectively improve the gait of subacute stroke
patients using electroencephalography(EEG)-based neurofeed-
back training in the form of visual feedback, and observed
improved sensorimotor rhythm [7]. Tang et al. [8] indicated
that motor imagery-BCI rehabilitation with visual feedback
could improve lower-limb mobility in chronic stroke patients.
Recently, Delisle-Rodriguez et al. [9] proposed a recognition
system of pedaling motor imagery for lower limber rehabil-
itation. However, no study has integrated BCIs into actual
pedaling training.

In recent years, attention toward cognitive dysfunction after
stroke has gradually increased. About 25%-80% of stroke
survivors suffer from cognitive impairments [10], [11]. Many
patients, especially those with cognitive impairment, can-
not concentrate during pedaling, which weakens the training
effect. A few studies have investigated BCI-based cognitive
training in stroke patients and shown promising preliminary
results by activating the upper alpha band [12]–[14]. Further-
more, research has shown a mutually reinforcing relationship
between motor and cognitive functions in stroke rehabili-
tation [15]. Chung et al. [6], [16] found that one of the
reasons why FES controlled by BCI could improve motor
function more than traditional FES was that it also increased
the patient’s attention index of Fp1 and Fp2 domains and
activated Fp1 domain during training. However, there was
no research to promote motor function recovery directly by
training attention. It has been found that cognitive and motor
dual-task training could further improve post-stroke motor
rehabilitation [17], [18]. However, dual-task training is more
cognitively demanding, and stroke patients, especially with
cognitive impairment, have difficulties in performing cognitive
and motor tasks simultaneously [19], as the added cognitive
task reduced the attention and performance on the primary
motor task [20]. Still, post-stroke motor-attention dual-task
training using BCIs has remained mostly unexplored.

Thus, we designed an attention-pedaling dual-task training
system using BCIs with multiple modalities of feedback and
aimed to investigate its effects on the motor and cogni-
tive function rehabilitation of early subacute stroke patients
(clinicaltrials.gov: NCT04612426).

II. METHODS

A. Population

The study involved patients from our rehabilitation center
with early ischemic stroke (confirmed by head diffusion-
weighted imaging), hemiplegia, and cognitive impairment. The
main inclusion criteria were as follows: 1. Aged 40-80 years
old; 2. Patients with first subcortical ischemic stroke onset
from 1 week to 3 months; 3. Hemiplegia and cognitive
impairment (Mini-Mental State Examination (MMSE) score
< 28 or Montreal Cognitive Assessment (MoCA), < 25);
4. Consciousness; 5. Sitting balance level 1 or above; 6. Can
cooperate with assessment and treatment; 7. The patient or its
authorized agent signed the informed consent form. Exclusion
criteria: 1. Severely impaired cognition or inability to pay
attention to and understand screen information; 2. Severe lower
extremity pain or spasticity preventing pedaling training.

Fig. 1. CONSORT flow diagram.

The study was approved by the Ethics Committee of
the First Affiliated Hospital of Xi’an Jiaotong University
on August 14, 2020 (No. XJTU1AF2020LSK-149), and all
patients or their authorized agents have signed informed
consent.

B. Intervention

The study was a randomized placebo-controlled blinded-
endpoint clinical trial. The flow diagram for the subject
assignment is shown in Fig. 1. The patients who met the
enrollment criteria were randomly divided into two groups
according to the coated random number table generated by
a technician who did not participate in the study. The odd
numbers were entered into the experimental group, that is,
the BCI-controlled pedaling training system (BCI-PT) group.
And the even numbers were entered into the control group.
This group used traditional pedaling training equipment with
a monitor showing real-time speed, and the patients wore the
same BCI equipment, which only collected attention index-
related data but did not guide pedaling training. Both groups of
patients were trained once a day for two consecutive sessions
each time and were required to pedal as fast as possible. There
were 6 times a week for a total of 2 weeks of exercise. Other
rehabilitation training included acupuncture, physical therapy,
occupational therapy, and electronic biofeedback. The four
treatments of the two groups of patients were once a day,
and each of them was completed by a therapist during the
trial period. The differences in the improvement of sports and
cognitive functions of the two groups of patients after 2 weeks
of rehabilitation training were compared.

1) BCI-PT: BCI-PT was a BCI-controlled attention-pedaling
dual-task training system with multiple modalities of feedback
based on EEG. Its structure is presented in Fig. 2. The system
consists of three components: (1) An EEG collection system
(ZhenTec NT1, ZhenTec Intelligence, China) to record EEG
data at the scalp. This system uses a semi-dry electrode,
and the correlation between its signal and the wet electrode
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Fig. 2. The structure of the rehabilitation training system.

Fig. 3. Interactive screen of BCI-controlled pedaling training system
during training.

reaches 0.95 [21]. It is a gel-free electrode, which is more
comfortable and convenient for clinical use. (2) A virtual
reality training system to present a training game interface,
motivate patients to actively participate in a training course,
and convert EEG data into attention value with a process-
ing algorithm. (3) A pedaling training robot (ZhenTec R1,
ZhenTec Intelligence, China) to drive lower limbs to make a
circular motion. The upper-limb motion mainly depended on
the patient’s active force.

The lower limb’s rotational speed n of the training robot
was controlled by the value of the attention index.

n = k × atn (1)

where k is a constant and atn is the attention index of the
patient, which is calculated from the patients’ EEG signals
(see Equation 2-6). The higher the attention index, the higher
the lower limb’s rotational motion speed of the training robot.

During training, the patients were asked to concentrate on
the avatar’s lower limb on the screen and try to imagine and
operate their limbs to complete pedaling task. The system
would timely provide visual, auditory, and somatosensory
feedback to enhance the patient’s participation in pedaling
based on the real-time attention index (Fig. 3). Firstly, the
pedaling motion of the avatar displayed on the screen in
front of the patient was synchronized with the actual pedaling
motion of the patient and the patient’s attention index was
displayed in real-time on the screen using a bar and number.

Secondly, when the patient’s attention index was high, the
lower limb’s rotational speed of the training robot would be
high. It would display accelerated visual effects to reward
patients. When the patient’s attention index was reduced, there
would be virtual opponents to overtake the patient’s avatar,
visual effects reminders on the screen, a beep would be
emitted, and the system would reduce the assistance of the
pedaling so that the patient’s body could perceive this change.
These measures encouraged patients to take the initiative to
increase participation.

C. Outcomes

1) Primary Outcome: The primary outcome was the change
of Fugl-Meyer assessment of lower limbs motor function
(FMA-L) between the post training and enrollment portions
(cFMA-L). The score range was 0-36 points. The higher the
score, the better the lower limb motor function. A doctor
who was not involved in the treatment and who was blind to
the group, was responsible for the evaluation of FMA-L and
the cognitive function scales used as part of the secondary
outcomes.

2) Secondary Outcomes: The attention index was calculated
by EEG signals. In this study, three electrodes (signal (Fp1),
reference (CPz), and ground (AFz)) were placed on the scalp
according to the standard “10-20 system”. Single-channel Fp1
was used as a reliable and convenient way to collect EEG
data and analyze attention [22], [23]. The electrodes were con-
nected to a high signal-to-noise EEG amplifier for EEG signal
collection and pre-processing. The EEG amplifier converted
the analog EEG signals into digital EEG data with 24 bits of
precision.

The EEG recordings mainly contained the delta band
(0.5-4 Hz), theta band (4-7 Hz), alpha band (7-13 Hz), beta
band (14-30 Hz), and gamma band (>30 Hz) signals [24].
It has been demonstrated that alpha band and beta band
signals were most related to human attention states [25], [26].
The attention was estimated using the energy distribution of
different EEG rhythms. In this study, the attention intensity
features were calculated by the energy ratio of the beta band
and alpha band signals. The EEG signals were sampled in
real-time at 500 Hz. To simplify the data processing method,
the EEG signals were processed by a 7-30Hz band-pass
filter to keep only the signals of interest [27], [28]. A time
duration-based sliding window of length 4 seconds and sliding
interval of 1 second was evaluated every 1 second. The longer
the sliding window, the less artifact interference the result
received, but the response speed was slower. After testing,
a window length of 4 seconds was chosen to balance response
speed and artifact interference.

The window was transformed to the frequency domain by
fast Fourier transform (FFT). Assuming

F(n)(n = 1, 2, 3, …, N) is the FFT result of a window,
the Power Spectral Density (PSD) [29] is as follows:

P(n) = F(n)F∗(n)

N
(2)
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where P(n) is the PSD, F∗(n) is the conjugate function of
F(n) and N is the number of sampling points in the window,
here is 2000.

Assuming that Pf is the PSD at the frequency f, the energy
ratio of beta and alpha R can be calculated as follows:

Eα =
∑13

f =7
Pf (3)

Eβ =
∑30

f =14
P f (4)

R = Eβ

Eα
(5)

The energy ratio is normalized to an integer value between 0
and 100. The attention index atn can be defined as follows:

atn = M I N + (M AX − M I N)(R − min)

max − min
(6)

where MAX = 100, MIN = 0. They are the normalized upper
and lower limits. max and min are empirical constants that
were decided by calculating a large amount of EEG data.
This data set contained the EEG data of 20 trials for each
of 50 people. The process of each trial was as follows:
preparation(4s) + concentration(8s) + rest(8s). Among them,
“concentration” allowed the subject to concentrate and stare at
the white dot in the middle of the black screen; “rest” allowed
the subject to relax and not stare at the object. For a total
of 1000 trials, the maximum value of R in the concentration
state was calculated as max, and the minimum value of R in
the rest state was min. In this article, max = 3.50, min = 0.35.

The atn was updated every second. Once new data was
added, the oldest data would be deleted and the atn would be
recomputed. The higher the atn, the higher the participation.
The arithmetic average of all the values during two consecutive
sessions was used as the attention index of this training.

Other outcomes included the scores of commonly used
scales for assessing cognitive function and attention after 2
weeks of treatment, and their changes from the time of
enrollment: MMSE (Chinese version), MoCA (Chinese ver-
sion), Digital Span Test (DST, both of DST-forward and
DST-backward) reflecting the breadth of attention, and Sym-
bol Digit Modalities Test (SDMT) reflecting attention and
executive function.

D. Sample Size

Based on previous literature and clinical experience, we esti-
mated that the change of FMA-L was 5 and 2 points in
the BCI-PT and control group respectively, and the standard
deviation was 2.7 points. We had 80% power to detect a
significant difference between groups using a two-sided alpha
of 0.05. According to the sample size calculation formula for
comparing the means of two independent samples, each group
required 13 patients. Considering the loss to follow-up, at least
30 patients needed to be recruited.

E. Statistical Analysis

Measurement data were expressed by median (IQR), and
count data were expressed by rate or composition ratio. The
mean comparison between the two groups was performed by

t-test or Kruskal-Wallis rank-sum test; rate comparison was
performed by chi-square test or Fisher’s exact test. The scale
scores after 2 weeks between the two groups were compared
by covariance analysis, adjusting FMA-L, MMSE, MoCA,
DST, and SDMT at admission. In addition, we calculated
the false discovery rate (FDR)-corrected p values using BH
procedure that compared the differences of the four attention-
related scales. Multivariate regression analysis was used to
compare the effects of the two treatments after adjusting
covariates. Covariates included age, gender, time from onset
to admission, education, hemisensory disorder (the somatosen-
sory decreased or disappeared found by physical examination),
and the National Institutes of Health Stroke Scale (NIHSS) at
admission. The interaction of the above covariates was tested.
The subjects were divided into the following subgroups for
further analysis: sex, age ≥ 65/ < 65 years, time of stroke
onset ≥ 8/< 8 weeks, FMA-L ≥ 13/ < 13, and whether with
hemisensory disorder. Take α = 0.05 (two sides). Empower
(R) (www.empowerstats.com; X&Y solutions, Inc., Boston
MA), R software, version 3.1.2 (http://www.r-project.org) and
SPSS version 25.0 (IBM Corp., USA) was used for all
statistical analyses.

III. RESULTS

A. Patients and Baseline Characteristics

A total of 30 stroke patients with subcortical infarction and
mild to moderately impaired cognition were enrolled in our
center from November 2020 to February 2021. The BCI-PT
group finally involved 16 patients and the remaining 14
patients were regarded as the control group. No patient was
lost to follow-up after randomization (Fig. 1). All patients
were right-handed, of which 25 (83.3%) were right hemiple-
gia and 8 (26.7%) with hemisensory disorder. The median
age of patients was 64.5 (IQR: 58.2-67.5) years, and there
were 13 female patients (43.3%). 70% of patients were of
high school education. Among the patients, the most com-
mon comorbidities were hypertension (86.7%) and diabetes
43.3%). The median time from onset to admission was 6.5
(IQR: 2.8-10.2) weeks in the intervention group, and that was
7.5 (IQR: 4.2-11.5) weeks in the control group (P = 0.451).
No significant difference was observed in NIHSS (7 vs. 8
points, P = 0.369) and other baseline characteristics between
the two groups (Table I). At the time of enrollment, the lower
limb motor function and cognition and attention scores of
the two groups were similar, and there was no significant
difference (Table I).

B. Attention Index

The EEG attention index analysis results of the BCI therapy
and the control method are shown in Fig. 4. It could be seen
that the attention index of the BCI group and the control group
were close at the first time, and both showed a gradual upward
trend after training. After 12 training times, the attention index
of the BCI-PT group was significantly higher than that of the
control group (P = 0.002).
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TABLE I
BASELINE CHARACTERISTICS OF STROKE PATIENTSa

Fig. 4. Changing of attention index along 12 training sessions between
groups.

C. Motor and Cognitive Function

The five clinical scales of the two groups of patients
were improved compared to when they were enrolled; the
improvement of the experimental group was even greater
(Fig. 5). Using covariance analysis, after adjusting the scores
of each scale before the intervention, the FMA-L of the

experimental group after treatment was significantly higher
than that of the control group (P = 0.025), and the DST
(P = 0.019) and SDMT (P = 0.032) scores of the BCI-PT
group were also significantly better than those of the control
group (Fig. 6). After treatment, the MMSE and MoCA of
the experimental group were slightly higher than those of
the traditional pedaling group, but there was no statistical
difference (Fig. 6). However, the FDR-corrected p values of
the four attention-related scales were all > 0.05: P = 0.434
for MMSE, P = 0.831 for MoCA, P = 0.064 for DST and
P = 0.064 for SDMT respectively (Fig. 6).

We found that the FMA-L increased by an average of
4.5 points in the experimental group and 2.1 points in
the control group (P = 0.022) after treatments. The DST
(P = 0.017) and SDMT (P = 0.036) of the experimental
group were improved by 1.1 points more than the control
group, and the MMSE (0.6 points, P = 0.201) and MoCA
(0.2 points, P = 0.672) improved slightly when compared to
the control group. After adjusting for the age, sex, time of
onset, education, hemisensory disorder and NIHSS, the scales
of FMA-L (β = 2.34, 95%CI: 0.35-4.33, P = 0.032) and
DST (β = 0.97, 95%CI: 0.07-1.88, P = 0.049) still improved
significantly; the difference in SDMT changes between the
two groups was no longer significant (Table II).

Through subgroup analysis, there was no significant dif-
ference in the motor and cognition functions among patients
of different ages, sex, time of onset, and severity (Table III).
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Fig. 5. Motor and cognitive function scales before and after exercises and between treatment groups.

TABLE II
MULTIVARIATE REGRESSION ANALYSIS OF MOTOR AND COGNITIVE FUNCTION SCALES BETWEEN TREATMENT GROUPS

Fig. 6. Analysis of covariance of motor and cognitive function scales
between treatment groups. * indicated p< 0.05;a FDR-corrected p-value.

BCI-controlled pedaling seemed to have greater benefits in
terms of motor rehabilitation for more severe (FMA-L <
13 vs. ≥ 13, β = 4.09 vs. 2.80) and older (age ≥ 65y vs.
< 65y, β = 2.07 vs. 0.91) patients. Similar trends could
be observed for the four cognitive function scales in the

above two subgroups. Patients with hemisensory disorder
seemed to benefit more from BCI-PT. It has the equiv-
alent effect on patients of different disease courses and
gender.

IV. DISCUSSION

The study found that compared with pedaling training
alone, the BCI system adopted multiple modalities of feedback
to make patients more focused on pedaling training, and
further improved the lower limb motor function of patients
with subacute stroke. Neuroplasticity is the scientific basis of
all of the post-stroke rehabilitative interventions [30], [31].
Our rehabilitation system involved four potential neuroplas-
ticity mechanisms. The first was neurofeedback training [32].
By displaying the patient’s pedaling action and attention index
in real-time, the patients were provided with a continuous
visualization of the motor action and brain activity from the
cognitive regions and were asked to volitionally up-regulate
this activity. The second mechanism was operant condition-
ing [33]. Rewards were given when the patient’s participation
was high, and multiple forms of feedback were given when
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TABLE III
SUBGROUP ANALYSIS OF MOTOR AND COGNITIVE FUNCTION SCALES BETWEEN TREATMENT GROUPS

the participation was low. These two mechanisms may be the
reasons that many BCI-based rehabilitation systems make the
patient’s attention higher during training [16], [34], [35]. But
how high attention leads to better recovery of motor function
is unclear [15]. It may be that only high concentration can
establish effective neurofeedback. The third mechanism was
the reinforcement of the motor or cognitive functional con-
nectivity by repetitive training [15]. And the most important
one was the Hebbian plasticity, that is, multiple modalities
of feedback controlled by BCIs bridged the gap between
CNS and peripheral limbs, and strengthened the sensory-motor
loop [15].

Motor and cognitive functions promote each other in the
rehabilitation process after stroke [36]–[38]. Our BCI-PT
system was a dual-task training of attention and lower limb
movement, and it also simultaneously trained the central
nervous system and periphery limbs at the same time. Studies
have confirmed that cognitive-motor dual-task training is effec-
tive in promoting the recovery of both cognitive and motor
functions [39]–[41]. As in a controlled study, the authors found
that dual tasks training, that is motor task accompanied with
cognitive tasks including digit span, N-back, spelling words,
Stroop test, and so on, significantly improved the balance
and executive functions of patients with Parkinson’s disease
when comparing with motor task training alone [42]. However,
stroke patients, especially with cognitive impairment, have
difficulties in performing cognitive and motor tasks simulta-
neously [19], as the added cognitive task reduced the attention
and performance on the primary motor task [20]. Therefore,
our research chooses attention training as the cognitive training
task and found that for stroke patients with mild to moderate
cognitive impairment, motor-attention dual tasks training was

also effective in improving the lower-limber motor function
and attention index.

Many studies have observed a significant correlation
between feedback accuracy and clinical functional improve-
ments [43]–[46]. EEG has a good time and space correlation
for the detection of cortical function after stroke [47], [48],
thus it has the advantages in real-time monitoring [49]. There-
fore, our BCI-PT system collected EEG data every 2ms and
fed it back to the brain. It ensured the real-time and accuracy
of feedback. However, determining the best way to select
the feedback modalities and design the feedback paradigm
to bring the most benefits still needs to be explored [15].
Sensory feedback using robotic or haptic devices was thought
to promote neuronal repair by bridging the gap between
motor intention and execution in stroke patients [46], [50].
Two studies about BCI-driven virtual reality (VR) systems
confirmed the effect of visual feedback for post-stroke motor
rehabilitation [51], [52]. However, another controlled study
found that visual feedback alone is not sufficient to evoke
functional improvements [53]. Since somatosensory abilities
are essential for patients to perceive the feedback provided by
the BCI system, somatosensory impairments may significantly
alter the efficiency of BCI-based rehabilitation [54]. Therefore,
in this study, we adopted multiple modalities of feedback
such as vision, hearing, and somatosensory. As shown in the
results of multivariate regression analysis, the effect was still
significant after adjusting for hemisensory disorder (Table II,
Adjust II model), and patients with hemisensory disorder
seemed to benefit more from BCI-PT (Table III). Since EEG
equipment is safe, portable, and low-cost, designing a more
portable EEG head-mounted device that only collects attention
index would create a system that would have the potential
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to be promoted as a BCI-based smart home or community
rehabilitation tool.

There were a few limitations of this study. The first were
issues about the signal processing of EEG. To increase porta-
bility, we used only one electrode to compute the attention
index, which is less reliable than multiple electrodes. We will
consider using more channels of EEG to calculate the attention
index to increase its reliability in the next step. Besides,
the EEG signal was transformed to the frequency domain
by the FFT method to ensure higher real-time performance,
but may increase variability than the other spectral power
estimation methods such as the Welch method and multitaper
method [55], [56]. In the future, we will use the Welch
method or the multitaper method to optimize the calculation of
the spectral power and attention index, thereby reducing the
influence of noise on the calculation of the attention index.
In addition, we will use independent component analysis,
empirical mode decomposition and wavelet packet transforma-
tion to remove motion and blinking artifacts in EEG, thereby
reducing the noise from these artifacts. Another limitation was
that the sample size was small and the observation period was
only 2 weeks. We have not observed that pedaling training
under the guidance of BCI has significantly improved MMSE,
MoCA, DST and SDMT. This study revealed that pedaling
training based on BCI significantly improved the patient’s
lower extremity motor function and attention index. Yet, the
mechanism through which increased attention improves motor
function by affecting the brain’s remodeling process was
unclear. Also, due to the small number of subjects, no sig-
nificant differences between groups were observed in many
subgroups. Whether pedaling training under the guidance of
BCI can significantly improve the attention and motor function
of patients in different subgroups should be further explored.

V. CONCLUSION

The BCI-PT system significantly improved the patient’s
lower limb motor function by increasing the patient’s partic-
ipation. Attention-related scales have a tendency to improve,
but the difference was not significant, and longer-term observa-
tions may be needed. In addition, patients with hemisensory
disorder seemed to benefit more from BCI-PT system. The
specific neural remodeling mechanism between attention and
motor function still needs to be further explored.
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