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Abstract— Convolutional neural network (CNN) has
been gradually applied to steady-state visual evoked
potential (SSVEP) of the brain-computer interface (BCI).
Frequency-domain features extracted by fast Fourier Trans-
form (FFT) or time-domain signals are used as network
input. In the frequency-domain diagram, the features at
the short time-window are not obvious and the phase
information of each electrode channel may be ignored
as well. Hence we propose a time-domain-based CNN
method (tCNN), using the time-domain signal as network
input. And the filter bank tCNN (FB-tCNN) is further pro-
posed to improve its performance in the short time-window.
We compare FB-tCNN with the canonical correlation analy-
sis (CCA) methods and other CNN methods in our dataset
and public dataset. And FB-tCNN shows superior perfor-
mance at the short time-window in the intra-individual test.
At the 0.2 s time-window, the accuracy of our method
reaches 88.36± 4.89% in our dataset, 77.78± 2.16% and
79.21± 1.80% respectively in the two sessions of the public
dataset, which is higher than other methods. The impacts of
training-subject number and data length in inter-individual
or cross-individual are studied. FB-tCNN shows the poten-
tial in implementing inter-individual BCI. Further analysis
shows that the deep learning method is easier in terms
of the implementation of the asynchronous BCI system
than the training data-driven CCA. The code is available for
reproducibility at https://github.com/ DingWenl/FB-tCNN.

Index Terms— Asynchronous brain-computer interface
(BCI) system, convolutional neural network (CNN), cross-
individual, inter-individual, short time-window, steady-state
visual evoked potential (SSVEP).

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) can realize the infor-
mation exchange between the human brain and external
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devices [1], [2], it can transform human’s intention into control
command of external devices. Disabled people who have diffi-
culties in oral communication or movement can still generate
electroencephalogram (EEG) signals that can be detected and
recognized by the BCI, which can be classified into invasive
and non-invasive types nowadays [3]–[6].

A. Invasive BCI

Invasive BCI refers to the need for craniotomy, the probe
implanted into the cerebral cortex, which is used to obtain
high-quality brain activity signals.

B. Non-Invasive BCI

Non-invasive BCI means that EEG signals can be obtained
by sticking electrodes on the scalp without craniotomy.

The quality of the EEG signal obtained by non-invasive
BCI is relatively poor [7] compared with the signal obtained
by the invasive BCI, but the operation is less risky medically
and more convenient. Therefore, the EEG obtained by the
non-invasive BCI is more widely used [8]–[12]. At present,
the main research directions of EEG are motor imagery (MI)
[13]–[15], P300 [16], [17], and steady-state visual evoked
potential (SSVEP) [18]–[20].

SSVEP has been widely applied and proved to be the most
promising EEG paradigm in BCI technology [21]. It is more
stable and reliable since its frequency-domain features are
evident and easy to identify. Several stimulus targets flicker at
different fixed frequencies to induce specific SSVEP signals.
By analyzing the induced SSVEP signals, which stimulus
target the user is focusing on can be determined.

Various methods have been proposed to aid the recognition
of SSVEP. Canonical correlation analysis (CCA) is the main-
stream recognition algorithm [22]–[26]. It recognizes SSVEP
by determining the correlation between the collected data and
the stimulus target signal template. But the CCA method
(Lin et al. [22]) performs poorly at the short time-window.
Wei et al. [24] propose a training data-driven CCA method
(which is named CCA-M3 in [24]) overcomes the problem.
But CCA-M3 has the problem of time-window alignments.
It requires a specific-position time-window, such as [0.14,
0.14 + d] s, which starts 0.14 s after the onset time of the
stimulus, and d s is the data length of time-window. Thus
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triggers with high temporal precision are required, and the sub-
jects’ attention needs to be highly focused to ensure the good
performance of CCA-M3. Asynchronous BCI is difficult to
implement via the CCA-M3. Deep learning [27], which allows
end-to-end automatic learning of preprocessing, feature extrac-
tion, and classification modules and can often simplify the
processing process. Compared with CCA-M3, deep learning is
an easier method in terms of implementing asynchronous BCI.
Recently, the convolutional neural networks (CNN) method
has been applied to SSVEP recognition. While most of these
methods use the frequency-domain feature as the input of the
network after fast Fourier Transform (FFT) [28]–[30] because
of its obvious features (spikes) at the long time-window
(FFT-CNN).

However, realizing the recognition of SSVEP signal at
a short time-window is expected in practical application.
But the spikes at the frequency of stimulus target on the
frequency-domain would become less obvious at the short
time-window. Therefore, the FFT-CNN performs poorly at
short time-window. In addition, the frequency-domain as input
would result in the loss of other task-relevant information, such
as time-difference which is represented by phase information
in the time-domain. The difference in the distribution of these
electrodes on the EEG cap causes the time of action potential
in the occipital region reaching these electrodes to be different
too. The time-difference of SSVEP data between electrode
channels possesses great value since it contains the spatial
information of these electrode channels. Furthermore, FFT
would greatly lengthen the training time of a model. Therefore,
we propose a time-domain-based CNN method (tCNN), which
does not need FFT and requires a much simpler operation,
while being able to recognize more effectively at the short
time-window.

Aznan et al. [31] and Waytowich et al. [32] respectively
proposed the CNN architecture based on time-domain data.
But their network architectures are different from our tCNN.
There are fewer subject-quantities in [31], resulting in the lack
of persuasion. For [32], their network architecture (Compact-
CNN) contains pooling layers, which result in a relatively
complex architecture. There is no pooling layer in our net-
work architecture, which makes the network architecture more
concise. And the dynamic convolution kernels are added
to the network architecture to make it more suitable for
different input sizes. Referring to the FBCCA proposed by
Chen et al. [26], the filter bank is used as the pre-filtering to
make the network architecture extract the task-related features
(such as the frequency-features of fundamental and harmonic)
more effectively at the short time-window. Therefore, based on
the tCNN method, we propose a filter bank tCNN (FB-tCNN)
method.

The main contributions of this article can be summarized
as follows.

1) FB-tCNN method is proposed that shows superior per-
formance in the intra-individual test at the short time-
window (such as 0.1 s, 0.2 s, and 0.3 s) in our dataset
and the public dataset [36].

2) The impacts of training-subject number and data length
in inter-individual (cross-individual) are studied, and

Fig. 1. Experimental design of our dataset.

FB-tCNN shows superior performance at all data lengths
in the range of short time-window ([0.1, 1.0] s).
FB-tCNN shows the potential to implement inter-
individual BCI.

3) The frame-by-frame recognition method is used to deter-
mine whether the algorithm is suitable for implementing
the asynchronous BCI system. At the same time, we use
the frame-by-frame recognition method to test some
trials that contain misclassified samples and propose the
possibility of error labels.

The architecture of this paper is as follows. Section I gives
a brief introduction to BCI and some SSVEP-recognition
methods. Section II presents our methods. Section III makes
a comparison between our method with others and conducts
inter-individual studies. In section IV, the frame-by-frame
recognition method is used to explore whether these methods
can realize asynchronous BCI. Meanwhile, some trials that
contain misclassified samples in section III are recognized
frame by frame. In section V, we make a summary and put
forward the prospects.

II. METHODS

A. Dataset

1) Our Dataset: Seven healthy subjects (ages 23-30,
all-male) participated in the experiment. Four subjects have
never used BCI, while others have previous experience with
BCI experiments. The study was approved by the local Ethics
Committee at the Department of Psychology, Tsinghua Uni-
versity (IRB202138).

Referring to [33]–[35], we adopt a sampled sinusoidal
stimulation method to present visual flickers on the LCD
monitor. The red-color stimulus target brightness s(n, fi , ϕ)
is expressed as

s(n, fi , ϕ) = {1 + sin[2π fi (n/Rs) + ϕ]}/2 (1)

where sin() generates a sine wave, n indicates the frame
index in the sequence, Rs is the screen refresh rate, ϕ is the
phase, and fi is the stimulus frequency of the i -th target,
i = 1, 2, 3, 4.

The frequencies of the four SSVEP targets are designed to
flicker at 9 Hz, 11 Hz, 13 Hz, and 15 Hz. The phases of
the four SSVEP targets are designed to flicker at 0, 0.5π , π ,
and 1.5 π . The four SSVEP targets display at four positions
(up, right, down, and left) on the monitor. The experimental
design of our dataset is shown in Fig. 1. Each trial began with
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Fig. 2. The position distribution of the selected electrodes on the EEG cap is marked with a red circle. (a) The position distribution of electrodes in
our dataset; (b) The position distribution of electrodes in the public dataset [36].

a visual cue for 2 s (preparation), prompting the location of
the stimulus target that the subject needs to focus on. Then
each red-color stimulus target flickers for 4 s (stimulation),
followed by a rest period lasting for 4 s. In the visual cue
stage, the stimulus target at the specified location would be
displayed in white to facilitate the subjects to find the stimulus
target at the specified location. Each stimulus frequency is
randomly displayed five times in one block, there is a total
of six blocks for each experiment. Therefore, the collected
EEG data has 120 trials (4 classes × 5 times × 6 blocks).
The subject would get enough time for rest after each block.
The EEG acquisition device (Neuroscan Inc.) is used to record
EEG data at a sampling rate of 1000 Hz. For necessity and
simplicity, the EEG data of only eight electrodes are recorded.
The reference electrode is Cz. Electrode impedances are kept
below 10 k� during recording. The channel configuration of
the International 10-20 system.

2) Public Dataset: The public dataset published by
Lee et al. [36] is used in this study. Fifty-four healthy sub-
jects (ages 24-35, 25 females) participated in the experiment.
Thirty-eight subjects have never used BCI, while others have
previous experience with BCI experiments.

Four SSVEP targets are designed to flicker at 5.45 Hz,
6.67 Hz, 8.57 Hz, and 12 Hz, and display at four positions (up,
down, right, and left) on the monitor. Each trial contains 4 s
target-notice stage, 4 s stimulus-flickering stage, and 2 s rest
stage. Each stimulus target is displayed 25 times. Therefore,
the EEG data has 100 trials (4 classes × 25 times) in the offline
training phase (’EEG_SSVEP_train’) and another 100 trials
in the online test phase (’EEG_SSVEP_test’). There is a
total of two sessions (‘session01’ and ‘session02’) in the
dataset. ‘session01’ and ‘session02’ are the two experiments
on different days for the same people. The sampling frequency
is 1000 Hz. The channel configuration of the International
10-20 system. More details refer to [36].

B. Pre-Processing

The data of some electrodes close to the occipital
region is used because of the higher signal-to-noise ratio

(SNR) [22]–[26], [28]–[32]. Therefore, eight electrodes (O1,
O2, Oz, P3, P4, Pz, T5, and T6) in our dataset and nine
electrodes (O1, O2, Oz, POZ, PZ, PO3, PO4, P1, and P2) in
the public dataset are selected in this study. The distribution
of these electrodes on the EEG cap is shown in Fig. 2.
Since the EEG cap used in our dataset is different from the
public dataset, different electrodes are selected. To reduce the
amount of calculation, the data of these electrode channels
are downsampled to 250 Hz. To make the network architecture
more effective in learning frequency-related information at the
short time-window, the data is filtered.

1) For FB-tCNN: To make better use of the fundamental
and harmonic information, the filter bank is designed with
different bandpass-range sixth-order Butterworth filters. The
design of the filter bank mainly considers two factors, (1) the
range of fundamental and harmonic and (2) the SNR of
harmonics. Take our dataset as an example to illustrate. The
fundamental range is 9-15 Hz, the second harmonic range
is 18-30 Hz, and the third harmonic range is 27-45 Hz.
Harmonic information above 50 Hz not be used, because the
data with relatively low SNR would have negative effects in
our study. To keep important information, the bandpass range
of the sub-filters is designed to be slightly larger (1-3 Hz) than
the harmonic range. Therefore, three sub-filters with different
bandpass ranges are designed as 7-17 Hz, 16-32 Hz, and
25-47 Hz respectively. And these three sub-filters make up
the filter bank. Similarly, for the public dataset, the filter
bank contains 4 bandpass-range sub-filters is designed, which
are 3-14 Hz, 9-26 Hz, 14-38 Hz, and 19-50 Hz respectively.
A sub-filter should completely contain the information of a
specific harmonic of all stimulus targets, and the low SNR data
above 50 Hz should be abandoned. Therefore, two datasets
with different fundamental ranges generate filter banks with
different numbers of sub-filters.

2) For tCNN: To better compare FB-tCNN with tCNN, sixth-
order Butterworth filters with frequency ranges of 7-47 Hz and
3-50 Hz are used in our dataset and public dataset respectively.

Considering a latency (delay) in the visual system [37], the
data range we use in each trial is [0.14, 0.14 + L] s, which
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Fig. 3. (a) The network architecture of tCNN, ‘Conv2D’ means two-dimensional convolution, ‘kernel’ means convolution kernel size, ‘stride’ means
step size, ‘padding = same’ means padding is used, ‘padding = valid’ means padding is not used, ‘L2’ means L2 regularization, ‘Batchnormal’
means batch normalization, ‘elu’ means ‘eLU’ activation function; (b) The network architecture of FB-tCNN, the network hyper-parameters are the
same as tCNN, which will not be described here.

start 0.14 s after the onset time of the stimulus, and L s is the
lasted time of the stimulus.

C. SSVEP Classification by FB-tCNN

To better explain the network architecture of FB-tCNN, the
network architecture of tCNN is introduced before introducing
FB-tCNN. The 0.2 s time-window of the public dataset is taken
as an example to illustrate.

1) Network Architecture of tCNN: The network architecture
of the tCNN is shown in Fig. 3(a). The input data is the
0.2 s time-window of 9 electrode channels, and the sampling
frequency is moderated to 250 Hz by downsampling. So the
input size is 9 × 50 (be reshaped into 1@9 × 50). 9 electrode
channels contain spatial information, and 50 frames contain
time information, so the input can be regarded as spatial-
dimension × time-dimension (9×50). The convolution kernel
size of the first convolution is 9 ×1, the step size is 1 without
padding, the number of output channels is 16, and the output is
16@1×50. The first convolution kernel can make each frame
of output contain the spatial information of 9 electrodes. The
convolution kernel of the second convolution is 1 × k1, k1 is
the time-frame length of the input (here k1 is 50), the step size
is 5 with padding, the number of output channels is 16, and
the output is 16@1 × 10. The second convolution kernel can
make each frame of output contain enough time information.
The convolution kernel of the third convolution is 1 × 5, the
step size is 1 without padding, the number of output channels
is 16, and the output is 16@1 × 6. The convolution kernel
of the fourth convolution is 1 × k2 (1 × k2 is the size of a
channel of the front layer network, here is 1×6), the step size
is 1 without padding, the number of output channels is 32, and

the output is 32@1 × 1. Finally, through flatten (here we only
use the flatten to reduce the dimension of the features) and a
fully connected layer, we can obtain the scores of four classes
through softmax and the class with the highest score is consid-
ered the prediction class. All the convolution kernels are one-
dimensional in this study. But to express the length direction
of convolution kernels more intuitively, the two-dimensional
form of convolution kernel is used. For example, the first layer
convolution kernel 9×1 and the third layer convolution kernel
1 × 5 are both one-dimensional convolution kernels. Their
convolution kernels are 9 and 5 in size respectively, but the
length of the convolution kernel goes in a different direction,
which can be simply understood as vertical and horizontal
(spatial-dimension and time-dimension).

The model is implemented in Tensorflow [38], using the
Keras API [39]. The L2 regularization and dropout parameters
used in this study are set to 0.01 and 0.4 respectively.

2) Network Architecture of FB-tCNN: The network architec-
ture of the FB-tCNN is shown in Fig. 3(b). For the network
hyper-parameters of FB-tCNN are the same as tCNN, here we
only illustrate the network architecture of FB-tCNN simply.
The raw data is filtered by four sub-filters with different
filter ranges in the filter bank module to obtain four sub-
inputs. These four sub-inputs are respectively passed through
three convolution layers to obtain four sub-features. And these
four sub-inputs’ three convolution layers share weights. Next,
these four sub-features are fused (added) in the fusion mod-
ule. Then passed through the fourth convolution layer. After
that, the feature dimension is reduced by flattening. Finally,
through a fully connected layer, the output is obtained through
softmax.
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Fig. 4. The random selection process of a single sample in a single trial.

3) Training Process: During the training process, a fixed-
length time-window is randomly selected as a single sample
for training. The fixed-length time-window range is [0.14 + r ,
0.14 + r + d] s, which start 0.14 + r s after the onset time of
the stimulus, r is a random number between [0, L − d], L s
is the lasted time of the stimulation, and d s is the data length
of time-window. The selection process is shown in Fig. 4.

‘categorical cross’ and ‘Adam’ are chosen as loss function
and optimization algorithm respectively. A model is trained
for 4000 iterations with a minibatch size of 256 trials and
recorded with the minimum loss of validation set during the
training process.

D. SSVEP Classification by CCA-Related Methods

In this section, CCA and CCA-M3 are introduced.
1) CCA: CCA is a standard statistical technique [40], [41],

which is used to find the linear combination coefficients
(weight vectors) of two variables (matrixes). Using the method
of a linear transformation of matrixes X and Y into linear
combinations (vectors), CCA seeks to obtain x = wT

x X and
y = wT

y Y , where vectors wx and wy are linear combination
coefficients of matrixes X and Y respectively. Then, we max-
imize the correlation coefficients of vectors x and y to obtain
wx and wy . The correlation coefficient ρ is expressed as

ρ = max
wx ,wy

E[x yT ]√
E[xxT ]E[ y yT ]

= max
wx ,wy

E[wT
x XY T wy]√

E[wT
x X XT wx ]E[wT

y YY T wy]
(2)

where superscript T denotes the transpose operation. wx and
wy in Eq. (2) can be solved by singular value decomposi-
tion (SVD) or other methods.

In SSVEP recognition [22], X ∈ RC×Ns is a matrix com-
posed of multi-channel EEG data, C is the number of electrode
channels, Ns indicates the number of sampling points, Ns =
d × fs , d s is the data length of time-window, fs is the
sampling rate. Each row of matrix X is one electrode channel
data. Matrix Y ∈ R(2·Nh )×Ns is the reference signal (template)
composed of the sine-cosine of the stimulus target frequency
and its harmonics, Nh is the number of harmonics. Each row
of the matrix Y is a sine or cosine signal of length Ns . For
the specific stimulus frequency fi (i = 1, 2, · · · , K , K is

the number of stimulus targets), the reference signal matrix
Y (i) ∈ R(2·Nh )×Ns is expressed as

Y (i) =

⎛
⎜⎜⎜⎜⎜⎝

sin(2π fi t)
cos(2π fi t)

...
sin(2π Nh fi t)
cos(2π Nh fi t)

⎞
⎟⎟⎟⎟⎟⎠

, t = 1

fs
,

2

fs
, · · · ,

Ns

fs
(3)

In the process of target recognition, a correlation coefficient
ρi is calculated between a single-trial testing signal X and
each reference signal Y (i). Thus, the frequency ft of the
testing signal is decided as the frequency fi of the reference
signal (template) with the maximum correlation as follows:

ft = max
fi

ρi , i = 1, 2, · · · , K (4)

2) CCA-M3: In 2020, Wei et al. [24] proposed a CCA
method that creating spatial filters (wx and wy) using training
data only, which is named CCA-M3 in [24]. Assume that
the training data has Nr trials for each stimulus target. For a
specific target with stimulus frequency fi (i = 1, 2, · · · , K ),
matrix X (i) ∈ RC×(Ns ·Nr ) is the continuous training sig-
nal yielded by concatenating the Nr training trials, X (i) =
[X i1, X i2, · · · , X i Nr ]. Matrix X ih ∈ RC×Ns is the multi-
channel data of a single trial for the specific stimulus target in
the training set, h = 1, 2, · · · , Nr . Matrix Y (i) ∈ RC×(Ns ·Nr )

is the splicing of Nr repetitions of the average of Nr trials for
the specific stimulus target, Y (i) = [X̄

i
, X̄

i
, · · · , X̄

i
], matrix

X̄
i = 1

Nr

∑Nr
h=1 X ih ∈ RC×Ns .

In the training phase, the two spatial filters wxi and wyi

for i -th target are estimated by Eq. (2) between the training
signal X (i) and the individual template reference signal Y (i).

In the test phase, only the spatial filter wxi is used for
subsequent feature extraction. Specifically, for a single-trial
testing signal ˜X ∈ RC×Ns , it is spatially filtered with wxi

as xi = wT
xi

˜X . In the same way, the multi-channel template

signal X̄
i

is spatially filtered as yi = wT
xi X̄

i
. Then the

correlation between xi and yi is used as the feature signal
for target recognition and K correlation coefficients can be
obtained for all the K stimulus frequencies as

ri = corr(wT
xi

˜X,wT
xi X̄

i
), i = 1, 2, · · · , K (5)

where corr(a, b) denotes the Pearson correlation coefficient
between two vectors a and b. Finally, the stimulus frequency
ft corresponding to the testing trial can be decided as:

ft = arg max
i

ri , i = 1, 2, · · · , K (6)

˜X and X ih in the same specific-position time-window (such
as [0.14, 0.14 + d] s) is needed for good performance.

The correlation coefficient is directly calculated between
the single-trial testing signal and template in CCA. While in
CCA-M3, spatial filters are firstly estimated from the training
data, and then one of these spatial filters is used to calculate the
correlation coefficient between single-trial testing signal and
template. It makes CCA-M3 a training data-driven method.
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Fig. 5. The average accuracy and ITR across all subjects yielded by these methods at different data lengths. The error bars denote SEM (the
standard error of the mean). (a) In our dataset; (b) In the ‘session01’ of the public dataset.

E. Performance Evaluation

Two parameters are used to evaluate the performance of the
BCI: accuracy and information transfer rate (ITR) [42].

In most studies, accuracy has been defined as the ratio of
the number of correct samples to the number of total samples,
and the accuracy P is expressed as

P = m1/m (7)

where m1 represents the number of correct samples, and m
represents the number of total samples. Accuracy can be used
to evaluate the performance of the classification algorithm.

For our dataset, leave-one-out cross-validation is used.
Using each of the six blocks as a testing set, and the remaining
five blocks as training data. The training data is randomly
divided into the training set and validation set according to
the ratio of 9:1. The classification process repeats six times,
and the classification accuracy is taken as the average of the
six classification results. The public dataset is divided into
‘EEG_SSVEP_train’ and ‘EEG_SSVEP_test’. To facilitate the
comparison of other researchers in this dataset, only the accu-
racy of the ‘EEG_SSVEP_test’ is used as the classification
accuracy. The ‘EEG_SSVEP_train’ is randomly divided into
the training set and validation set according to the ratio of 9:1,
and the entire ‘EEG_SSVEP_test’ is used as the testing set.

Although accuracy is an important index, the ITR of the
BCI system should be also considered in the application. ITR
considers the trade-off between accuracy and data length. The
ITR (bits/min) can be written as follows:

I T R = 60 × [log2K + Plog2 P + (1 − P)log2
1 − P

K − 1
]/d

(8)

where K is the number of stimulus targets, P is the accuracy,
and d is the data length of time-window.

III. RESULTS

In this section, the methods that are compared contain not
only CCA [22] and CCA-M3 [24], but also other deep learning
methods such as FFT-CNN [29] (the network architectures

of [28]–[30] are similar) and Compact-CNN [32]. We also
compare FB-tCNN with tCNN to demonstrate the advantages
of the filter bank at the short time-window. Specific-position
time-window (such as [0.14, 0.14 + d] s) for CCA-M3 and
random-position time-window (such as [0.14 + r , 0.14 + r +
d] s) for other methods.

A. Impact of the Data Length in the Intra-Individual Test

Fig. 5 illustrates the average accuracy and ITR across all
subjects in our dataset and public dataset yielded by these
methods at ten data lengths, which ranged from 0.1 to 1.0 s
with an interval of 0.1 s. The result of ‘session02’ is not shown,
because it is extremely similar to ‘session01’. In Fig. 5, the
accuracy of these methods is generally positively correlated
with the data length. But for FB-tCNN, tCNN, Compact-CNN,
and CCA-M3, the improvement of accuracy is not obvious
after 0.6 s. The ability of feature extraction at the short time-
window of the four methods may be enough strong, a high
accuracy has already been achieved at 0.6 s. By contrast,
FFT-CNN and CCA have poor performance at the short time-
window. Thus, the accuracy of the two methods can still
improve with the increase of data length after 0.6 s. And
there is no distinct difference between FB-tCNN and tCNN
after 0.4 s. The filter bank has the effect of denoising before
0.4 s, which can improve the ability of SSVEP-related feature
extraction. But when the data length is long enough, the
SNR increases, one-filter-based tCNN can extract relevant
features well enough. This might be the reason why FB-tCNN
has no advantage over tCNN after 0.4 s (further analysis in
section III-B). It can be noted that FB-tCNN shows the best
performance of the ITR in all data sets at the 0.1 s time-
window. The maximum ITR reaches 596.86 ± 120.48 bits/min
and 337.18 ± 30.92 bits/min, respectively, in our dataset and
the ‘session01’ of the public dataset.

Considering the trade-off between the accuracy and the
ITR, Table I illustrates the average accuracy across all the
subjects in our dataset and the public dataset yielded by these
methods at 0.2 s to show the performance of FB-tCNN more
specifically. At 0.2 s, the paired t-test (tails = 1) shows that
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TABLE I
THE AVERAGE ACCURACY (MEAN ± SEM %) OF THESE METHODS

IN OUR DATASET AND PUBLIC DATASET AT 0.2 s

the average accuracy of FB-tCNN is significantly higher than
other methods (all p < 0.05) in the public dataset. And in
our dataset, FB-tCNN is significantly higher than CCA-M3,
FFT-CNN, and CCA (p < 0.05), but not significantly higher
than tCNN and Compact-CNN ( p > 0.05).

B. Inter-Individual Performance

Inter-individual performance is important. The model
trained with the existing subjects as the training set is
expected to show good performance on the new subjects
(unseen subjects). At present, various algorithms for improving
inter-individual performance are developed [43]–[45]. For the
number of subjects in our dataset is insufficient, the inter-
individual performance is studied only in ‘session01’ of the
public dataset.

1) Impact of the Training-Subject Number: Ten subjects (sub-
ject 1, 5, 10, 13, 24, 27, 31, 32, 45, 51) are randomly
selected as the testing-subjects, then randomly select 5, 10,
15, 20, 25, 30, 35, and 40 subjects from the remaining
subjects as the training-subjects (subject 23 and 47 have
been removed because of their problematic data). Leave-one-
subject-out cross-validation not be used because of enough
number of subjects. Three representative data lengths (0.2 s,
0.5 s, and 1.0 s) are selected. Fig. 6 illustrates the average
inter-individual accuracy across the selected subjects based on
FB-tCNN yielded by three data lengths at the different num-
bers of training-subjects, which ranged from 5 to 40 with an
interval of 5. Table II illustrates the inter-individual accuracy
of each selected subject based on FB-tCNN at 0.5 s to show
more details. The intra-individual test accuracy is also shown
in Fig. 6 and Table II to be convenient to compare. Overall,
average inter-individual accuracy is positively correlated with
the number of training-subjects at the three data lengths.
However, when the number of training-subjects is more than
20, the number seems to have less impact on inter-individual
performance. The gap of accuracy between inter-individual
and intra-individual would not distinctly decrease with the
increase of number after 20 training-subjects. For a specific
individual (subject), SSVEP recognition is not only related to
the common SSVEP-related features (such as frequency fea-
tures) from different individuals but also related to individual-
related information from the specific individual. This might
cause a gap. The importance of individual information in the
intra-individual test can be seen in the CCA-related methods.
Some CCA-related methods [23]–[25] introduce the individual

Fig. 6. The average inter-individual accuracy across the selected
subjects based on FB-tCNN is yielded by the three data lengths at
the different numbers of training-subjects. The average intra-individual
accuracy is shown at the right. The error bars denote SEM.

Fig. 7. The average accuracy across the selected subjects is yielded
by these methods at different data lengths. The error bars denote SEM.
(a) Intra-individual test; (b) Inter-individual test.

information to improve the performance in the intra-individual
test for a specific individual (for example, CCA-M3 performs
better than CCA in section III-A). The gap can decrease with
the increase of data length. It might be because the common
SSVEP-related features become more apparent as the data
length increases.

2) Impact of the Data Length: The inter-individual perfor-
mance of the selected 10 subjects for deep learning methods
based on 20 training-subjects is studied in this section. CCA is
used as the baseline for its training-free, FFT-CNN is removed
for its bad performance at the short time-window. Fig. 7
illustrates the average intra-individual and inter-individual
accuracy across the selected subjects yielded by FB-tCNN,
tCNN, Compact-CNN, and CCA at ten data lengths. The
paired t-test (tails = 2) is used between intra-individual
and inter-individual tests of the selected subjects for each
method (except CCA for its training-free), and Fig. 8 illus-
trates the corresponding p-value across the selected subjects
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TABLE II
THE INTER-INDIVIDUAL AND INTRA-INDIVIDUAL ACCURACY (%) OF EACH SELECTED SUBJECT BASED ON

FB-TCNN AT 0.5 s WITH DIFFERENT NUMBERS OF TRAINING-SUBJECTS

Fig. 8. The p-value between intra-individual and inter-individual tests
across the selected subjects is yielded by the three methods at different
data lengths.

yielded by these methods at ten data lengths. Fig. 7(a) is
similar to Fig. 5(b), FB-tCNN has no advantage over tCNN
and Compact-CNN after 0.4 s. But in Fig. 7(b), FB-tCNN
performs better than other methods at all data lengths.
In Fig. 8, the p-value of FB-tCNN is bigger than tCNN and
Compact-CNN, which means that the difference between intra-
individual and inter-individual tests of FB-tCNN is smaller
than tCNN and Compact-CNN. It seems that FB-tCNN tends
to extract more common SSVEP-related features and less
individual-related information than tCNN and Compact-CNN
in the intra-individual test. It might demonstrate that for each
sub-filter of the filter bank, the frequency information of a
fundamental or harmonic gets more attention than individual-
related information. Part individual-related information is lost
for each narrower sub-filter of the filter bank. While one-filter-
based tCNN can better extract the features of the individual-
related information. When the SNR increases with the increase
of the time-window, the missing individual-related informa-
tion will have a relatively large impact. This might be a
reason why FB-tCNN has no advantage after 0.4 s in the
intra-individual test.

Generally, FB-tCNN can perform well with enough training-
subjects and data length. For example, using 20 training-
subjects at 0.5 s, the inter-individual accuracy and ITR reach
81.79 ± 3.51% and 131.51 ± 18.31 bits/min respectively.

IV. DISCUSSION

In this section, 1 s is used as the data length of the fixed-
length time-window to show the performance of CCA-M3
better. The start-point range of the fixed-length time-window
is [0.14, 0.14 + L − d] s, which starts 0.14 s after the onset
time of the stimulus, L s is the lasted time of the stimulus,
and d s is the data length of the fixed-length time-window.

‘f1’, ‘f2’, ‘f3’, and ‘f4’ represent stimulus targets with fre-
quencies of 12 Hz, 8.57 Hz, 6.67 Hz, and 5.45 Hz, respectively.

A. Asynchronous BCI Analyses

According to the different processing methods of input
data and the different forms of interaction, BCI systems can
be divided into synchronous and asynchronous. Synchronous
BCI means that the system has a fixed-position time-window
mechanism (such as [0.14, 0.14 + d] s). The system can only
process and decode the signal in the specific time-window,
while the information outside this time-window is considered
meaningless, and thus ignored by the system. While the
asynchronous BCI does not require the fixed-position time-
window (such as [0.14 + r , 0.14 + r + d] s).

The CCA-M3 algorithm has a limitation of the time-window
alignment. It only performs well at the specific-position time-
window. It can be difficult to achieve an asynchronous BCI
system with CCA-M3. The fixed-length time-window moving
curve of CCA-M3 is shown in Fig. 9(a). The results are
obtained by moving a fixed-length time-window over a trial
frame by frame. The frequency of the fixed-length time-
window data is decided as the frequency of the stimulus
target frequencies with maximum correlation coefficient. It can
be seen that with the movement of the fixed-length time-
window, the correlation coefficient of correct-class-‘f2’ is not
always bigger than that of other classes. To be more precise,
their correlation coefficient changes periodically, which is the
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Fig. 9. (a) CCA-M3 based frame-by-frame recognition of a trial, the y-axis represents the correlation coefficient; (b) FB-tCNN based frame-by-frame
recognition of a trial, the y-axis represents the score. The x-axis represents the number of frames (250 frames = 1 s), ‘f2’ is the correct class.

Fig. 10. FB-tCNN based frame-by-frame recognition of some trials. (a) ‘f1’ is the correct class; (b) ‘f4’ is the correct class.

problem of time-window alignment. While deep learning has
no such limitation. Fig. 9(b) is a frame-by-frame recognition
diagram of the same trial based on FB-tCNN. The scores of
four classes are calculated by using the model proposed in
Section II (score is the output of softmax). The higher the
score of a class is, the higher the probability of the class is. The
score of class-‘f2’ is close to 1, while the other three classes
are close to 0. The score of class-‘f2’ is always higher than that
of other classes, which is very stable compared with CCA-M3.
Therefore, FB-tCNN is easier in terms of the implementation
of the asynchronous BCI system than CCA-M3.

B. Error Label Analyses

In the field of BCI, good algorithms can certainly improve
the recognition accuracy, but good datasets also play a decisive
role. It is very difficult to collect high-quality data in the
BCI field. The low-quality data limits the development of
the algorithm. Sometimes the error of recognition comes from
the problem of the data, instead of the algorithm. For some
misclassified samples, we propose two possibilities.

1) The algorithm is not generalizable enough to deal with
noisy signals.

2) These subjects did not concentrate when collecting data.
They did not pay attention to the stimulus target corre-
sponding to the prompt (label) on the monitor in time,
the label is inconsistent with the stimulus target that the
subject is staring at, resulting in the error label.

Some trials that contain misclassified samples are recog-
nized frame by frame based on FB-tCNN. The results of
two of these trials are shown in Fig. 10. The recognition of

the fixed-length time-window is wrong at the beginning but
finally became correct. The situation might not arise from
the classification inaccuracy of the algorithm, but the problem
of the data collection process. During the experiment, it is
possible that the subjects pay attention to other stimulus targets
(the stimulus target does not correspond to the prompt) or did
not concentrate on their tasks fully. It can be said that there
are some error labels in the data.

V. CONCLUSION

In this study, we propose a time-domain-based CNN (tCNN)
and use a filter bank to improve its performance at the short
time-window (FB-tCNN). We compare FB-tCNN with other
methods at different data lengths in the intra-individual test
and FB-tCNN shows the significant advantage at 0.1 s, 0.2 s,
and 0.3 s. Performance on inter-individual is also studied.
FB-tCNN shows the potential to implement inter-individual
BCI. And we find there is always a gap of performance
between inter-individual and intra-individual might because
of the lack of individual-related information, intra-individual
test might have overfitted the individual-related information.
Then we discuss whether CCA-M3 or deep learning methods
(FB-tCNN as an example) can better implement the asynchro-
nous BCI system, and draw the conclusion that it is easier to
implement the asynchronous BCI system with deep learning.
Finally, some trials that contain misclassified samples are
recognized frame by frame. We find that some recognition
errors might not be caused by the algorithm, but the subjects’
poor attention while collecting data. Some labels are not
consistent with the actual prompt.
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In future work, how to find samples with error labels and
removing (or correcting) these are important to improve the
algorithm performance. And our method can be used to build
an asynchronous SSVEP-BCI control system, which may lead
to a faster and more flexible human-computer interaction
system.
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